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We give a simple formula for the Fourier coefficients of some degree-two Siegel cusp form with
level p.

1. Introduction

In the previous paper [1], the second and the third authors introduced a simple construction
of a Siegel cusp form of degree 2. This construction has an advantage because the Fourier
coefficients are explicitly computable. After this work was completed, Kikuta and Mizuno
proved that the p-adic limit of a sequence of the aforementioned cusp forms becomes a Siegel
cusp form of degree 2 with level p.

In this paper, we give an explicit description of the Fourier expansion of such a form.
This result shows that the cusp form becomes a nonzero cusp form of weight 2 on Γ20(p) if
p > 7 and p ≡ 3 (mod 4).

2. Siegel Modular Forms of Degree 2

We start by recalling the basic facts of Siegel modular forms.
The Siegel upper half-space of degree 2 is defined by

H2 :=
{
Z = X + iY ∈ Sym2(C) | Y > 0

(
positive-definite

)}
. (2.1)

Then the degree 2 Siegel modular group Γ2 := Sp2(Z) acts on H2 discontinuously. For a
congruence subgroup Γ′ ⊂ Γ2, we denote by Mk(Γ′) (resp., Sk(Γ′)) the corresponding space
of Siegel modular forms (resp., cusp forms) of weight k.
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We will be mainly concerned with the Siegel modular group Γ2 and the congruence
subgroup

Γ20(N) :=
{(

AB
CD

)
∈ Γ2 | C ≡ O (modN)

}
. (2.2)

In both cases, F ∈ Mk(Γ′) has a Fourier expansion of the form

F(Z) =
∑

0≤T∈Λ2

a(T ;F) exp[2πi tr(TZ)], (2.3)

where

Λ2 :=
{
T =

(
tij
) ∈ Sym2(Q) | t11, t22, 2t12 ∈ Z

}
, (2.4)

and a(T ;F) is the Fourier coefficient of F at T .

3. Siegel Cusp Form of Degree 2

In the previous paper [1], we constructed a cusp form fk ∈ Sk(Γ2) whose Fourier coefficients
are explicitly computable. We review the result.

First, we recall the definition of Cohen’s function. Cohen defined an arithmetical
function H(r,N) (r,N ∈ Z≥0) in [2]. In the case that r and N satisfy (−1)rN = D · f2 where
D is a fundamental discriminant and f ∈ N, the function is given by

H(r,N) = L
(
1 − r, χD

) ∑

0<d|f
μ(d)χD(d)dr−1σ2r−1

(
f

d

)
. (3.1)

Here, L(s, χ) is the Dirichlet L-function with character χ, and μ is the Möbius function. For
the precise definition of H(r,N), see [2, page 272].

Secondly, we introduce Krieg’s function G(s,N) (s,N ∈ Z≥0) associated with the
Gaussian field Q(i). Let χ−4 be the Kronecker character associated with Q(i). Krieg’s function
G(s,N) = GQ(i)(s,N) over Q(i) is defined by

G(s,N) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
1 +

∣∣χ−4(N)
∣∣
(
σs,χ−4(N) − σ̃s,χ−4(N)

)
, if N > 0,

− Bs+1,χ−4

2(s + 1)
, if N = 0,

(3.2)

where Bm,χ is the generalized Bernoulli number with character χ,

σs,χ−4(N) :=
∑

0<d|N
χ−4(d)ds, σ̃s,χ−4(N) :=

∑

0<d|N
χ−4

(
N

d

)
ds. (3.3)

This function was introduced by Krieg [3] to describe the Fourier coefficients of Hermitian
Eisenstein series of degree 2.

The following theorem is one of the main results in [1].
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Theorem 3.1. There exists a Siegel cusp form fk ∈ Sk(Γ2) whose Fourier coefficients a(T ; fk) are
given as follows:

a
(
T ; fk

)
=

∑

0<d|ε(T)
dk−1αk

(
4det(T)

d2

)
, (3.4)

where

αk(N) := H(k − 1,N) − B2k−2
Bk−1,χ−4

∑

s∈Z
s2≤N

G
(
k − 2, N − s2

)
,

ε(T) := max
{
l ∈ N | l−1T ∈ Λ2

}
.

(3.5)

Here, Bm is themth Bernoulli number.

Remark 3.2. The above result shows that the cusp form fk is a form in the Maass space (cf.
[1]).

