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We associate a graph to any subset Y of a BCI-algebra X and denote it by G(Y). Then we find
the set of all connected components of G(X) and verify the relation between X and G(X), when
X is commutative BCI-algebra or G(X) is complete graph or n-star graph. Finally, we attempt to
investigate the relation between some operations on graph and some operations on BCI-algebras.

1. Introduction

BCK- and BCI-algebras are two classes of abstract algebras were introduced by Imai and
Iséki [1, 2], in 1966. The notion of BCK-algebras is originated from two different ways. One
of the motivations is from classical and nonclassical propositional logic. Another motivation
is based on set theory. It is known that the class of BCK-algebras is a proper subclass of the
class of BCI-algebras. Many authors studied the graph theory in connection with semigroups
and rings. For example, Beck [3] associated to any commutative ring R its zero divisors graph
G(R), whose vertices are the zero divisors of R, with two vertices a, b jointed by an edge in
case ab = 0. In [4], Jun and Lee defined the notion of zero divisors and quasi-ideals in BCI-
algebra and show that all zero divisors are quasi-ideal. Then, they introduced the concept of
associated graph of BCK/BCI-algebra and verified some properties of this graph and proved
that if X is a BCK-algebra, then associated graph of X is a connected graph. Moreover, if X
is a BCI-algebra and x ∈ X such that x is not contained in BCK-part of X, then there is
not any edge connecting x and y, for any y ∈ X. In this paper, we associate new graph to
a BCI-algebras X which is denoted it by G(X). This definition based on branches of X. If X
is a BCK-algebras, then this definition and last definition, which was introduced by Jun and
Lee, are the same. Then, for any a ∈ P , we defined the concept of a-divisor, where P is a
p-semisimple part of BCI-algebra X and show that it is quasi-ideal of X. Then, we explain
some properties of this graph as mentioned in the abstract.
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2. Preliminaries

Definition 2.1 (see [1, 2]). A BCI-algebra is an algebra (X, ∗, 0) of type (2, 0) satisfying the
following conditions:

(BCI1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;

(BCI2) x ∗ 0 = x;

(BCI3) x ∗ y = 0 and y ∗ x = 0 imply y = x.

If X is a BCI-algebra, then for all x, y ∈ X the following hold:

(BCI4) x ∗ x = 0;

(BCI5) x ∗ (x ∗ (x ∗ y)) = x ∗ y;
(BCI6) (x ∗ y) ∗ z = (x ∗ z) ∗ y;
(BCI7) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x, for any z ∈ X.

Moreover, the relation ≤was defined by x ≤ y ⇔ x ∗ y = 0, for any x, y ∈ X, is a partial-order
on X, which is called BCI-ordering of X. The set B = {x ∈ X | 0 ∗ x = 0} is called BCK-part
of X. A BCI-algebra X is called a BCK-algebra if B = X. A BCK-chain is a BCK-algebra such
that (X,≤) is a chain, where ≤ is the BCI-ordering of X. A nonzero element a of BCK-algebra
X is called an atom of X if x ∗ a = 0 implies x = a, for any nonzero element x ∈ X. Moreover,
P = {x ∈ X | 0 ∗ (0 ∗ x) = x} is called p-semisimple part of a BCI-algebra X. It is the set of all
minimal elements of X, with respect to the BCI-ordering of X. The BCI-algebra X is called a
p-semisimple BCI-algebra if P = X. For any a ∈ P , we use the notation VX(a) or simply V (a)
to denote the set {x ∈ X | a ∗ x = 0} which is called the branch of X with respect to a. It is
easy to see that X =

⋃
a∈P V (a), and for any distinct elements a, b ∈ P , we have

(P1) V (a) ∩ V (b) = ∅;
(P2) if x ∈ V (a) and y ∈ V (b), then x ∗ y ∈ V (a ∗ b);
(P3) if x ∈ V (a), then {y ∈ X | x ≤ y} ∪ {y ∈ X | y ≤ x} ⊆ V (a);

(P4) for all x ∈ X, x ∗ a = 0 implies x = a.

A BCI-algebra X is called commutative if x ≤ y implies x = y ∗ (y ∗ x), for any x, y ∈ X.
Moreover, X is called branchwise commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x), for all x, y ∈ V (a)
and all a ∈ P . For more details, we refer to [5–11].

Lemma 2.2 (see [9]). A BCI-algebra X is commutative if and only if it is branchwise commutative.

Theorem 2.3 (see [10]). Let X = {x0, x1, . . . , xn} and (X, ∗, 0) be a BCK-chain with x0 as the zero
element, whose BCI-ordering is supposed as follows: x0 < x1 < · · · < xn. Then, X is commutative
if and only if the relation ∗ on X is given by xi ∗ xj = xi∗j , where i ∗ j = max{0, i − j}, for any
i, j ∈ {0, 1, . . . , n} (see [10, Theorem 2.3.3]).

A partial-order set (P,≤) is said to be of finite length if the lenghts of all chains of P are
bounded. Let x, y ∈ P . Then, a chain of length n between x and y is a chain a0 < a1 < · · · <
an−1 < an such that {a0, an} = {x, y}. For any x, y ∈ P , l(x, y) is the greatest number in the
lenghts of all chain between a and b.

A BCI-algebra X is said to be finite length if it is finite length as a partial-order set.
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Note 1 (see [4]). Let X be a BCI-algebra and A ⊆ X. We will use the notations UX(A) and
LX(A) or simply U(A) and L(A) to denote the sets {x ∈ X | a ∗ x = 0, ∀a ∈ A} and {x ∈ X |
x ∗ a = 0, ∀a ∈ A}, respectively, that is, U(A) = {x ∈ X | a ≤ x, ∀a ∈ A} and L(A) = {x ∈ X |
x ≤ a, ∀a ∈ A}.

Definition 2.4 (see [4]). A nonempty subset I of BCI-algebra X is called a quasi-ideal of X if
x ∗ y = 0 implies x ∈ I, for any y ∈ I and x ∈ X.

Proposition 2.5 (see [12]). Let (X, ∗1, 0) and (Y, ∗2, 0) be two BCK-algebras such thatX∩Y = {0}
and ∗ be the binary operation on X ∪ Y as follows: for any a, b ∈ X ∪ Y ;

a ∗ b =

⎧
⎪⎪⎨

⎪⎪⎩

a ∗1 b if a, b ∈ X,

a ∗2 b if a, b ∈ Y,

a otherwise.

