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The Bernoulli polynomials Bk restricted to [0, 1) and extended by periodicity have nth sine and
cosine Fourier coefficients of the formCk/n

k . In general, the Fourier coefficients of any polynomial
restricted to [0, 1) are linear combinations of terms of the form 1/nk . If we can make this linear
combination explicit for a specific family of polynomials, then by uniqueness of Fourier series,
we get a relation between the given family and the Bernoulli polynomials. Using this idea, we
give new and simpler proofs of some known identities involving Bernoulli, Euler, and Legendre
polynomials. The method can also be applied to certain families of Gegenbauer polynomials. As a
result, we obtain new identities for Bernoulli polynomials and Bernoulli numbers.

1. Introduction

The Bernoulli polynomials Bk(x) (with k ∈ N ∪ {0}) are defined via the generating function

tetx

et − 1
=

∞∑

k=0

Bk(x)
tk

k!
, (1.1)

from which one also obtains the Bernoulli numbers as the values Bk = Bk(0). Although
it does not immediately yield their explicit form, the manipulation of (1.1), along with
the uniqueness theorem for power series expansions, leads to many properties of these
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polynomials. For instance, the following properties concerning derivation and symmetry are
easily obtained in this way

B′
k(x) = kBk−1(x), k ≥ 1,

Bk(1 − x) = (−1)kBk(x), k ≥ 0.
(1.2)

These two properties are all that is needed to obtain the Fourier series of the 1-periodic
functions which coincide with Bk(x) on the interval [0, 1)

B2k(x) =
2(−1)k−1(2k)!

(2π)2k

∞∑

n=1

cos(2πnx)
n2k

, k ≥ 1,

B2k+1(x) =
2(−1)k−1(2k + 1)!

(2π)2k+1

∞∑

n=1

sin(2πnx)
n2k+1

, k ≥ 0.

(1.3)

In fact, (1.3) and (1.5) are equivalent to the statements that the sine and cosine Fourier
coefficients of the polynomials

◦
B2k(x) = (−1)k−1 (2π)

2k

(2k)!
B2k(x), k ≥ 1,

◦
B2k+1(x) = (−1)k−1 (2π)

2k+1

(2k + 1)!
B2k+1(x), k ≥ 0,

(1.4)

are

∫1

0

◦
B2k(x) cos(2πmx)dx =

⎧
⎨

⎩

1
m2k

, m > 0,

0, m = 0,
(1.5)

∫1

0

◦
B2k(x) sin(2πmx)dx = 0, m > 0, (1.6)

∫1

0

◦
B2k+1(x) sin(2πmx)dx =

1
m2k+1

, m > 0, (1.7)

∫1

0

◦
B2k+1(x) cos(2πmx)dx = 0, m ≥ 0, (1.8)

and the properties (1.5)–(1.8) can be deduced easily using only induction and (1.2) and (1.3).
On the other hand, as we show in the following lemma, the sine and cosine coefficients

on [0, 1) of any polynomial of degree n are a linear combination of the terms 1/mk,
k ≤ n. Therefore, every polynomial of degree n is a linear combination of the normalized

polynomials
◦
Bk, k ≤ n. Of course, this last assertion is also obvious without the use of

Fourier series. The point here is that in many cases we can obtain the coefficients of the linear
combinationmore quickly and easily by computing the Fourier coefficients of the polynomial.



International Journal of Mathematics and Mathematical Sciences 3

We will illustrate the method with a very simple example: the monomial xn. First, we
compute its Fourier coefficients.

Lemma 1.1. Let n,m ∈ N. Then

∫1

0
xn cos(2πmx)dx =

[n/2]∑

k=1

(−1)k−1 n!
(n − 2k + 1)!

1

(2πm)2k
,

∫1

0
xn sin(2πmx)dx =

[n/2]∑

k=1

(−1)k−1 n!
(n − 2k + 2)!

1

(2πm)2k−1
.

