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The main object of this paper is to introduce and investigate two new classes of generalized
Apostol-Euler and Apostol-Genocchi polynomials. In particular, we obtain a new addition formula
for the new class of the generalized Apostol-Euler polynomials. We also give an extension and
some analogues of the Srivastava-Pintér addition theorem obtained in the works by Srivastava
and Pintér (2004) and R. Tremblay, S. Gaboury, B.-J. Fugère, and Tremblay et al. (2011). for both
classes.

1. Introduction

The generalized Bernoulli polynomials B
(α)
n (x) of order α ∈ C, the generalized Euler poly-

nomials E(α)
n (x) of order α ∈ C, and the generalized Genocchi polynomials G(α)

n (x) of order
α ∈ C, each of degree n as well as in α, are defined, respectively, by the following generating
functions (see, [1, volume 3, page 253 et seq.], [2, Section 2.8], and [3]):

(
t

et − 1

)α

· ext =
∞∑
k=0

B
(α)
k (x)

tk

k!
(|t| < 2π ; 1α := 1),

(
2

et + 1

)α

· ext =
∞∑
k=0

E
(α)
k (x)

tk

k!
(|t| < π ; 1α := 1),

(
2t

et + 1

)α

· ext =
∞∑
k=0

G
(α)
k (x)

tk

k!
(|t| < π ; 1α := 1).

(1.1)



2 International Journal of Mathematics and Mathematical Sciences

The literature contains a large number of interesting properties and relationships
involving these polynomials [1, 4–7]. These appear in many applications in combinatorics,
number theory, and numerical analysis.

Many interesting extensions to these polynomials have been given. In particular, Luo
and Srivastava [8, 9] introduced the generalized Apostol-Bernoulli polynomials B

(α)
n (x;λ) of

order α ∈ C; Luo [10] invented the generalized Apostol-Euler polynomials E
(α)
n (x;λ) of order

α ∈ C and the generalized Apostol-Genocchi polynomials G
(α)
n (x;λ) of order α ∈ C in [3].

These polynomials are defined, respectively, as follows.

Definition 1.1. The generalized Apostol-Bernoulli polynomials B
(α)
n (x;λ) of order α ∈ C are

defined by means of the following generating function:

(
t

λet − 1

)α

· ext =
∞∑
k=0

B
(α)
k (x;λ)

tk

k!

(|t| < 2π, if λ = 1; |t| < ∣∣logλ∣∣, if λ/= 1; 1α := 1
) (1.2)

with

B
(α)
n (x) = B

(α)
n (x; 1). (1.3)

Definition 1.2. The generalized Apostol-Euler polynomials E
(α)
n (x;λ) of order α are defined by

means of the following generating function:

(
2

λet + 1

)α

· ext =
∞∑
k=0

E
(α)
k (x;λ)

tk

k!
(|t| < ∣∣log(−λ)∣∣; 1α := 1

)
(1.4)

with

E
(α)
n (x) = E

(α)
n (x; 1). (1.5)

Definition 1.3. The generalized Apostol-Genocchi polynomials G
(α)
n (x;λ) of order α are

defined by means of the following generating function:

(
2t

λet + 1

)α

· ext =
∞∑
k=0

G
(α)
k (x;λ)

tk

k!
(|t| < ∣∣log(−λ)∣∣; 1α := 1

)
(1.6)

with

G
(α)
n (x) = G

(α)
n (x; 1). (1.7)

Many authors have investigated these polynomials and numerous very interesting
papers can be found in the literature. The reader should read [11–20].
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Recently, the authors [21] studied a new family of generalized Apostol-Bernoulli poly-
nomials of order α in the following form.