4. p-Adic Siegel Modular Forms

The cusp form fk introduced in Theorem 3.1 was constructed by the difference between the
Siegel Eisenstein series Ek and the restriction of the Hermitian Eisenstein series Ek,Q(i):

fk = ck ·
(
Ek − Ek,Q(i)|H2

)
, (4.1)

for some ck ∈ Q. The p-adic properties of the Eisenstein series Ek and Ek,Q(i) are studied by
the second author (cf. [4, 5]). After our work [1]was completed, Kikuta and Mizuno studied
p-adic properties of our form fk. The following statement is a special case in [6].

Theorem 4.1. Let p be a prime number satisfying p ≡ 3 (mod 4), and {km} is the sequence defined
by

km = km
(
p
)
:= 2 +

(
p − 1

)
pm−1. (4.2)

Then there exists the p-adic limit

f∗
p := lim

m→∞
fkm, (4.3)

and f∗
p represents a cusp form of weight 2 with level p, that is,

f∗
p ∈ S2

(
Γ20
(
p
))

. (4.4)

Remark 4.2. (1) The p-adic convergence of modular forms is interpreted as the convergence
of the Fourier coefficients.
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(2) Kikuta and Mizuno studied a similar problem under more general situation. They
noted that if we take the sequence {km} with km = k + (p − 1)pm−1, k ∈ N (k > 4), then
limm→∞fkm is no longer a cusp form [6, Theorem 1.7].

(3) The cuspidality of f∗
p essentially results from the fact that there are no nontrivial

modular forms of weight 2 on the full modular group Γ2.

5. Main Result

In this section, we give an explicit formula for the Fourier coefficients of f∗
p .

To describe a(T ; f∗
p), we will introduce two functions H∗

p and G∗
p.

First, for N ∈ N with N ≡ 0 or 3 (mod 4), we write N as N = −D · f2 where D is a
fundamental discriminant and f ∈ N. Then, we define

H∗
p(N) := −(1 − χD

(
p
))
B1,χD

∑

0<d|f
(d,p)=1

μ(d)χD(d)σ∗
1

(
f

d

)
,

(5.1)

where

σ∗
1(m) =

∑

0<d|m
(d,p)=1

d.
(5.2)

Secondly, forN ∈ Z≥0, we define

G∗
p(N) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − (−1)ordp(N)

1 +
∣∣χ−4(N)

∣∣ σ∗
0,χ−4

(N), if N > 0,

1
2
, if N = 0,

(5.3)

where

σ∗
0,χ−4(N) =

∑

0<d|N
(d,p)=1

χ−4(d).
(5.4)

Remark 5.1. From the definition, the following holds:

G∗
p(N) = 0 if p � N. (5.5)

The main theorem of this paper can be stated as follows.

Theorem 5.2. Let p be a prime number satisfying p ≡ 3 (mod 4). Then the Fourier coefficients
a(T ; f∗

p) of f
∗
p ∈ S2(Γ20(p)) are given by

a
(
T ; f∗

p

)
=

∑

0<d|ε(T)
(d,p)=1

dα∗
p

(
4det(T)

d2

)
,

(5.6)
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where

α∗
p(N) := H∗

p(N) − p − 1
6

∑

s∈Z
s2≤N

G∗
p

(
N − s2

)
. (5.7)

Here,H∗
p and G∗

p are the functions defined in (5.1) and (5.3), respectively.

From Theorems 3.1 and 4.1, the proof of Theorem 5.2 is reduced to show that

lim
m→∞

αkm(N) = α∗
p(N). (5.8)

We proceed the proof of (5.8) step by step.

Lemma 5.3. Consider the following:

lim
m→∞

H(km − 1,N) = H∗
p(N). (5.9)

Proof. Under the description N = −D · f2, we can writeH(km − 1,N) as

H(km − 1,N) = −Bkm−1,χD

km − 1

∑

0<d|f
μ(d)χD(d)dkm−2σ2km−3

(
f

d

)
, (5.10)

(cf. (3.1)).
Using Kummer’s congruence, we obtain

lim
m→∞

Bkm−1,χD

km − 1
=
(
1 − χD

(
p
))
B1,χD . (5.11)

On the other hand, we have

lim
m→∞

∑

0<d|f
μ(d)χD(d)dkm−2σ2km−3

(
f

d

)
=

∑

0<d|f
(d,p)=1

μ(d)χD(d)σ∗
1

(
f

d

)
,

(5.12)

because

lim
m→∞

dkm−2 =

{
1, if p � d,

0, if p | d,

lim
m→∞

σ2km−3(l) = lim
m→∞

∑

0<d|l
d1+2(p−1)pm−1

=
∑

0<d|l
(d,p)=1

d = σ∗
1(l), (l ∈ N).