(1.9)

Proof. This is a straightforward computation using integration by parts and induction.

Now, as an application of the method, we give a proof of a well-known theorem.

Theorem 1.2. For n ∈ N, one has

n∑

j=0

(
n + 1
j

)
Bj(x) = (n + 1)xn. (1.10)

Proof. Let us suppose that n is even (the odd case is entirely similar) and use 2n instead. We
define

Vn(x) =
n∑

k=1

(−1)k−1 (2n)!
(2n − 2k + 1)!

1

(2π)2k
◦
B2k(x) =

n∑

k=1

(2n)!
(2n − 2k + 1)!(2k)!

B2k(x),

Wn(x) =
n∑

k=1

(−1)k (2n)!
(2n − 2k + 2)!

1

(2π)2k−1
◦
B2k−1(x) =

n∑

k=1

(2n)!
(2n − 2k + 2)!(2k − 1)!

B2k−1(x).

(1.11)

By the lemma and formulas (1.5)–(1.8), it is immediate that Vn +Wn and x2n have the same
sine and cosine Fourier coefficients, except for the constant term, which is 0 for the first
polynomial and 1/(2n + 1) for the second one. Therefore, by uniqueness of Fourier series

Vn(x) +Wn(x) = x2n − 1
2n + 1

. (1.12)

Finally, observe that

Vn(x) +Wn(x) =
2n∑

j=1

(2n)!
(
2n − j + 1

)
!j!

Bj(x). (1.13)

hence, the result follows now from a couple of simple manipulations.

Remark 1.3. The identities extend from [0, 1) to C by analytic continuation.
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The classical proof of this theorem uses the formulas

Bn(1 + x) = nxn−1 + Bn(x),

Bn(1 + x) =
n∑

k=0

(
n
k

)
Bk(x),

(1.14)

which can be easily deduced from the defining relation (1.1).
In this specific case, the difficulties of the above proof and the classical one are

comparable. However, in more complicated situations, we believe that our method is simpler.
It is the purpose of this paper to provide evidence for this claim, by obtaining, via the use of
Fourier series, identities between polynomial families, some of which are new while others
are well known, but are given simpler proofs.

In addition, properties of one family are carried over to another, and hence, we obtain
new recurrence relations for Bernoulli polynomials and Bernoulli numbers. It should be
mentioned that new relations between classical and generalized Bernoulli polynomials and
numbers are still obtainable through the use of different types of expansions (see [1–4]
and the references cited within). These identities are similar in appearance to ours but not
identical to them. Power series expansions are the most often used, due to the natural starting
point given by the generating series (1.1), but it is not the only one, for instance, the related
power series for the cosecant is used in [5]. We believe that, for the purpose of proving these
types of identities, Fourier expansion is also a useful tool, and one that is not typically used
in the mainstream. The authors have previously employed this method to prove some facts
about Bernoulli and Euler polynomials in [6] and for Apostol-Bernoulli polynomials in [7].

The organization of the paper is as follows. In Section 2, we obtain a relationship
between Legendre and Bernoulli polynomials, which was already proved in [8, 9], but
with longer and more complicated proofs. In Section 3, which we have separated from the
previous one for the sake of clarity, we extend the results to Gegenbauer polynomials with
polynomial weight, the results here are new and lead us also to some new identities for
Bernoulli polynomials which are developed in Section 4. In Section 5, we show how to use
the Fourier coefficients to obtain a known formula relating Euler and Bernoulli polynomials
in a very simple way.

Remark 1.4. The formulas appearing in this paper were checked with Maple to avoid possible
mistakes in their transcription, especially the longer ones.