Definition 1.4. For arbitrary real or complex parameter α and for b, c ∈ R
+, the generalized

Apostol-Bernoulli polynomials B
[m−1,α]
n (x, b, c;λ), m ∈ N, λ ∈ C, are defined, in a suitable

neighborhood of t = 0, with |t log b| < 2π if λ = 1 or with |t log b| < | logλ| if λ/= 1, by means of
the generating function:

⎛
⎜⎝ tm

λbt −∑m−1
l=0

((
t log b

)l
/l!
)
⎞
⎟⎠

α

· cxt =
∞∑
k=0

B
[m−1,α]
n (x, b, c;λ)

tk

k!
. (1.8)

It easy to see that if we set m = 1, b = c = e in (1.8), we arrive at the following:

(
t

λet − 1

)α

· ext =
∞∑
k=0

B
[0,α]
n (x, e, e;λ)

tk

k!
. (1.9)

This is the generating function for the generalized Apostol-Bernoulli polynomials of order α.
Thus, we have

B
[0,α]
n (x, e, e;λ) = B

(α)
n (x;λ). (1.10)

Obviously, when we set λ = 1 and α = 1 in (1.10) we obtain

B
[0,1]
n (x, e, e; 1) = Bn(x), (1.11)

where Bn(x) are the classical Bernoulli polynomials.
Moreover, Srivastava et al. [22] introduced two new families of generalized Euler and

Genocchi polynomials. They investigated the following forms.

Definition 1.5. Let a, b, c ∈ R
+ (a/= b) and n ∈ N0 := N ∪ {0}. Then the generalized Apostol-

Euler polynomials E
(α)
n (x;λ;a, b, c) of order α ∈ C are defined by the following generating

function:

(
2

λbt + at

)α

· cxt =
∞∑
n=0

E
(α)
n (x;λ;a, b, c)

tn

n!
(∣∣∣∣t log

(
b

a

)∣∣∣∣ < ∣∣log(−λ)∣∣; 1α := 1; x ∈ R

)
.

(1.12)
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Definition 1.6. Let a, b, c ∈ R
+ (a/= b) and n ∈ N0. Then the generalized Apostol-Genocchi

polynomials G
(α)
n (x;λ;a, b, c) of order α ∈ C are defined by the following generating function:

(
2t

λbt + at

)α

· cxt =
∞∑
n=0

G
(α)
n (x;λ;a, b, c)

tn

n!
(∣∣∣∣t log

(
b

a

)∣∣∣∣ < ∣∣log(−λ)∣∣; 1α := 1; x ∈ R

)
.

(1.13)

It is easy to see that setting a = 1 and b = c = e in (1.12) and (1.13) yields the classical
results for the Apostol-Euler and Apostol-Genocchi polynomials.

Lately, Kurt [23] presented a new interesting class of generalized Euler polynomials.
Explicitly, he introduced the next definition.

Definition 1.7. For arbitrary real or complex parameter α, the generalized Euler polynomials
E
[m−1,α]
n (x),m ∈ N, are defined, in a suitable neighborhood of t = 0 by means of the generating

function:

(
2m

et +
∑m−1

l=0
(
tl/l!
)
)α

· ext =
∞∑
k=0

E
[m−1,α]
n (x)

tk

k!
. (1.14)

It is easy to see that if we set m = 1 in (1.14), we arrive at the following:

(
2

et + 1

)α

· ext =
∞∑
k=0

E
(α)
k (x)

tk

k!
, (1.15)

which is the generating function for the generalized Euler polynomials of order α. Thus, we
have

E
[0,α]
n (x) = E

(α)
n (x). (1.16)

In this paper, we propose a further generalization of Apostol-Euler polynomials and
the Apostol-Genocchi polynomials and we give some properties involving them. For the new
class of Apostol-Euler polynomials, we establish a new addition theorem with the help of
a result given by Srivastava et al. [24]. We also give an extension of the Srivastava-Pintér
theorem [25, 26]. Finally, we exhibit some relationships between the generalized Apostol-
Euler polynomials and other polynomials or special functions with the help of the new
addition formula.

2. New Classes of Generalized Apostol-Euler and
Apostol-Genocchi Polynomials

The following definitions provide a natural generalization of the Apostol-Euler polynomials
E
[m−1,α]
n (x;λ), m ∈ N, of order α ∈ C and the Apostol-Genocchi polynomials G

[m−1,α]
n (x;λ),

m ∈ N, of order α ∈ C.
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Definition 2.1. For arbitrary real or complex parameter α and for b, c ∈ R
+, the generalized

Apostol-Euler polynomials E
[m−1,α]
n (x, b, c;λ), m ∈ N, λ ∈ C, are defined, in a suitable neigh-

borhood of t = 0, with |t log b| < | log(−λ)| by means of the generating function:

⎛
⎜⎝ 2m

λbt +
∑m−1

l=0

(
(t log b)l/l!