(2.1)

Then, (X ∪ Y, ∗, 0) is a BCK-algebra. We denote (X ∪ Y, ∗, 0) by X ⊕ Y .

Definition 2.6 (see [4]). For any x ∈ X, the set {y ∈ X | L({x, y}) = {0}} is called the set of all
zero divisors of x.

Theorem 2.7 (see [4]). For any element x of BCK-algebra X, the set of all zero divisors of x is a
quasi-ideal of X containing the zero element {0}.

Let G be a graph, E(G) be the set of all edges of G and V (G) be the set of all vertexes
of G. For any S ⊆ E(G), the graph with vertex set V (G) and edge set E(G) − S is denoted by
G − S. The edge which connect two vertices x, y is denoted by xy. Note that, xy and yx are
the same. For any T ⊆ V (G), the graph with vertex set V (G) − T and edge set E(G) − T ′ is
denoted by G − T , where T ′ = {xy ∈ E(G) | x ∈ T, y ∈ G}. A graph H is called a subgraph
of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A graph G = (V, E) is connected, if any vertices x, y
of G linked by a path in G, otherwise the graph is disconnected. A tree is a connected graph
with no cycles. The degree of a vertex v in a graph G, denoted by deg(v), is the number of
edges of G incident with v and deg(G) =

∑
x∈V deg(x) = 2|E|. We denote by δ(G) and Δ(G)

the minimum and maximum degrees of the vertices of G, respectively. If G and H are two
graphs such that V (G) ∩ V (H) = ∅, then the graph with vertex set V (G) ∪ V (H) and edge set
E(G) ∪ E(H) is called the disjoint union of G and H and we denote it by G ∪ H. Any graph
G = (V, E) may be expressed uniquely as a disjoint union of connected graphs. These graphs
are called the connected components or simply components of G. The number of components of
G is denoted by c(G). A graph G is called empty graph if E(G) = ∅. Moreover, a graph K is
called complete graph if xy ∈ E(G), for any distinct elements x, y ∈ V (G). For more details we
refer to [13, 14].

Definition 2.8. Let G and H be two graphs such that V (G) ∩ V (H) = ∅. We denote the graph
G+H, for the graph, whose vertex set and edge set are V (G)∪V (H) and E(G)∪E(H)∪{xy |
x ∈ V (G), y ∈ V (H)}, respectively.

Definition 2.9 (see [4]). By the associated graph of BCK/BCI-algebra X, denoted Γ(X), we
means the graph whose vertices are just the elements of X, and for distinct x, y ∈ Γ(X), there
is an edge connecting x and y if and only if L({x, y}) = {0}.
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Definition 2.10 (see [13, 15]). Let G be a finite graph with |V (G)| = n. Then, the adjacency
matrix of G is an n × n matrix AG = [ai,j] such that ai,j is the number of edges joining vi and
vj . Moreover, we denote the characteristic polynomial of the matrix AG, by χ(G, λ). That is
χ(G, λ) = det(λI −AG), where I is a n × n identity matrix.

Proposition 2.11 (see [15, Proposition 2.3]). LetG be a graph and χ(G, λ) = λn+c1λn−1+c2λn−2+
· · · + cn. be the characteristic polynomial of the adjacent matrix G. Then, c1 = 0, −c2 is the number of
edges of G and −c3 is twice the number of triangles in G.

3. Graph Based on BCI-Algebras

From now on, in this paper, (X, ∗, 0) or simply X is a BCI-algebra, B is a BCK-part and P is a
p-semisimple part of X, unless otherwise state. For all x, y ∈ X, we use x � y to denote x ≤ y
and x /=y.

Definition 3.1. Note that the set of all 0-divisors of xand the set of all zero divisors of x are the
same. Let x ∈ X. Then, there exists a ∈ P such that x ∈ V (a). We will use the notation Zx to
denote the set of all y ∈ X such that L({x, y}) = {a}, that is, Zx = {y ∈ X | L({x, y}) = {a}},
which is called the set of a-divisor of X.

Note that the set of all 0-divisors of x and the set of all zero divisors of x are the same.

Lemma 3.2. Let a, b ∈ P and x, y ∈ X. Then

(i) one has

L({x, a}) =
{
a if x ∈ V (a),
∅ otherwise,

(3.1)

(ii) if a/= b, x ∈ V (a) and y ∈ V (b), then L({x, y}) = ∅.

Proof. (i) Clearly, if x ∈ V (a), then L({x, a}) = {a}. Let x /∈ V (a). Then, y ∈ L({x, a}) implies
y ≤ x and y ≤ a. Since a ∈ P , we have a = y and so a ≤ x, which is impossible. Therefore,
L({x, a}) = ∅.

(ii) Since a/= b, we have L({x, y}) ⊆ V (a) ∩ V (b) = ∅.

Lemma 3.3. For any x, y ∈ X, if x ∗ y = 0, then L({x}) ⊆ L({y}) and Zy ⊆ Zx.

Proof. Let x ∗ y = 0, for some x, y ∈ X. Then, x ≤ y. Clearly, L{x} ⊆ L{y}. If x ∈ V (a), where
a ∈ P , then a ≤ x ≤ y and so by (P3), y ∈ V (a), too. Now, let u ∈ Zy. Then, L({u, y}) = {a}
and so a ∈ L({u, x}) ⊆ L({u, y}) = {a}. Hence, L({x, u}) = a and so u ∈ Zx. Therefore,
Zy ⊆ Zx.

Jun and Lee in [4] proved that if x is an element of BCK-algebra X, then the set of all
zero divisors of x is a quasi-ideal of X. In Theorem 3.4, we will show that if x is an element of
BCI-algebra X, then Zx is a quasi-ideal of X.

Theorem 3.4. Zx is a quasi-ideal of X, for any x ∈ X.
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Proof. Let x ∈ X such that x ∈ V (a), for some a ∈ P and u, v ∈ X such that u ∗ v = 0 and
v ∈ Zx. Then, u ≤ v and L({v, x}) = {a}. Hence, v ∈ V (a) and so by (P3), u ∈ V (a). Since
a ∈ L({u, x}) ⊆ L({v, x}) = {a}, then L({u, x}) = {a}. Therefore, u ∈ Zx and so Zx is a
quasi-ideal of X.

Definition 3.5. Let Y ⊆ X, and G(Y ) be a simple graph, whose vertices are just the elements of
Y and for distinct x, y ∈ Y , there is an edge connecting x and y, denoted by xy if and only if
L({x, y}) = {a}, for some a ∈ P . If Y = X, then G(X) is called a BCI-graph of X.