2. Bernoulli and Legendre Polynomials

Wedenote the classical Legendre polynomials by Pn(x). Recall that they are orthogonal on the
interval [−1, 1] and have the same parity as n. It is straightforward to prove, by substituting
2x − 1 = y, that

∫1

0
P2n(2x − 1) sin(2πmx)dx = 0, n,m ∈ N,

∫1

0
P2n(2x − 1)dx = 0, n ∈ N.

(2.1)
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The key point here is that it is also possible to explicitly find the cosine coefficients by apply-
ing classical integral formulas.

Lemma 2.1. Let n,m ∈ N. Then

∫1

0
P2n(2x − 1) cos(2πmx)dx =

n∑

k=1

(−1)k−1
22k−1

(2n + 2k − 1)!
(2k − 1)!(2n − 2k + 1)!

1

(πm)2k
. (2.2)

Proof. By substituting 2x − 1 = y, the proof is immediate if we take into account the two
following classical formulas relating Bessel functions:

∫1

0
P2n

(
y
)
cos

(
πmy

)
dy = (−1)n

√
1
2m

J2n+1/2(πm) (2.3)

(see [10, formula 2.17.7-1, page 433]) and

√
1
2m

J2n+(1/2)(πm) =
1

πm
cos(π(m − n))

n−1∑

k=0

(−1)k (2n + 2k + 1)!
(2k + 1)!(2n − 2k − 1)!

1

(2πm)2k+1
(2.4)

(see [11, formula 10.1.8, page 437]).

This lemma and the uniqueness of Fourier series are all that we need to state the fol-
lowing theorem.

Theorem 2.2. Let n ∈ N. Then

1
2
P2n(2x − 1) =

n∑

k=1

(2n + 2k − 1)!
(2k − 1)!(2k)!(2n − 2k + 1)!

B2k(x). (2.5)

Proof. The previous lemma and (1.5), (1.6) show that the polynomials on both sides of (2.5)
have the same sine and cosine Fourier coefficients on [0, 1]. Therefore, the formula is true on
[0, 1) and, by analytic continuation, on R.

In the odd case the same references, [10, 11], serve to show the following result.

Lemma 2.3. Let n,m ∈ N. Then

(i)
∫1
0 P2n+1(2x − 1) sin(2πmx)dx = −∑n

k=0((−1)k/22k)((2n + 2k + 1)!/(2k)!(2n − 2k +
1)!)(1/(πm)2k+1),

(ii)
∫1
0 P2n+1(2x − 1) cos(2πmx)dx =

∫1
0 P2n+1(2x − 1)dx = 0.

We then have the corresponding consequence.

Theorem 2.4. Let n ∈ N. Then

1
2
P2n+1(2x − 1) =

n∑

k=0

(2n + 2k + 1)!
(2k)!(2k + 1)!(2n − 2k + 1)!

B2k+1(x). (2.6)
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As we said in Section 1, the same formulas for Legendre polynomials were obtained
in [8, 9] by much more complicated techniques.

3. Bernoulli and Gegenbauer Polynomials

We now consider the classical Gegenbauer polynomials Gλ
n(x), which are orthogonal on

[−1, 1] with respect to the weight ωλ(x) = (1 − x2)λ−1/2, when λ − 1/2 ∈ N ∪ {0}, with
G1/2

n (x) = Pn(x) being a particular case. We recall that Gλ
n(x) also has the same parity as n.

The following identities are straightforward to prove by substituting 2x− 1 = y. For n,m ∈ N,

∫1

0
(x(1 − x))λ−1/2Gλ

n(2x − 1)dx = 0,

∫1

0
(x(1 − x))λ−1/2Gλ

2n(2x − 1) sin(2πmx)dx = 0,

∫1

0
(x(1 − x))λ−1/2Gλ

2n+1(2x − 1) cos(2πmx)dx = 0.

(3.1)

We can extend the results of the Section 2 since there are also classical formulas which
permit us to compute the remaining Fourier coefficients of such polynomials. The formulas
are slightly different according to whether λ is of the form 2j + 1/2 or 2j − 1/2, with j ∈ N,
and whether the degree of the polynomial is odd or even. Thus we, present them separately.