)
⎞
⎟⎠

α

· cxt =
∞∑
k=0

E
[m−1,α]
n (x, b, c;λ)

tk

k!
. (2.1)

It is easy to see that if we set m = 1, b = c = e in (2.1), we arrive at the following:

(
2

λet + 1

)α

· ext =
∞∑
k=0

E
[0,α]
n (x, e, e;λ)

tk

k!
. (2.2)

This is the generating function for the generalized Apostol-Euler polynomials of order α.
Thus, we have

E
[0,α]
n (x, e, e;λ) = E

(α)
n (x;λ). (2.3)

Definition 2.2. For arbitrary real or complex parameter α and for b, c ∈ R
+, the generalized

Apostol-Genocchi polynomials G
[m−1,α]
n (x, b, c;λ), m ∈ N, λ ∈ C, are defined, in a suitable

neighborhood of t = 0, with |t log b| < | log(−λ)| by means of the generating function:

⎛
⎜⎝ 2mtm

λbt +
∑m−1

l=0

(
(t log b)l/l!

)
⎞
⎟⎠

α

· cxt =
∞∑
k=0

G
[m−1,α]
n (x, b, c;λ)

tk

k!
. (2.4)

Obviously, if we setm = 1, b = c = e in (2.4), we obtain

(
2t

λet + 1

)α

· ext =
∞∑
k=0

G
[0,α]
n (x, e, e;λ)

tk

k!
. (2.5)

This is the generating function for the generalized Apostol-Genocchi polynomials of order α.
Thus, we have

G
[0,α]
n (x, e, e;λ) = G

(α)
n (x;λ). (2.6)

The generalized Apostol-Euler polynomials G
[m−1,α]
n (x, b, c;λ) defined by (2.1) possess

the following interesting properties. These are stated as Theorems 2.3, 2.4, and 2.5 below.

Theorem 2.3. The generalized Apostol-Euler polynomials E
[m−1,l]
n (x, b, c;λ) and the generalized

Apostol-Bernoulli polynomials B
[m−1,l]
n (x, b, c;λ), l ∈ N0, are related by

B
[m−1,l]
n (x, b, c;λ) =

(−1)ln!
2ml(n −ml)!

E
[m−1,l]
n−ml (x, b, c;−λ) (n, l,m ∈ N0, n ≥ ml) (2.7)



6 International Journal of Mathematics and Mathematical Sciences

or, equivalently, by

E
[m−1,l]
n (x, b, c;λ) =

(−2m)ln!
(n −ml)!

B
[m−1,l]
n+ml (x, b, c;−λ) (n, l,m ∈ N0). (2.8)

Proof. Considering the generating function (2.1), the relations (2.7) and (2.8) follow easily.

Theorem 2.4. Let b, c ∈ R
+, α an arbitrary complex number, and m ∈ N. Then, the generalized

Apostol-Euler polynomials E
[m−1,α]
n (x, b, c;λ) satisfy the following relations:

E
[m−1,α+β]
n

(
x + y, b, c;λ

)
=

n∑
k=0

(
n
k

)
E
[m−1,α]
k (x, b, c;λ)E[m−1,β]

n−k
(
y, b, c;λ

)
, (2.9)

E
[m−1,α]
n

(
x + y, b, c;λ

)
=

n∑
k=0

(
n
k

)
E
[m−1,α]
k (x, b, c;λ)

(
y log c

)n−k
. (2.10)

Proof. Considering the generating function (2.1) and comparing the coefficients of tn/n! in
the both sides of the above equation, we arrive at (2.9). Proof of (2.10) is similar.

Theorem 2.5. The generalized Apostol-Euler polynomials E
[m−1,α]
n (x, b, c;λ) satisfy the following

recurrence relation:

λE
[m−1,α]
n (x + 1, b, c;λ) + E

[m−1,α]
n (x, b, c;λ)

= 2
n∑

k=0

(
n
k

)
E
[m−1,α]
k (x, b, c;λ)E(−1)

n−k (0;λ; 1, c, a),
(2.11)

where E
(−1)
n−1−k(0;λ; 1, c, a) are the generalized Apostol-Euler polynomials defined by (1.12).