Clearly, if X is a BCK-algebra, then G(X) = Γ(X). But it is not true, in general.

Example 3.6. (i) Let X = {0, 1, a, b, c}. Define the binary operation “∗” on X by the following
table:

∗ 0
0 0 0

0
0 0

0
0

0

aa

11
1 1

11

1
a

a

a

a

a

a

aa

b

b

b

cc

c

aa

Then, (X, ∗, 0) is a BCI-algebra, P = {0, a}, V (0) = {0, 1}, and V (a) = {a, b, c}. Moreover,
L({1, 0}) = {0} and L({a, b}) = L({a, c}) = L({b, c}) = {a} and so E(G(X)) = {10, ac, bc, ab}.
Therefore, the graphs G(X) and Γ(X) which are given by Figure 1 are different.

(ii) Let (X, ∗, 0) be the BCI-algebra in Example 3.6(i) and Y = {0, 1, b, c}. Then, G(Y ) is
given by Figure 2.

Example 3.7 (see [4]). Let X = {0, a, b, c}. Define the binary operation “∗” on X by the
following table:
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∗ 0
0 0 0 0

0
0

0
0
aaaa

a

b b b b

b

cc cc

c

Then, (X, ∗, 0) is a BCK-algebra and P = {0} and so G(X) = Γ(X). Moreover, L({0, a}) =
L({0, b}) = L({0, c}) = L({a, c}) = L({b, c}) = L({a, b}) = {0}. Therefore, the graph G(X) is
given by Figure 3.

Proposition 3.8. (i) G(V (a)) is a connected graph, for any a ∈ P ,
(ii) G(X) =

⋃
a∈P G(V (a)),

(iii) G(X) is a graph with |P | components.

Proof. (i) Let a ∈ P and x, y ∈ V (a). Then, by Lemma 3.2(i) xa, ya ∈ E(G(X)) and so there is
a path from x to y in G(X).

(ii) Since X =
⋃

a∈P V (a), then V (G(X)) = V (
⋃

a∈P G(V (a))). Clearly, E(
⋃

a∈P
G(V (a))) ⊆ E(G(X)). Now, let xy ∈ E(G(X)). Then, L({x, y}) = {a}, for some a ∈ P and
so xy ∈ G(V (a)). Hence, E(

⋃
a∈P G(V (a))) = E(G(X)). Therefore, G(X) =

⋃
a∈P G(V (a)).

(iii)Wewant to show that there is not any path between elements of V (a) and V (b), for
all distinct elements a, b ∈ P . Let a, b be distinct elements of P , x ∈ V (a) and y ∈ V (b). If there
is a path x, x1, x2, . . . , xn, y, which link x to y, then a = L({x, x1})/= ∅ and so by Lemma 3.2(ii),
x1 ∈ V (a). By a similar way, we have x2, . . . , xn, y ∈ V (a), which is impossible. Hence, there
is not any path between x and y. Therefore, by (i), G(X) is a graph with |P | components.

Theorem 3.9. X is a p-semisimple BCI-algebra if and only if G(X) is an empty graph.

Proof. Clearly, if X is a p-semisimple BCI-algebra, then by Lemma 3.2(ii), G(X) is an empty
graph. Conversely, let G(X) be an empty graph and x ∈ X. Since, 0 ∗ (0 ∗ x) ∈ P and x ∈
V (0 ∗ (0 ∗ x)), then L({0 ∗ (0 ∗ x), x}) = {0 ∗ (0 ∗ x)}. If 0 ∗ (0 ∗ x) � x, then there exists an edge
between x and 0 ∗ (0 ∗ x) in G(X), which is impossible. Hence, x = 0 ∗ (0 ∗ x) and so X is a
p-semisimple BCI-algebra.

Definition 3.10. Let a ∈ P . The element x ∈ V (a) is called an a-atom if x /=a and y ∗ x = 0
implies y = a or y = x, for all y ∈ X.

Note that if X is a BCK-algebra then the concept of 0-atom and atom are the same.

Lemma 3.11. Let X be a BCI-algebra of finite order. Then, for any x ∈ X − P , there is an a-atom
b ∈ X, such that b ≤ x, for some a ∈ P .

Proof. Let x ∈ X − P . Then, there is a ∈ P such that x ∈ V (a). Let S = {L(x, u) | u ∗ x = 0,
u ∈ V (a)− {a}}. Clearly, 0 ∈ S. Since X is of finite length, then S has the greatest element. Let
L(x, u) be the greatest element of S. Then, we show that v is an a-atom of X. Let w ∗ v = 0,
for some w ∈ X. Then, w ≤ v and so by (P3), w ∈ V (a). If w � v, then 1 + L(x, u) ≤ L(x,w),
which is impossible. Therefore, w = v or w = a and so v is an atom of X.

Theorem 3.12. Let X be a finite leght BCI-algebra and a ∈ P . Then

(i) G(V (a)) is a tree if and only if V (a) = {a} or V (a) has only one a-atom.

(ii) G(X) is a tree if and only if X = {0} or X is a BCK-algebra with only one atom.
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Proof. (i) Let G(V (a)) be a tree. If V (a) = {a}, we do not have any thing to prove. Let
V (a)/= {a} andA be the set of all a-atoms of V (a). Then, by Lemma 3.11, we have 1 ≤ |A|. Let
x, y ∈ A, u ≤ x and u ≤ y, for some u ∈ X. Then, by (P3), u ∈ V (a). Since x, y are a-atoms
of V (a), then u = a or x = u = y. Hence, x = y or xy ∈ E(G(X)). If xy ∈ E(G(X)), then by
Lemma 3.2(i), we have xy, ax, ay ∈ E(G(X)). Hence, G(X) has a cycle, which is impossible.
Therefore, x = y and so |A| = 1. Conversely, let V (a) has only one a-atom. By Proposition 3.8,
G(V (a)) is a connected graph. If V (a) = {a}, then clearly, G(V (a)) is a tree. Let V (a)/= {a},
x, y ∈ V (a) − {a} and u be an a-atom of X. Then, by Lemma 3.11, u ∈ L({x, y}) and so
L({x, y})/= {a}. Hence, E(G(X)) = {xa | x ∈ V (a) − {a}} and so G(V (a)) does not have any
cycle. Therefore, G(V (a)) is a tree.