(5.13)

This proves (5.9).
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Lemma 5.4. Consider the following:

lim
m→∞

B2km−2
Bkm−1,χ−4

∑

s∈Z
s2≤N

G
(
km − 2,N − s2

)
=

p − 1
6

∑

s∈Z
s2≤N

G∗
p

(
N − s2

)
. (5.14)

Proof. First, we calculate the factor of Bernoulli numbers. Again by Kummer’s congruence,
we obtain

lim
m→∞

B2km−2
Bkm−1,χ−4

= 2 lim
m→∞

B2km−2
2km − 2

· km − 1
Bkm−1,χ−4

= 2 · (1 − p
) · B2

2
· 1
(
1 − χ−4

(
p
))
B1,χ−4

=
p − 1
6

.

(5.15)

Here, we used the facts that χ−4(p) = −1 and B1,χ−4 = −1/2.
Next we calculate

lim
m→∞

∑

s∈Z
s2≤N

G
(
km − 2,N − s2

)
.

(5.16)

IfN ′ := N − s2 > 0, then

G
(
km − 2,N ′) =

1
1 +

∣∣χ−4(N ′)
∣∣
(
σkm−2,χ−4

(
N ′) − σ̃km−2,χ−4

(
N ′)), (5.17)

(cf. (3.2)). Therefore, we need to calculate

lim
m→∞

σkm−2,χ−4
(
N ′), lim

m→∞
σ̃km−2,χ−4

(
N ′). (5.18)

We have

lim
m→∞

σkm−2,χ−4
(
N ′) = lim

m→∞

∑

0<d|N ′
χ−4(d)d(p−1)pm−1

=
∑

0<d|N ′

(d,p)=1

χ−4(d).
(5.19)

To calculate limm→∞σ̃km−2,χ−4(N
′), we write N ′ as N ′ = pe · N ′′, (p,N ′′) = 1, namely, e =

ordp(N ′). Then we have

lim
m→∞

σ̃km−2,χ−4
(
N ′) = lim

m→∞

∑

0<d|N ′
χ−4

(
N ′

d

)
d(p−1)pm−1

=
∑

0<d|N ′′
χ−4

(
pe ·N ′′)

=
(
χ−4

(
p
))e ∑

0<d|N ′

(d,p)=1

∑
χ−4(d).

(5.20)
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Combining these formulas, we obtain

lim
m→∞

(
σkm−2,χ−4

(
N ′) − σ̃km−2,χ−4

(
N ′)) =

(
1 − (

χ−4
(
p
))ordp(N ′)

) ∑

0<d|N ′
(d,p)=1

χ−4(d)

=
(
1 − (−1)ordp(N ′)

)
σ∗
0,χ−4

(
N ′).

(5.21)

IfN ′ = N − s2 = 0, then

G(km − 2, 0) = − Bkm−1,χ−4

2(km − 1)
. (5.22)

Thus, we get

lim
m→∞

G(km − 2, 0) = −(1 − χ−4
(
p
))B1,χ−4

2
=

1
2
. (5.23)

Consequently,

lim
m→∞

∑

s∈Z
s2≤N

G
(
km − 2,N − s2

)
=

∑

s∈Z
s2≤N

G∗
p

(
N − s2

)
.

(5.24)

The identity (5.14) immediately follows due to these formulas.

The proof of Theorem 5.2 is completed by combining Lemmas 5.3 and 5.4.
An advantage of the formula (5.6) is that we can prove the nonvanishing property for

the cusp form f∗
p for p > 7.

Corollary 5.5. Assume that p ≡ 3 (mod 4). If p > 7, then f∗
p does not vanish identically.

Proof. We calculate the Fourier coefficient a(T ; f∗
p) at T =

(
1 0
0 1

)
. From the theorem, we have

a

((
1 0
0 1

)
; f∗

p

)
= α∗

p(4)

= H∗
p(4) −

p − 1
6

(
G∗

p(4) + 2G∗
p(3) + 2G∗

p(0)
)
.