Proof. Considering the expression λE
[m−1,α]
n (x + 1, b, c;λ) + E

[m−1,α]
n (x, b, c;λ) and using the

generating functions (2.1) and (1.12), (2.11) follows easily.

Remark 2.6. Settingm = 1 and b = c = e in (2.11) and with the help of (2.3), we find

λE
(α)
n (x + 1;λ) + E

(α)
n (x;λ) = 2

n∑
k=0

(
n
k

)
E
(α)
k (x;λ)E(−1)

n−k (0;λ). (2.12)

Using the well-known result (see [8])

E
(α+β)
n

(
x + y;λ

)
=

n∑
k=0

(
n
k

)
E
(α)
k (x;λ)E(β)

n−k
(
y;λ
)
, (2.13)

(2.12) becomes the familiar relation for the generalized Apostol-Euler polynomials (see [8]):

λE
(α)
n (x + 1;λ) + E

(α)
n (x;λ) = 2E(α−1)

n (x;λ). (2.14)
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Now, let us shift our focus on some interesting properties for the generalized Apostol-
Genocchi polynomials G

[m−1,α]
n (x, b, c;λ) defined by (2.4). These are stated as Theorems 2.7,

2.8, and 2.9 below.

Theorem 2.7. The generalized Apostol-Genocchi polynomials G
[m−1,α]
n (x, b, c;λ), the generalized

Apostol-Bernoulli polynomials B
[m−1,α]
n (x, b, c;λ), and the generalized Apostol-Euler polynomials

E
[m−1,α]
n (x, b, c;λ) are related by

G
[m−1,α]
n (x, b, c;λ) = (−2m)αB[m−1,α]

n (x, b, c;−λ) (α ∈ C),

G
[m−1,l]
n (x, b, c;λ) =

n!
(n −ml)!

E
[m−1,l]
n−ml (x, b, c;λ) (n, l,m ∈ N0, n ≥ ml).

(2.15)

Proof. Considering the generating function (2.4), the relations (2.15) follow easily.

Theorem 2.8. Let b, c ∈ R
+, α an arbitrary complex number, and m ∈ N. Then, the generalized

Apostol-Genocchi polynomials G
[m−1,α]
n (x, b, c;λ) satisfy the following relations:

G
[m−1,α+β]
n

(
x + y, b, c;λ

)
=

n∑
k=0

(
n
k

)
G

[m−1,α]
k (x, b, c;λ)G[m−1,β]

n−k
(
y, b, c;λ

)
, (2.16)

G
[m−1,α]
n

(
x + y, b, c;λ

)
=

n∑
k=0

(
n
k

)
G

[m−1,α]
k (x, b, c;λ)

(
y log c

)n−k
. (2.17)

Proof . Considering the generating function (2.4) and comparing the coefficients of tn/n! in
the both sides of the above equation, we arrive at (2.17). Proof of (2.18) is similar.

Theorem 2.9. The generalized Apostol-Genocchi polynomials G
[m−1,α]
n (x, b, c;λ) satisfy the follow-

ing recurrence relation:

λG
[m−1,α]
n (x + 1, b, c;λ) + G

[m−1,α]
n (x, b, c;λ)

= 2n
n−1∑
k=0

(
n − 1
k

)
G

[m−1,α]
k (x, b, c;λ)G(−1)

n−1−k(0;λ; 1, c, a),
(2.18)

where G
(−1)
n−1−k(0;λ; 1, c, a) are the generalized Apostol-Genocchi polynomials defined by (1.13).

Proof. Considering the expression λG
[m−1,α]
n (x + 1, b, c;λ) + G

[m−1,α]
n (x, b, c;λ) and using the

generating functions (2.4) and (1.13), (2.19) follows easily.

Remark 2.10. Putting m = 1 and b = c = e in (2.19) and with the help of (2.6), we find

λG
(α)
n (x + 1;λ) + G

(α)
n (x;λ) = 2n

n−1∑
k=0

(
n − 1
k

)
G

(α)
k (x;λ)G(−1)

n−1−k(0;λ). (2.19)
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Using the well-known result (see [11])

G
(α+β)
n

(
x + y;λ

)
=

n∑
k=0

(
n
k

)
G

(α)
k (x;λ)G(β)

n−k
(
y;λ
)
, (2.20)

(2.20) becomes the familiar relation for the generalized Apostol-Genocchi polynomials (see
[11]):

λG
(α)
n (x + 1;λ) + G

(α)
n (x;λ) = 2nG

(α−1)
n−1 (x;λ). (2.21)

3. An Addition Theorem for the New Class of
Generalized Apostol-Euler Polynomials

In this section, we establish a new addition theorem for the generalized Apostol-Euler poly-
nomials. This new formula is based on a result due to Srivastava et al. [24].