(ii) Let G(X) be a tree. Then, G(X) is a connected graph and so by Proposition 3.8,
|P | = 1. Hence, P = {0} and so, X is a BCK-algebra. Since X is a BCK-algebra, we have
X = V (0) and so by (i), X = {0} or X is a BCK-algebra with only one atom. The converse is
straight consequent of (i).

Example 3.13. Let X = R+ = {x ∈ R | 0 ≤ x} and x ∗ y = max{x − y, 0}, for any x, y ∈ X.
Then, (X, ∗, 0) is a BCK-algebra. Clearly, X does not have any atoms. Since X is a BCK-
algebra, then by Proposition 3.8, G(X) is a connected graph. Moreover, L({x, y})/= {0}, for
any x, y ∈ X − {0}. Hence, E(G(X)) = {x0 | x ∈ X − {0}}. Therefore, G(X) is a tree.

Example 3.14. Let “∗” be the binary operation in Example 3.13, A = {ai | i ∈ R+} and B = {bi |
i ∈ R+}, where a0 = 0 = b0 and A ∩ B = {0}. Let a binary operation ∗′ on X is defined as
follows: for all i, j ∈ R+,

ai ∗′ aj = ai∗j ;

bi ∗′ bj = bi∗j ;

ai ∗′ bj = ai;

bi ∗′ aj = bi.

(3.2)

By Example 3.13, (A, ∗1, 0) and (B, ∗2, 0) are two BCK-algebras, where ai ∗1 aj = ai∗j and
bi ∗2 bj = bi∗j , for any i, j ∈ R+. Hence, by Proposition 2.5, (X, ∗′, 0) is a BCK-algebra and
so by Proposition 3.8, G(X) is a connected graph. Let ai ∈ A − {a0} and bi ∈ B − {a0}. Since
X is a BCK-algebra, then 0 ∈ L({ai, bi}). Let u ∈ L({ai, bi}), for some u ∈ X. If u = bj , for
some j ∈ R+, then u = u ∗′ ai = 0. If u = aj , for some j ∈ R+, then u = u ∗′ bi = 0. Hence,
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x0

x1 x2 x3 xn

· · ·

Figure 4: n-star.

L({ai, bi}) = {0} and so aibi ∈ E(G(X)). Since 0ai, 0bi, aibi ∈ E(G(X)), then G(X) has a cycle
and so it is not a tree. But, X does not have any atoms.

Proposition 3.15. Let X be a BCI-algebra such that the set {|V (a)| : a ∈ P} is bounded. Then,
Δ(G(X)) = max{|V (a)| − 1 : a ∈ P}.

Proof. Since the set {|V (a)| : a ∈ P} is bounded, then there is a u ∈ P , such that |V (u)| − 1 =
max{|V (a)| − 1 : a ∈ P}. We show that deg(x) ≤ deg(u), for any x ∈ X. Let x ∈ X. Then,
there is a ∈ P such that x ∈ V (a). Since V (a) ∩ V (b) = ∅, for any b ∈ P − {a}, then by
Proposition 3.8(ii) and Lemma 3.2(i), deg(x) ≤ |V (a)| − 1 ≤ |V (u)| − 1 = deg(u). Therefore,
Δ(G(X)) = deg(u) = |V (u)| − 1 = max{|V (a)| − 1 : a ∈ P}.

Corollary 3.16. (i) If X is a finite BCI-algebra, then Δ(G(X)) = max{|V (a)| − 1 : a ∈ P}.
(ii) If X is a finite BCK-algebra, then Δ(G(X)) = |X| − 1.

Proof. (i) If X is a finite BCI-algebra, then {|V (a)| : a ∈ P} is bounded. Therefore, by
Proposition 3.15, Δ(G(X)) = max{|V (a)| − 1 : a ∈ P}.

(ii) If X is a BCK-algebra, then P = {0} and so {|V (a)| − 1 : a ∈ P} = {V (0) − 1} =
{|X| − 1}. Hence, by Proposition 3.15, Δ(G(X)) = |X| − 1.

Definition 3.17. Let G be a graph with n + 1 vertices. Then G is called an n-star graph if it has
Figure 4.

Theorem 3.18. Let X be a BCK-algebra with m + 1 elements and only one atom. Then G(X) is an
m-star graph. Moreover, if G is anm-star graph, then there is a BCK-algebra X such that G(X) = G.

Proof. Since, X is a BCK-algebra, then G(X) is a connected graph. Let a be an atom of X.
Then by Lemma 3.11, a ≤ x, for all x ∈ X − {0} and so E(G(X)) = {0x | x ∈ X − {0}}.
Therefore, G(X) is a m-star graph. Now, let G be a m-star graph, for some m ∈ N and X =
V (G) = {x0, x1, . . . , xm} be a chain such that xi < xi+1, for any i ∈ {0, 1, . . . , m − 1}. Define
the binary operation ∗′ on X by xi ∗′ xj = xi∗j , where i ∗ j = max{0, i − j}, for any i, j ∈
{0, 1, . . . , m}. By Theorem 2.3, X is a commutative BCK-chain and so L({x, y})/= {0}, for any
x, y ∈ X − {0}. Hence, by Lemma 3.2(i), E(G(X)) = {x0x1, x0x2, . . . , x0xm} and so G(X) is an
m-star graph.

Theorem 3.19. X is a commutative BCI-algebra and x ∗ y = x ∗ a, for any a ∈ P and x, y ∈ V (a),
where x /=y if and only if G(X) is a graph with complete components.
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Proof. Let G(X) be a graph with complete components, a ∈ P and x, y ∈ V (a) such that x /=y.
Since x ∗ y ∈ V (0) by (BCI6), we get x ∗ (x ∗ y) ∈ L({x, y}). Now, since x, y ∈ V (a) and
G(X) is a graph with complete components, then by Proposition 3.8, xy ∈ E(G(X)) and so
L({x, y}) = {a}. Hence, x ∗ (x ∗ y) = a and so by (BCI6) and (BCI4), we get x ∗ a ≤ x ∗ y. On
the other hand, since a ≤ y, then by (BCI7), x ∗ y ≤ x ∗ a. Therefore, x ∗ y = x ∗ a. Now, we
show that X is a commutative BCI-algebra. Let a ∈ P and x, y ∈ V (a). Clearly, if x = y, then
x∗(x∗y) = y∗(y∗x). If x /=y, then x∗(x∗y) = x∗(x∗a) ≤ a. Since a ∈ P , we get x∗(x∗a) = a. By
the similar way, we get y∗(y∗x) = a and so x∗(x∗y) = a = y∗(y∗x). Hence,X is branchwise
commutative. Therefore, by Lemma 2.2, X is commutative BCI-algebra. Conversely, let X be
a commutative BCI-algebra such that x ∗ y = x ∗ a, for any a ∈ P and distinct elements
x, y ∈ V (a). Let a ∈ P and x, y ∈ V (a). If u ∈ L({x, y}), then by (P3), u ∗ a = u ∗ x = 0 and so
u ≤ a. Since u ∈ P , we have a = u. Hence, L({x, y}) = {a} and so xy ∈ E(G(X)). Therefore,
by Proposition 3.8, all components of G(X) are complete graph.