3.1. The Case 2j + 1/2 and Even Degree

The cosine Fourier coefficients of the polynomial (x(1 − x))2jGλ
2n(2x − 1) are given by the

following lemma.

Lemma 3.1. Let λ = 2j + 1/2, j ∈ N ∪ {0}. Then for n,m ∈ N, one has

∫1

0
(x(1 − x))2jGλ

2n(2x − 1) cos(2πmx)dx

=
(−1)j
26j

√
π

Γ
(
2j + (1/2)

)
(
4j + 2n

)
!

(2n)!

×
n+j∑

k=1

(−1)k−1
22k−1

(
2n + 2j + 2k − 1

)
!

(2k − 1)!
(
2n + 2j − 2k + 1

)
!

1

(πm)2k+2j
.

(3.2)

Proof. We apply [10, formula 2.21.7-1, page 534] and [11, formula 10.1.8, page 437] in the
same way as in Lemma 2.1.

This is enough to prove the next relation.
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Theorem 3.2. Let λ = 2j + (1/2), j ∈ N ∪ {0}. For n ∈ N, one has

(x(1 − x))2jGλ
2n(2x − 1) =

1
24j−1

√
π

Γ
(
2j + (1/2)

)
(
4j + 2n

)
!

(2n)!

×
n+j∑

k=1

(
2n + 2j + 2k − 1

)
!

(2k − 1)!
(
2k + 2j

)
!
(
2n + 2j − 2k + 1

)
!
B2k+2j(x).

(3.3)

The same references cited in the last lemma contain the formulas necessary for the
remaining cases, which we present without further comments.

3.2. The Case 2j − 1/2 and Even Degree

Lemma 3.3. Let λ = 2j − 1/2, j ∈ N. Then for n,m ∈ N, one has

∫1

0
(x(1 − x))2j−1Gλ

2n(2x − 1) cos(2πmx)dx =
(−1)j
26j−3

√
π

Γ
(
2j − (1/2)

)
(
4j + 2n − 2

)
!

(2n)!

×
n+j−1∑

k=0

(−1)k
22k

(
2n + 2j + 2k − 1

)
!

(2k)!
(
2n + 2j − 2k − 1

)
!

1

(πm)2k+2j
.

(3.4)

Theorem 3.4. Let λ = 2j − 1/2, j ∈ N. For n ∈ N, one has

(x(1 − x))2j−1Gλ
2n(2x − 1) = − 1

24j−3

√
π

Γ
(
2j − 1/2

)
(
4j + 2n − 2

)
!

(2n)!

×
n+j−1∑

k=0

(
2n + 2j + 2k − 1

)
!

(2k)!
(
2k + 2j

)
!
(
2n + 2j − 2k − 1

)
!
B2k+2j(x).

(3.5)

3.3. The Case 2j + 1/2 and Odd Degree

Lemma 3.5. Let λ = 2j + 1/2, j ∈ N ∪ {0}. Then for n,m ∈ N, one has

∫1

0
(x(1 − x))2jGλ

2n+1(2x − 1) sin(2πmx)dx =
(−1)j+1
26j

√
π

Γ
(
2j + 1/2

)
(
4j + 2n + 1

)
!

(2n + 1)!

×
n+j∑

k=0

(−1)k
22k

(
2n + 2j + 2k + 1

)
!

(2k)!
(
2n+2j−2k+1)!

1

(πm)2k+2j+1
.

(3.6)
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Theorem 3.6. Let λ = 2j + 1/2, j ∈ N ∪ {0}. For n ∈ N, one has

(x(1 − x))2jGλ
2n+1(2x − 1) =

1
24j−1

√
π

Γ
(
2j + 1/2

)
(
4j + 2n + 1

)
!

(2n + 1)!

×
n+j∑

k=0

(
2n + 2j + 2k + 1

)
!