The next theorem has been invented by Srivastava et al. [24]. However, the theorem is
given without proof (see [24, pages 438–440]).

Theorem 3.1. Let B(z) and z−1C(z) be arbitrary functions which are analytic in the neighborhood of
the origin, and assume (for sake of simplicity) that

B(0) = C′(0) = 1. (3.1)

Define the sequence of functions {f (α)
n (x)}∞n=0 by means of

∞∑
n=0

f
(α)
n (x)

zn

n!
= [B(z)]α exp(xC(z)), (3.2)

where α and x are arbitrary complex numbers independent of z. Then, for arbitrary parameters σ and
y,

f
(α+σγ)
n

(
x + γy

)
=

n∑
k=0

γ + n

γ + k

(
n
k

)
f
(α−σk)
k

(
x − ky

)
f
(σk+σγ)
n−k

(
ky + γy

)
, (3.3)

provided that Re(γ) > 0.

Remark 3.2. The choice of 1 in the conditions of (3.3) is merely a convenient one. In fact, any
nonzero constant values may be assumed for B(0) and C′(0).

Now, applying the last theorem with special choices of functions and parameters fur-
nishes the next very interesting addition formula. This formula is contained in the following
corollary.
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Corollary 3.3. Let b, c ∈ R
+ and m ∈ N. Then, for arbitrary complex parameters α, σ, x and y, the

generalized Apostol-Euler polynomials E
[m−1,α]
n (x, b, c;λ) satisfy the addition formula:

E
[m−1,α+σγ]
n

(
x + γy, b, c;λ

)

=
n∑

k=0

γ + n

γ + k

(
n
k

)
E
[m−1,α−σk]
k

(
x − ky, b, c;λ

)
E
[m−1,σk+σγ]
n−k

(
ky + γy, b, c;λ

) (3.4)

provided that Re(γ) > 0.

Proof. Setting B(z) = 2m/(bt+
∑m−1

l=0 ((t log b)l/l!)) and C(z) = t log c in Theorem 3.1, the result
follows.

Moreover, if we set σ = 0 in (3.4), we obtain

E
[m−1,α]
n

(
x + γy, b, c;λ

)

=
n∑

k=0

γ + n

γ + k

(
n
k

)
E
[m−1,α]
k

(
x − ky, b, c;λ

)
E
[m−1,0]
n−k

(
ky + γy, b, c;λ

)

=
n∑

k=0

γ + n

γ + k

(
n
k

)
E
[m−1,α]
k

(
x − ky, b, c;λ

)(
γ + k

)n−k(
y log c

)n−k
.

(3.5)

This result (3.5) will be very useful in the next section.

4. Some Analogues of the Srivastava-Pintér Addition Theorem

In this section, we give a generalization of the Srivastava-Pintér addition theorem and an
analogue. We end this section by giving two interesting relationships involving the new
addition formula (3.5).

Theorem 4.1. The following relationship,

E
[m−1,α]
n

(
x + y, b, c;λ

)

=
n∑

k=0

(
n
k

)⎡⎣2 k∑
j=0

(
k
j

)
E
[m−1,α]
j

(
y, b, c;λ

)
E
(−1)
k−j (0;λ; 1, c, a)

⎤
⎦En−k(x;λ)

(
log c

)n−k

(α, λ ∈ C;n ∈ N0),

(4.1)

holds between the new class of generalized Apostol-Euler polynomials, the classical Apostol-Euler poly-
nomials defined by (1.4), and the generalized Apostol-Euler polynomials defined by (1.12).
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Table 1: xn expressed in terms of sums of special polynomials or numbers.

No. Special polynomials or numbers Series representation for xn

(1) Hermite polynomials [27, page 194, (4)] xn =
n!
2n

[n/2]∑
k=0

Hn−2k(x)
k!(n − 2k)!