Corollary 3.20. The graph G(X) is a complete graph if and only if X is a BCK-algebra and

x ∗ y =

{
0 if y = x,

x otherwise.
(3.3)

Definition 3.21 (see [10]). Let (X1, ∗1, 0) be a BCK-algebra and (X2, ∗2, 0) be a BCI-algebra
such that X1 ∩X2 = {0}. Define the binary operation “∗” on X1 ∪X2 by

x ∗ y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∗1 y if x, y ∈ X1;
x ∗2 y if x, y ∈ X2;
0 ∗2 y if x ∈ X1, y ∈ X2 − {0};
x if x ∈ X2, y ∈ X1.

(3.4)

The (X1 ∪ X2, ∗, 0) is a BCI-algebra, whose BCK-part B contains X1 and p-semisimple part P
is contained inX2. This algebra is called the Li’s union ofX1 andX2 and is denoted byX1∪LX2.

Lemma 3.22. Let (X1, ∗1, 0) be a BCK-algebra, (X2, ∗2, 0) be a BCI-algebra such thatX1 ∩X2 = {0}
and Y be the Li’s union of X1 and X2. Then

LY

({
x, y
})

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

LX1

({
x, y
})

if x, y ∈ X1;
LX2

({
x, y
})

if x, y ∈ X2 − VX2(0);
LX2

({
x, y
}) ∪X1 if x, y ∈ VX2(0) − {0};

∅ otherwise.

(3.5)

Proof. If x, y ∈ X1, then

u ∈ LX1

({
x, y
})⇐⇒ u ∗1 x = u ∗ x = 0 = u ∗ y = u ∗1 y ⇐⇒ u ∈ LY

({
x, y
})

. (3.6)

Hence, LX1({x, y}) = LY ({x, y}). Let x, y ∈ VX2(a), for some a ∈ P − {0}. Then by
Definition 3.21, a ∈ Q − {0}, where Q is a p-semisimple part of Y . Let u ∈ LY ({x, y}). Then
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by (P3), u ∈ VY (a) and so u ∈ X2 − {0}. Hence, u∗2x = u ∗ x = 0 = u ∗ y = u∗2y and
so u ∈ LX2({x, y}). Now, let u ∈ LX2({x, y}). Then u ∗ x = u∗2x = 0 = u∗2y = u ∗ y and
so u ∈ LY ({x, y}). Hence, LX2({x, y}) = LY ({x, y}), for any a ∈ P − {0} and x, y ∈ V (a).
If x, y ∈ VX2(0) − {0}, then u ∗ x = 0∗2x = 0 and u ∗ y = 0∗2y = 0, for any u ∈ X1.
Clearly, by definition of “∗”, LX2({x, y}) ⊆ LY ({x, y}) and so LX2({x, y}) ∪ X1 ⊆ LY ({x, y}).
Let u ∈ LY ({x, y}). Then u ∗ x = 0. Since x ∈ VX2(0) − {0} by definition of “∗”, u ∈ X1 or
u ∈ LX2({x, y}) and so LY ({x, y}) ⊆ LX2({x, y}) ∪ X1. The final part is straight consequent of
Lemma 3.2.

Proposition 3.23. Let (X1, ∗1, 0) be a BCK-algebra, (X2, ∗2, 0) be a BCI-algebra such thatX1∩X2 =
{0}, X1 /= {0} and S = {xy ∈ E(G(X2)) | x, y ∈ VX2(0) − {0}}. Then G(X1∪LX2) = (G(X1) ∪
G(X2)) − S.

Proof. Clearly, V (G(X1∪LX2)) = X1 ∪ X2 = V ((G(X1) ∪ G(X2)) − S). Let Y = X1∪LX2, Q be a
p-semisimple part of Y and xy ∈ E(G(Y )). Then x /=y and LY{x, y} = {a}, for some a ∈ Q. If
a/= 0, then by Definition 3.21, x, y ∈ X2 and so by Lemma 3.22, LX2({x, y}) = {a}. Hence, xy ∈
E(G(X2)−S) ⊆ E((G(X1)∪G(X2))−S). Let a = 0. Then LY ({x, y}) = {0} and so x, y ∈ VY (0) =
VX1(0)∪VX2(0). If x, y ∈ VX1(0), then by Lemma 3.22, xy ∈ E(G(X1)) ⊆ E((G(X1)∪G(X2))−S).
If x = 0 or y = 0, then clearly, xy ∈ E(G(X1) ∪ G(X2) − S). If x, y ∈ VX2(0) − {0}, then
by Lemma 3.22, LX2({x, y}) ∪ X1 ⊆ LY ({x, y}) = {0} and so X = 0, which is impossible. If
x ∈ VX1(0) − {0} and y ∈ VX2(0) − {0}, then x ∗ y = 0 ∗ y = 0 and so x ∈ LY ({x, y}) = {0},
which is impossible. By the similar way, we get that x ∈ VX2(0) − {0} and y ∈ VX1(0) − {0} is
impossible. Hence, E(G(Y )) ⊆ E(G(X1) ∪G(X2) − S). Now, let xy ∈ E((G(X1) ∪G(X2)) − S).
Then x /=y and xy ∈ E(G(X1)) or xy ∈ E(G(X2) − S). By Lemma 3.22, E(G(X1)) ⊆ E(G(Y )).
Let xy ∈ E(G(X2) − S). Then LX2({x, y}) = {a}, for some a ∈ P2 and a /∈ S, where P2 is
a p-semisimple part of X2. If a/= 0, then a ∈ Q − {0} and by Lemma 3.22, LY ({x, y}) = {a}.
Hence, by Lemma 3.2, xy ∈ E(G(Y )). If a = 0, then x, y ∈ VX2(0) and so xy ∈ E(G(X2) − S)
implies x = 0 or y = 0. Hence, xy ∈ E(G(Y )). Therefore, E((G(X1) ∪ G(X2)) − S) ⊆ E(G(Y ))
and so E((G(X1) ∪G(X2)) − S) = E(G(Y )).