(2k)!
(
2k + 2j + 1

)
!
(
2n + 2j − 2k + 1

)
!
B2k+2j+1(x).

(3.7)

3.4. The Case 2j − 1/2 and Odd Degree

Lemma 3.7. Let λ = 2j − 1/2, j ∈ N. Then, for n,m ∈ N, one has

∫1

0
(x(1 − x))2j−1Gλ

2n+1(2x − 1) sin(2πmx)dx

=
(−1)j
26j−3

√
π

Γ
(
2j − 1/2

)
(
4j + 2n − 1

)
!

(2n + 1)!

×
n+j∑

k=1

(−1)k−1
22k−1

(
2n + 2j + 2k − 1

)
!

(2k − 1)!
(
2n + 2j − 2k + 1

)
!

1

(πm)2k+2j−1
.

(3.8)

Theorem 3.8. Let λ = 2j − 1/2, j ∈ N. For n ∈ N, one has

(x(1 − x))2j−1Gλ
2n+1(2x − 1) =

−1
24j−3

√
π

Γ
(
2j − 1/2

)
(
4j + 2n − 1

)
!

(2n + 1)!

×
n+j∑

k=1

(
2n + 2j + 2k − 1

)
!

(2k − 1)!
(
2k + 2j − 1

)
!
(
2n + 2j − 2k + 1

)
!
B2k+2j−1(x).

(3.9)

4. New Identities for Bernoulli Polynomials and Numbers

Using the results of the previous sections, we can transfer formulas for various orthogonal
polynomials to the Bernoulli polynomials and vice versa. We are mainly interested in the first
direction. For example, a simple (and very easy to prove) property which relates Legendre
and Gegenbauer polynomials is

dm

dxm
Pn(x) = 1 · 3 · · · (2m − 1)Gm+1/2

n−m (x), m ≤ n (4.1)

(see, for instance, [11, formula 22.5.37, page 779]). Now, if we differentiate in formulas (2.5)
or (2.6) and use (4.1) and Theorems 3.2–3.8, we obtain some identities between Bernoulli
polynomials. Let us carry out the details in the case of even Legendre polynomials and an
even number of derivatives.
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From (4.1) we have, for n, j ∈ N,

d2j

dx2j
P2n+2j(x) = 1 · 3 · · · (4j − 1

)
G

2j+1/2
2n (x). (4.2)

Differentiating (2.5) 2j times and applying (4.2), we get

22j−1 · 1 · 3 · · · (4j − 1
)
G

2j+1/2
2n (2x − 1) = 2

d2j

dx2j
P2n+2j(2x − 1)

=
n+j∑

k=j

(
2n + 2j + 2k − 1

)
!

(2k − 1)!(2k)!
(
2n + 2j − 2k + 1

)
!
d2j

dx2j
B2k(x).

(4.3)

We multiply both sides of (4.3) by x2j(1 − x)2j and use (3.3) along with the (easily proved)
formula

22j−1 · 1 · 3 · · · (4j − 1
) √

π

24j−1Γ
(
2j + 1/2

) = 1, j ∈ N. (4.4)

Next, we recall the expression for the derivative of a Bernoulli polynomial

d2j

dx2j
B2k(x) =

(2k)!
(
2k − 2j

)
!
B2k−2j(x), k ≥ j. (4.5)

Denoting

α
(
k, j, n

)
=

(
2n + 2j + 2k − 1

)
!

(2k − 1)!
(
2n + 2j − 2k + 1

)
!
, (4.6)

we have then proved the identity.

Proposition 4.1. Let n, j ∈ N. Then

(
2n + 4j

)
!

(2n)!

n+j∑

k=1

α
(
k, j, n

)
(
2k + 2j

)
!
B2k+2j(x) =

n+j∑

k=j

α
(
k, j, n

)
(
2k − 2j

)
!
x2j(1 − x)2jB2k−2j(x). (4.7)

In the same way, if we repeat the above argument with even polynomials and an odd
number of derivatives (using now (2.6) and (3.5)), and we denote

β
(
k, j, n

)
=

(
2n + 2j + 2k − 1

)
!