(2) Legendre polynomials [27, page 181,
Theorem 65]

xn =
n!
2n

[n/2]∑
k=0

(2n − 4k + 1)Pn−2k(x)
k!(3/2)n−k

(3) Generalized Laguerre polynomials [27,
page 207, (2)]

xn = n!(1 + α)n
n∑

k=0

(−1)kL(α)
k (x)

(1 + α)k(n − k)!

(4) Gegenbauer polynomials [27, page 283,
(36)]

xn =
n!
2n

[n/2]∑
k=0

(ν + n − 2k)Cν
n−2k(x)

k!(ν)n+1−k

(5) Stirling numbers of the second kind [5,
page 207, Theorem B]

xn =
n∑

k=0

(
x

k

)
k!S(n, k)

(6) Bernoulli polynomials [7, page 26] xn =
1

n + 1

n∑
k=0

(
n + 1
k

)
Bk(x)

(7) Euler polynomials [7, page 30] xn =
1
2

[
En(x) +

n∑
k=0

(
n

k

)
Ek(x)

]

(8) Apostol-Bernoulli polynomials [8, page
634, (29)]

xn =
1

n + 1

[
λ
n+1∑
k=0

(
n + 1
k

)
Bk(x;λ) − Bn+1(x;λ)

]

(9) Apostol-Euler polynomials [8, page 635,
(32)]

xn =
1
2

[
λ

n∑
k=0

(
n

k

)
Ek(x;λ) + En(x;λ)

]

(10) Generalized Apostol-Euler polynomials
[28, page 1325, (2.4)]

xn =
1
2β

∞∑
k=0

(
β

k

)
λkE

(β)
n (x + k;λ), β ∈ C

(11) Generalized Bernoulli polynomials and
Stirling numbers [28, page 1329, (2.16)]

xn =
n∑
l=0

(
n

l

)(
l + j

j

)−1
S
(
l + j, j

)
B
(j)
n−l(x), j ∈ N0

(12)
Generalized Apostol-Bernoulli
polynomials and generalized Stirling
numbers [28, page 1329, (2.15)]

xn = n!
n∑

l=−j

j!(
l + j
)
!(n − l)!

S
(
l + j, j;λ

)
B

(j)
n−l(x;λ), j ∈ N0

(13) Generalized Bernoulli polynomials [29,
page 158, (2.6)]

xn =
n∑

k=0

(
n

k

)
k!

(k +m)!
B
[m−1]
n−k (x),m ∈ N

Proof. First of all, if we substitute the entry (9) for xn from Table 1 into the right-hand side of
(2.10), we get

E
[m−1,α]
n

(
x + y, b, c;λ

)

=
1
2

n∑
k=0

(
n
k

)
E
[m−1,α]
k

(
y, b, c;λ

)(
log c

)n−k⎡⎣En−k(x;λ) + λ
n−k∑
j=0

(
n − k
j

)
Ej(x;λ)

⎤
⎦

=
1
2

n∑
k=0

(
n
k

)
E
[m−1,α]
k

(
y, b, c;λ

)(
log c

)n−k
En−k(x;λ)

+
λ

2

n∑
k=0

(
n
k

)
E
[m−1,α]
k

(
y, b, c;λ

)(
log c

)n−k n−k∑
j=0

(
n − k
j

)
Ej(x;λ),

(4.2)
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which, upon inverting the order of summation and using the following elementary combina-
torial identity:

(
m
l

)(
l
n

)
=
(
m
n

)(
m − n
m − l

)
(m ≥ l ≥ n; l,m, n ∈ N0), (4.3)

yields

E
[m−1,α]
n

(
x + y, b, c;λ

)

=
1
2

n∑
k=0

(
n
k

)
E
[m−1,α]
k

(
y, b, c;λ

)
En−k(x;λ)

(
log c

)n−k

+
λ

2

n∑
j=0

(
n
j

)
Ej(x;λ)

(
log c

)j n−j∑
k=0

(
n − j
k

)
E
[m−1,α]
k

(
y, b, c;λ

)(
log c

)n−j−k
.