Corollary 3.24. Let (X1, ∗1, 0) be a BCK-algebra, (X2, ∗2, 0) be a BCI-algebra such thatX1∩X2 = ∅
and the graph G(VX2(0)) be a tree. Then G(X1∪LX2) = G(X1) ∪G(X2).

Proof. If X1 = {0}, then X2 = X1∪LX2 and so G(X1∪LX2) = G(X2) = G(X1) ∪ G(X2). Now,
let G(VX2(0)) be a tree. Then for any distinct elements x, y ∈ VX2(0) − {0}, we have xy /∈
E(G(VX2(0)). Hence, by Proposition 3.8(ii), xy /∈ E(G(X2)) and so S = ∅, where S = {xy ∈
E(G(X2)) | x, y ∈ VX2(0) − {0}}. Therefore, by Proposition 3.23, G(X1∪LX2) = G(X1) ∪G(X2).

Example 3.25. (i) Let X1 = {0, a, b, c} and X2 = {0, 1, 2, 3}. Define the binary operations ∗1 and
∗2 on X1 and X2, respectively, by the following tables:

0 0 1 2 3
0 0 0 0

0
0

0
0
0
0

0 0 0 0 0
1 1 0 0 1
2 2 2 0 2
3 3 3 3 0

aaa

a

b b b

b

cc cc

c∗1 ∗2

,
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1

0

23 cb

G(X1)G(X2)
0 0

a a b c 1 3 2

G(X1) G(X2)

Figure 5

b c 1 3 2

0

a

G(Y )

Figure 6

Then (X1, ∗1, 0) and (X2, ∗2, 0) are BCK-algebras (see [10]). Also, G(X1), G(X2) and G(X1) ∪
G(X2) are given by Figure 5.

Let Y = X1∪LX2. Then LY ({x, 0}) = {0}, for any x ∈ Y . Hence, by Lemma 3.22, x ∈
LY ({x, y}) and LY ({0, z}) = {0} = LY ({a, b}), for any x ∈ {1, 2, 3}, z ∈ X1 and y ∈ {a, b, c}.
Moreover,X1 ⊆ LY ({a, b})∩LY ({a, c})∩LY ({b, c}). Hence, E(G(Y )) = {0x | x ∈ Y −{0}}∪{ab}
and so G(Y ) is given by Figure 6.

If S is the set was defined in the Proposition 3.23, then S = {13, 23}. Therefore, G(Y ) =
G(X1) ∪ (G(X2) − S).

(ii) LetX be theBCI-algebrawas defined in Example 3.6(i) andX1 be theBCK-algebra
in (i). Then the BCK-part ofX2 is a tree. Hence, by Corollary 3.24,G(X1∪LX) = G(X1)∪G(X).

Lemma 3.26. Let (X, ∗1, 0) and (Y, ∗2, 0) be two BCK-algebras and x, y ∈ X ⊕ Y . Then

LX⊕Y
{
x, y
}
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

LX

{
x, y
}

if x, y ∈ X;

LY

{
x, y
}

if x, y ∈ Y ;

{0} otherwise.

(3.7)

Proof. Let x, y ∈ X ∪ Y .

(1) If x, y ∈ X, then for any u ∈ LX{x, y}, we have u ∗ x = 0 = u ∗ y. If u ∈ Y , then by
Proposition 2.5, u = u ∗x = 0 and so u ∈ X. Moreover, if u ∈ X, then u∗1x = u ∗x = 0
and u∗1y = u ∗ y = 0 and so u ∈ LX{x, y}. Hence, LX⊕Y{x, y} ⊆ LX{x, y}. Now, let
u ∈ LX{x, y}. Then u, x, y ∈ X and u∗1x = 0 = u∗1y and so u ∗ x = u∗1x = 0 =
u∗1y = u ∗ y. Hence, LX{x, y} ⊆ LX⊕Y{x, y}. Therefore, LX⊕Y{x, y} = LX{x, y}, for
all x, y ∈ X. By the similar way, we can prove that LX⊕Y{x, y} = LY{x, y}, for all
x, y ∈ Y .

(2) If x ∈ X and y ∈ Y . Since X ⊕ Y is a BCK-algebra, we have 0 ∈ LX⊕Y{x, y}. Let
u ∈ LX⊕Y{x, y}. Then u ∗ x = 0 = u ∗ y. Since x ∈ X and y ∈ Y , then by definition of
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a1 a2 a3 b1 b2

G(Y ) − {0}G(X) − {0}

Figure 7

b1 b2

a1 a2 a3

Figure 8: (G(X) − {0}) + (G(Y ) − {0}).

“∗”, we have u ∗ x = u or u ∗ y = u and so u = 0. Therefore, LX⊕Y{x, y} = {0}. By the
similar way, if x ∈ Y and y ∈ X, then we can prove that LX⊕Y{x, y} = {0}.

Theorem 3.27. Let (X, ∗1, 0) and (Y, ∗2, 0) be two BCK-algebras. Then G(X ⊕ Y ) − {0} = (G(X) −
{0}) + (G(Y ) − {0}).

Proof. Clearly, V (G(X ⊕ Y ) − {0}) = V ((G(X) − {0}) + (G(Y ) − {0})). Let xy ∈ E(G(X ⊕ Y ) −
{0}). Then x /= 0, y /= 0 and LX⊕Y{x, y} = {0}. If x, y ∈ X or x, y ∈ Y , then by Lemma 3.26,
LX{x, y} = {0} or LY{x, y} = {0} and so xy ∈ E(G(X) − {0}) or xy ∈ E(G(Y ) − {0}). Hence,
by Definition 2.8, xy ∈ E((G(X)−{0})+(G(Y )−{0})). If x ∈ X and y ∈ Y or x ∈ Y and y ∈ X,
then x ∈ V ((G(X)− {0})) and y ∈ V (G(Y )− {0}) and so xy ∈ E((G(X)− {0}) + (G(Y )− {0})).
Now, let xy ∈ E((G(X) − {0}) + (G(Y ) − {0})). Then xy ∈ E(G(X) − {0}) ∪ E(G(Y ) − {0})
or x ∈ X − {0} and y ∈ Y − {0}. If xy ∈ E(G(X) − {0}) ∪ E(G(Y ) − {0}), then x /= 0, y /= 0
and LX{x, y} = {0} or LY{x, y} = {0}. Hence, by Lemma 3.26, xy ∈ E(G(X ⊕ Y ) − {0}). If
x ∈ X − {0} and y ∈ Y − {0}, then by Lemma 3.26, LX⊕Y = {0} and so xy ∈ E(G(X ⊕ Y ) − {0}).
Therefore, E(G(X ⊕ Y ) − {0}) = E((G(X) − {0}) + (G(Y ) − {0})).