(2k)!
(
2n + 2j − 2k − 1

)
!
, (4.8)

then we obtain.
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Proposition 4.2. Let n, j ∈ N. Then

(
2n + 4j − 2

)
!

(2n)!

n+j−1∑

k=0

β
(
k, j, n

)
(
2k + 2j

)
!
B2k+2j(x)

= −
n+j−1∑

k=j−1

β
(
k, j, n

)
(
2k − 2j + 2

)
!
x2j−1(1 − x)2j−1B2k−2j+2(x).

(4.9)

By differentiating odd Legendre polynomials an even number of times and using the
notation

γ
(
k, j, n

)
=

(
2n + 2j + 2k + 1

)
!

(2k)!
(
2n + 2j − 2k + 1

)
!
, (4.10)

we get the following.

Proposition 4.3. Let n, j ∈ N. Then

(
2n + 4j + 1

)
!

(2n + 1)!

n+j∑

k=0

γ
(
k, j, n

)
(
2k + 2j + 1

)
!
B2k+2j+1(x)

=
n+j∑

k=j

γ
(
k, j, n

)
(
2k − 2j + 1

)
!
x2j(1 − x)2jB2k−2j+1(x).

(4.11)

Finally, with odd Legendre polynomials and an odd number of derivatives, we have
the following proposition:

Proposition 4.4. Let n, j ∈ N. Then

(
2n + 4j − 1

)
!

(2n + 1)!

n+j∑

k=1

α
(
k, j, n

)
(
2k + 2j − 1

)
!
B2k+2j−1(x)

= −
n+j∑

k=j

α
(
k, j, n

)
(
2k − 2j + 1

)
!
x2j−1(1 − x)2j−1B2k−2j+1(x).

(4.12)

As a consequence of these results, we also obtain some identities for Bernoulli num-
bers, for instance.
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Corollary 4.5. Let j, n ∈ N. Then

n+j∑

k=1

(
2n + 4j + 1
2k + 2j

)(
2n + 2j + 2k − 1

2k − 1

)
B2k+2j = 0,

n+j∑

k=1

(
2n + 2j
2k − 1

)(
2n + 2j + 2k − 1

2k + 2j

)
B2k+2j = 0,

n+j−1∑

k=0

(
2n + 4j − 1
2k + 2j

)(
2n + 2j + 2k − 1

2k

)
B2k+2j = 0,

n+j−1∑

k=0

(
2n + 2j − 1

2k

)(
2n + 2j + 2k − 1

2k + 2j

)
B2k+2j = 0.

(4.13)

Proof. Taking x = 0 in Proposition 4.1, we obtain

n+j∑

k=1

α
(
k, j, n

)
(
2k + 2j

)
!
B2k+2j = 0. (4.14)

If we multiply both sides by the term (2n + 4j + 1)!/(2n + 2j)!, which is independent of k, we
obtain the first identity. If we multiply by (2n + 2j)!/(2n − 1)!, we obtain the second one. The
two remaining identities are obtained using Proposition 4.2 and a similar argument.

Remarks 1. We do not think that Propositions 4.1–4.4 can be easily obtained directly from
formulas for the Bernoulli polynomials. For instance, there can be no direct relation between
x2j(1 − x)2jB2k−2j(x) and B2k+2j(x) because the even Bernoulli polynomials have no roots at
neither 0 nor 1. For the same reasons, we do not see that formula (4.3) together with (2.5)
directly imply (3.3). For this reason, we believe that our results above for Bernoulli and
Gegenbauer polynomials are new. They are neither an easy consequence nor a generalization
of the results in [8, 9].