(4.4)

The innermost sum in (4.4) can be calculated with the help of (2.10) with, of course,

x = 1 n –−→ n − j
(
0 ≤ j ≤ n; n, j ∈ N0

)
. (4.5)

We thus find from (4.4) that

E
[m−1,α]
n

(
x + y, b, c;λ

)

=
1
2

n∑
k=0

(
n
k

)
E
[m−1,α]
k

(
y, b, c;λ

)
En−k(x;λ)

(
log c

)n−k

+
λ

2

n∑
j=0

(
n

n − j

)
E
[m−1,α]
n−j

(
y + 1, b, c;λ

)
Ej(x;λ)

(
log c

)j

=
1
2

n∑
k=0

(
n
k

)[
E
[m−1,α]
k

(
y, b, c;λ

)
+ λE

[m−1,α]
k

(
y + 1, b, c;λ

)]
En−k(x;λ)

(
log c

)n−k

(4.6)

which, with the relation (2.11), leads us to the relationship (4.7) asserted by Theorem 4.1.

Theorem 4.2. The following relationship,

G
[m−1,α]
n

(
x + y, b, c;λ

)
=

n∑
k=0

(
n
k

)
En−k(x;λ)

(
log c

)n−k

·
⎡
⎣2k k−1∑

j=0

(
k − 1
j

)
G

[m−1,α]
j

(
y, b, c;λ

)
G

(−1)
k−1−j(0;λ; 1, c, a)

⎤
⎦

(α, λ ∈ C; n ∈ N0),

(4.7)
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holds between the new class of generalized Apostol-Genocchi polynomials, the classical Apostol-Euler
polynomials defined by (1.4), and the generalized Apostol-Genocchi polynomials defined by (1.13).

Making use of Table 1 that contains a list of series representation for xn in terms
of special polynomials or numbers, we can find some analogues of the Srivastava-Pintér
addition theorem. Let us give an example of such formula.

Theorem 4.3. The following relationship,

E
[m−1,α]
n

(
x + y, b, c;λ

)

=
n∑

k=0

(
n
k

)
E
[m−1,α]
k

(
y, b, c;λ

)(
log c

)n−k (n − k)!
2(n−k)

[(n−k)/2]∑
j=0

Hn−k−2j(x)

j!
(
n − k − 2j

)
!
,

(4.8)

holds between the new class of generalized Apostol-Euler polynomials and the Hermite polynomials
defined by

e(2xt−t
2) =

∞∑
n=0

Hn(x)tn. (4.9)

Proof. We derived the Proof from the addition theorem (2.10) and entry 1.

We end this paper by giving two special cases of the addition theorem (3.4) involving
the new class of generalized Apostol-Euler polynomials. These are contained in the two next
theorems.

Theorem 4.4. The following relationship,

E
[m−1,α]
n

(
x + γy, b, c;λ

)

=
n∑

k=0

γ + n

γ + k

(
n
k

)
E
[m−1,α]
k

(
x − ky, b, c;λ

)(
γ + k

)n−k(log c)n−k n−k∑
j=0

(
y
j

)
j!S
(
n − k, j

)
,

(4.10)

holds between the new class of generalized Apostol-Euler polynomials and the Stirling numbers of the
second kind that could be computed by the formula [30, page 58, (1.5)]

S(n, k) =
1
k!

k∑
j=0

(−1)k−j
(
k
j

)
jn. (4.11)

Proof. We derived the Proof from the addition theorem (3.5) and entry 5.
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Theorem 4.5. The following relationship,

E
[m−1,α]
n

(
x + γy, b, c;λ

)

=
n∑

k=0

γ + n

γ + k

(
n
k

)
E
[m−1,α]
k

(
x − ky, b, c;λ

)(
γ + k

)n−k(log c)n−k

· (n − k)!
n−k∑
l=−j

j!(
l + j
)
!(n − k − l)!

S
(
l + j, j;λ

)
B

(j)
n−k−l

(
y;λ
) (

j ∈ N0
)
,

(4.12)

holds between the new class of generalized Apostol-Euler polynomials and the classical Apostol-
Bernoulli polynomials and the generalized Stirling numbers.

Proof. We derived the Proof from the addition theorem (3.5) and entry 12.

It could be interesting to apply the addition formula (3.3) to other family of poly-
nomials in conjunction with series representation involving some special functions for xn in
order to derive some analogues of the Srivastava-Pintér addition theorem.
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