Corollary 3.28. Let (X, ∗1, 0) and (Y, ∗2, 0) be two finite BCK-algebras. Then |E(X ⊕ Y )| = (|X| +
|Y | − 1) + (|X| − 1) · (|Y | − 1).

Proof. Straightforward.

Example 3.29. Let X = {a0, a1, a2, a3}, Y = {b0, b1, b2}, a0 = b0 and “∗” be the operation was
defined in Example 3.13. Then (X, ∗1, a0) and (Y, ∗2, b0) are BCK-chain, where ai∗1aj = ai∗j
and bi∗1bj = bi∗j . Since they are BCK-chain, then by Lemma 3.2, G(X) is 3-star graph and
G(Y ) is 2-star graph and so G(X) − {0} and G(Y ) − {0} have Figure 7.

Hence, by Definition 2.8, (G(X) − {0}) + (G(Y ) − {0}) is given by Figure 8.
On the other hand, by Lemma 3.26,G(X⊕Y ) is given by Figure 9 and soG(X⊕Y )−{0}

is the graph on Figure 8.

Let I be an ideal of X. Define a binary relation θ on X as follows: (x, y) ∈ θ if and
only if x ∗ y, y ∗ x ∈ I, for all x, y ∈ X. Then, θ is a congruence relation and it is called the
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a1 a2 a3

b1 b2

Figure 9: G(X ⊕ Y ) − {0}.

equivalence relation induced by I. If X/I = {[x] | x ∈ X}, then (X/I, ∗, [0]) is a BCI-algebra,
where [x] ∗ [y] = [x ∗y], for all x, y ∈ X (see [10]). Moreover, let G = (V, E) be a graph andΠ
be a partition of X. The graph whose vertexes are the elements ofΠ and for distinct elements
u, v ∈ Π, there is an edge connecting u and v if and only if xy ∈ E, for some x ∈ u and y ∈ v,
is denoted by G/Π. Now, we want to verify the relation between the G(X/I) and G(X)/Π,
where I is an ideal of X, θ is a congruence relation induced by I andΠ is a partition induced
by θ.

Theorem 3.30. Let I be an ideal of X and Π be the partition of X induced by I.

(i) If X is a BCK-algebra, then G(X)/Π is a subgraph of G(X/I).

(ii) If X/I is a commutative BCI-algebra, then G(X)/Π is a subgraph of G(X/I).

Proof. (i) Clearly, V (G(X/I)) = {[x] | x ∈ X} = V (G(X)/Π). Let [x][y] ∈ E(G(X)/Π). Then
there are u ∈ [x] and v ∈ [y], such that uv ∈ E(G(X)). Hence, LX{u, v} = {0}. Let [z] ∈
LX/I{[x], [y]}. Since [u] = [x] and [v] = [y], then [z ∗ u] = [z] ∗ [u] = [0] = [z] ∗ [v] = [z ∗ v]
and so z ∗ u ∈ I and z ∗ v ∈ I. Hence, z ∗ u = a and z ∗ v = b, for some a, b ∈ I. Since X is a
BCK-algebra, then by (BCI6), (z∗a)∗b ∈ LX{u, v} = {0}. Since I is an ideal ofX and a, b ∈ I,
then z ∈ I and so z ∗ 0 ∈ I and 0 ∗ z = 0 ∈ I. Hence, [z] = [0] and so LX/I{[x], [y]} = {[0]}.
Therefore, [x][y] ∈ E(G(X/I)) and so G(X)/Π is a subgraph of G(X/I).

(ii) Clearly, V (G(X/I)) = {[x] | x ∈ X} = V (G(X)/Π). Let [x][y] ∈ E(G(X)/Π). Then
there are u ∈ [x] and v ∈ [y], such that uv ∈ E(G(X)) and so LX{u, v} = {a}, for some a ∈ P .
Since u, v ∈ V (a), then by (P2), v ∗ u, u ∗ v ∈ V (0) and so by (BCI6), v ∗ (v ∗ u), u ∗ (u ∗ v) ∈
LX{u, v} = {a}. Hence, v∗(v∗u) = a = u∗(u∗v) and so [v]∗([v]∗[u]) = [a] = [u]∗([u]∗[v]).
Let [z] ∈ LX/I{[x], [y]}. Then by (P3), [z] ∈ VX/I([a]). Since X/I is a commutative BCI-
algebra, then by Lemma 2.2, [v] ∗ ([v] ∗ [z]) = [z] ∗ ([z] ∗ [v]) = [z] and so by (BCI7), we
have [z] = [v] ∗ ([v] ∗ [z]) ≤ [v] ∗ ([v] ∗ [u]) = [a]. Clearly, a ∈ Q, where Q is a p-semisimple
part of X/I. Hence, [a] = [z] and so LX/I{[x], [y]} = {[a]}. Therefore, [x][y] ∈ E(G(X/I))
and so G(X)/Π is a subgraph of G(X/I).

Example 3.31. Let Y = {0, 1, 2, a, b} and X = {0, 1, 2, 3, 4}. Define the binary operations “∗1”
and “∗2” on Y and X, respectively by the following tables:

,

0 1 20 1 2 3

4

4

4444

0 0 0 0 00 0 0
0 0

0 0
0

0 0
1

1

11 1 0 0 0 0

0

2 2 1 102 2 2 0 0
3 3 3 3 30

aa
aa
aa

aa

aa

aa

b b

a b∗1 ∗2
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(i) It is easy to see that (Y, ∗1, 0) is a BCI-algebra and J = {0, 1} is an ideal of Y (see [10,
Example 2.5.5]). Moreover, [0] = {0, 1, a, b} and [2] = {2}. Hence, Y/J = {[0], [2]}
is a commutative BCI-algebra and so E(G(Y/I)) = {[0][2]}. Moreover, Since
LY{2, 0} = {0}, then [0][2] ∈ E(G(X)/Φ, where Φ is the partition of Y induced
by J . Therefore, G(X/J) = G(X)/Φ.