(5.25)

The assumption p ≡ 3 (mod 4) implies that

H∗
p(4) = −(1 − χ−4

(
p
))
B1,χ−4 = 1. (5.26)

On the other hand, G∗
p(3) = G∗

p(4) = 0 (because p � 3, 4) and G∗
p(0) = 1/2. Hence,

p − 1
6

(
G∗

p(4) + 2G∗
p(3) + 2G∗

p(0)
)
=

p − 1
6

. (5.27)
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Consequently, we obtain

a

((
1 0
0 1

)
; f∗

p

)
= α∗

p(4) = 1 − p − 1
6

=
7 − p

6
< 0 (5.28)

if p > 7.

Remark 5.6. We have f∗
3 = f∗

7 = 0. These identities are consistent with the fact that
dimS2(Γ20(3)) = dim S2(Γ20(7)) = 0 (see [7]).

6. Numerical Examples

In this section, we present numerical examples concerning our Siegel cusp forms. To begin
with, we recall the theta series associated with quadratic forms.

Let S = S(2m) be a half-integral, positive-definite symmetric matrix of rank 2m.
We associate the theta series

ϑ(S,Z) =
∑

X∈M2m,2(Z)

exp
[
2πi tr

(tXSXZ
)]
, Z ∈ H2. (6.1)

If we take a symmetric S = S(2m) > 0 with level p, then

ϑ(S,Z) ∈ Mm

(
Γ20
(
p
))

. (6.2)

In some cases, we can construct cusp forms by taking a linear combination of theta series.

The Case p = 11. Set

Q
(11)
1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
1
2

0

0 1 0
1
2

1
2

0 3 0

0
1
2

0 3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Q
(11)
2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
1
2

1
2

1
2

1
2

1 0
1
2

1
2

0 4 2

1
2

1
2

2 4

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Q
(11)
3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1
1
2

1
2

1 2 0
1
2

1
2

0 2 1

1
2

1
2

1 2

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (6.3)

and ϑi = ϑ(Q(11)
i , Z). It is known that dim S2(Γ20(11)) = 1 (cf. [7]). We can take a nonzero

element of S2(Γ20(11)) as

C2(11) = 3ϑ1 − 2ϑ2 − ϑ3 (6.4)

(Yoshida’s cusp form cf. [8]).
Table 1 gives a first few examples for the Fourier coefficient of f∗

11 and C2(11).
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Table 1

T

⎛

⎝ 1 1/2

1/2 1

⎞

⎠

⎛

⎝1 0

0 1

⎞

⎠

⎛

⎝ 2 1/2

1/2 1

⎞

⎠

⎛

⎝2 0

0 1

⎞

⎠

⎛

⎝ 3 1/2

1/2 1

⎞

⎠

a(T ; f∗
11) 2/3 −2/3 0 0 −2/3

a(T ;C2(11)) −24 24 0 0 24

T

⎛

⎝3 0

0 1

⎞

⎠

⎛

⎝2 1

1 2

⎞

⎠

⎛

⎝ 2 1/2

1/2 2

⎞

⎠

⎛

⎝2 0

0 2

⎞

⎠

⎛

⎝4 0

0 1

⎞

⎠

a(T ; f∗
11) −2/3 2/3 2/3 0 4/3

a(T ;C2(11)) 24 −24 −24 0 −48

Table 2

N 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31
α∗
11(N) 2/3 −2/3 0 0 −2/3 −2/3 2/3 4/3 0 2/3 −2/3 0 −2/3 0 −2/3

N 32 35 36 39 40 43 44 47 48 51 52 55 56 59 60
α∗
11(N) 0 0 0 0 0 0 2/3 0 0 0 0 2/3 4/3 −2/3 −2

N 63 64 67 68 71 72 75 76 79 80 83 84 87 88 91
α∗
11(N) 0 −4/3 2 0 2/3 0 4/3 0 0 −4/3 0 0 0 0 −8/3

N 92 95 96 99 100
α∗
11(N) 2 0 0 4/3 0

The relation between f∗
11 and C2(11) is

f∗
11 = − 1

36
C2(11). (6.5)

Further examples of the Fourier coefficients of f∗
11 can be obtained from Table 2.
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