Similarly, observe that Propositions 4.3 and 4.4 cannot be obtained directly from
Propositions 4.1 and 4.2 by differentiation in a simple way, because of the presence of the
factors xr(1 − x)r . Thus, we believe that these propositions give new identities for Bernoulli
polynomials, which are essentially different for each j.

We have seen in the proof that the first two identities in the corollary are equivalent,
in fact proportional. However, we do not see whether the last two properties are equivalent
to the first ones. In any case, they remind us of other known formulas for Bernoulli numbers
which can be obtained by methods involving hypergeometric functions. For instance, the
Gessel-Viennot identity (see [2]), of which the following is a special case:

m∑

k=0

(
4m − 2k + 2

2m + 2

)(
2n + 1
2k + 1

)
B2n−2k

2m − k + 1

=
2n + 1

4m − 2n + 3

(
4m − 2n + 3

2m + 2

)
, m ≤ n < 2m + 1

(4.15)
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(see also [3] and the references there). We have not gotten around to deducing some of our
formulas from others such as these. Anyway, our proofs via Fourier series are still much easier
than those based on hypergeometric functions.

5. A Remark on Euler Polynomials

The Euler polynomials En(x), which are defined by means of the generating function

2etx

et + 1
=

∞∑

n=0

En(x)
tn

n!
, (5.1)

also have readily handled expressions for their Fourier coefficients. Indeed, from (5.1)we can
easily get the properties

En(1 − x) = (−1)nEn(x), E′
n(x) = nEn−1(x). (5.2)

Now, from (5.2) the proof of the following lemma is straightforward.

Lemma 5.1. Let n,m ∈ N. Then one has the following:

(i)
∫1
0 E2n(x) sin(2πmx)dx = 0,

(ii)
∫1
0 E2n(x)dx = −(2/2n + 1)E2n+1(0),

(iii)
∫1
0 E2n(x) cos(2πmx)dx = 2

∑n
k=1 (−1)kE2n−2k+1(0)((2n)!/(2n− 2k + 1)!)(1/(2πm)2k).

Consequently, by uniqueness of the Fourier series, we obtain the following theorem.

Theorem 5.2. Let n ∈ N. Then

E2n(x) +
2

2n + 1
E2n+1(0) = −2

n∑

k=1

E2n−2k+1(0)
(2n)!

(2n − 2k + 1)!(2k)!
B2k(x) (5.3)

or, equivalently,

E2n(x) = −2
n∑

k=0

E2n−2k+1(0)
(2n)!

(2n − 2k + 1)!(2k)!
B2k(x). (5.4)

We proceed in the same way for the odd Euler polynomials.

Lemma 5.3. Let n,m ∈ N. Then one has the following:

(i)
∫1
0 E2n−1(x) cos(2πmx)dx = 0,

(ii)
∫1
0 E2n−1(x)dx = 0,

(iii)
∫1
0 E2n(x) cos(2πmx)dx = 2

∑n−1
k=0 (−1)kE2n−2k−1(0)((2n − 1)!/(2n − 2k − 1)!)(1/

(2πm)2k+1).
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Theorem 5.4. For n ∈ N, one has

E2n−1(x) = −2
n−1∑

k=0

E2n−2k−1(0)
(2n − 1)!

(2n − 2k − 1)!(2k + 1)!
B2k+1(x). (5.5)

If we use the identities

En(0) = − 2
n + 1

(
2n+1 − 1

)
Bn+1, n ∈ N, (5.6)

(which have immediate proofs) and we put together the even and odd cases, we obtain the
following result.

Corollary 5.5. Let n ∈ N and σ ∈ {0, 1}. Then

E2n−σ(x) = 4
n−σ∑

k=0

(2n − σ)!
(2n − 2k + 2 − 2σ)!(2k + σ)!

(
22n−2k+2−2σ − 1

)
B2n−2k+2−2σB2k+σ(x). (5.7)

This formula is also well known (see, e.g., [11, formula 23.1.28, page 806]). However,
we have obtained it in a very simple and natural way.
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