(ii) We can prove that (X, ∗2, 0) is a BCK-algebra and I = {0, 1, 2} is an ideal of X (see
[10]). Moreover, X/I = {[0], [3], [4]}, where [0] = {0, 1, 2}, [3] = {3} and [4] =
{4}. It is easy to check that E(G(X/I)) = {[0][3], [0][4], [3][4]} and E(G(X)/Π) =
{[0][3], [0][4]}.

4. Characteristic Polynomials of Graphs of BCI-Algebras

In this section, we verify the characteristic polynomials of graph of BCI-algebras. Then we
fined the relation between Characteristic polynomial of G(X) and Characteristic polynomial
of graphs of branches of X, for any BCI-algebra X.

Theorem 4.1. Let X be a finite BCI-algebra. Then χ(G(X), λ) =
∏

a∈Pχ(G(V (a)), λ).

Proof. Let m ∈ N, P = {a1, . . . , am}, V (at) = {x1,t, . . . , xrt,t} and At = [bi,j] be the adjacency
matrix of G(V (ai)), for all t ∈ {1, 2, . . . , m}. Then X = {x1,1, x2,1, . . . , xr1,1, x1,2, x2,2,
. . . , xr2,2, . . . , x1,m, x2,m, . . . , xrm,m}. Since V (ai) ∩ V (aj) = ∅, for all distinct i, j ∈ {1, 2, . . . , m},
then by Proposition 3.8(ii), the adjacent matrix of G(X) is of the form

⎡

⎢
⎢
⎢
⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am

⎤

⎥
⎥
⎥
⎦
, (4.1)

where Aj is a mj × mj matrix, for all j ∈ {1, 2, . . . , m}. By the properties of determinant,
we have χ(G(X), λ) = det(λI − A) = det(λI1 − A1) × det(λI2 − A2) × · · · × det(λIm − Am) =
∏

a∈Pχ(G(V (a)), λ), where Ij is amj ×mj identity matrix, for all j ∈ {1, 2, . . . , m}.

Corollary 4.2. LetX be a finite BCI-algebra and t is the number of elements a ∈ P such that |V (a)| =
1.

(i) χ(G(X), λ) = λt × f(λ), for some polynomial f(λ).

(ii) X is a p-semisimple BCI-algebra if and only if χ(G(X), λ) = λn, for some n ∈ N.

Proof. (i) Let |X| = n and {a1, . . . , at} be the set of all elements of P such that |V (ai)| = 1, for
all i ∈ {1, 2, . . . , t}. Then by using the proof of Theorem 4.1, the adjacent matrix of G(X) is of
the form

[
B 0
0 0

]

n×n
, (4.2)
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where B is an (n− t×n− t)matrix. Hence, by properties of determinant, we have χ(G(X), λ) =
det(λIt) × det(λIn−t − B) = λt × det(λIn−t − B). Let f(λ) = det(λIn−t − B), then χ(G(X), λ) =
λt × f(λ).

(ii) Since X is a p-semisimple BCI-algebra, then |V (a)| = 1, for all a ∈ X. Therefore,
by (i), χ(G(X), λ) = λn, where |X| = n. Conversely, let χ(G(X), λ) = λn, for some n ∈ N. Then
by Proposition 2.11, G(X) is an empty graph. Therefore, by Theorem 3.9, X is a p-semisimple
algebra.

Theorem 4.3. Let X be a finite BCI-algebra and a ∈ P . If χ(G(V (a)), λ) = λn + c1λ
n−1 + c2λ

n−2 +
· · · + cn−1λ + cn, for some n ∈ N, then

(i) c1 = 0 and 2c2 = −∑x∈X |Zx| + |P |,
(ii) let A be the set of all {x, y, z} ⊆ X such that x, y, z are distinct elements of X and u ∗ v =

u ∗ a, for all u, v ∈ {x, y, z} and some a ∈ P . If X is a commutative BCI-algebra, then
c3 = −2|A|.

Proof. (i) By Proposition 2.11, c1 = 0. If x ∈ X − P , then by Lemma 3.2,

deg(x) =
∣
∣
{
y ∈ X − {x} | L{x, y} = a, for some a ∈ P

}∣
∣ = |Zx|. (4.3)

Now, if x ∈ P , then by Lemma 3.2, deg(x) = |{y ∈ X − {x}|L{x, y} = a, for some a ∈ P }| =
|Zx| − 1. Hence, by Proposition 2.11, we have

2c2 = −2|E(G(X))| = −deg(G) = −
(
∑

x∈X−P
|Zx| +

∑

x∈P
(|Zx| − 1)

)

= −
∑

x∈X
|Zx| + |P |. (4.4)

(ii) By Proposition 2.11, c3 = −2t, where t is the number of triangles of G(X). Since by
Proposition 3.8, G(X) =

⋃
a∈P G(V (a)) and V (a)∩V (b) = ∅, for any distinct elements a, b ∈ P ,

then t =
∑

a∈P ta, where ta is the number of triangles of G(V (a)), for all a ∈ P . Now, let a ∈ P
and x, y, z be three vertexes of a triangles of G(V (a)). Then x, y, z are distinct elements of X
and L{x, y} = L{x, z} = L{y, z} = {a}. Since x ∗ (x ∗ y) ∈ L{x, y}, then x ∗ (x ∗ y) = a and so
by (BCI4) and (BCI6), x ∗ a ≤ x ∗ y. Moreover, a ≤ y and (BCI7), imply x ∗ y ≤ x ∗ a and
so x ∗ y = x ∗ a. By the similar way, we can prove that x ∗ z = x ∗ a, y ∗ z = y ∗ a = y ∗ x
and z ∗ x = z ∗ a = z ∗ y. Hence, {x, y, z} ∈ A. Conversely, let {x, y, z} ∈ A. Then there exists
a ∈ P such that u ∗ v = u ∗ a, for any u, v ∈ {x, y, z}. Let u, v ∈ {x, y, z} and w ∈ L{u, v}.
Then by (P2), w ∈ V (a). Since X is commutative, then by Lemma 2.2, (BCI6) and (BCI7),
w = w ∗ 0 = w ∗ (w ∗u) = u ∗ (u ∗w) ≤ u ∗ (u ∗ v) = u ∗ (u ∗ a) ≤ a. Hence,w = a (since a ∈ P),
and so L{u, v} = {a}. Therefore, xy, xz, yz ∈ E(G(V (a))) and so x, y, z are three vertexes of a
triangle of G(V (a)), for some a ∈ P . Hence, t =

∑
a∈P ta = |A|. This complete the proof.
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