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We study the strong unique continuation property for solutions to the quasilinear elliptic equation
−div(|∇u|p(x)−2∇u) + V (x)|u|p(x)−2u = 0 in Ω where V (x) ∈ LN/p(x)(Ω), Ω is a smooth bounded
domain in R

N , and 1 < p(x) < N for x in Ω.

1. Introduction and Preliminary Results

Let Ω be an open, connected subset in R
N . Consider the Schrödinger OperatorH = −Δ + V .

IfHu = 0, and if u vanishes of infinite order at one point x0 ∈ Ω (see definitions in Section 3)
imply that u ≡ 0 in Ω, then H has the Strong Unique Continuation Property (S.U.C.P). If,
on the other hand, Hu = 0 in Ω, and u = 0 in Ω′, an open subset of Ω, imply that u ≡ 0 in
Ω, we say thatH has the Weak Unique Continuation Property (W.U.C.P). In 1939 Carleman
[1] showed that H = −Δ + V has the S.U.C.P whenever V ∈ L∞

loc(R
2). In order to prove

this result he introduced a method, the so-called Carleman estimates, which has permeated
almost all the subsequent works in the subject. For instance, Jerison and Kenig [2] showed
that if n > 2, p � N/2 and V ∈ Lploc, thenH has the S.U.C.P.; Fabes et al. in [3] gave a positive
answer for a radial potential V to Simon’s conjecture, which stated that for a potential V in the
Stummel-Kato class and u ∈ H1(Ω) thenH has the S.U.C.P. Other results were obtained by de
Figueiredo and Gossez, but for Linear Elliptic Operators in the case V ∈ LN/2(Ω), N > 2, [4].
Also, Loulit extended this property to N = 2 [5]. More recently, Hadi and Tsouli [6] proved
Strong Unique Continuation Property for the p-Laplacian in the case V ∈ LN/p(Ω), p < N
and p constant.

Equations involving variable exponent growth conditions have been intensively
discussed in the last decade. A strong motivation in the study of such kind of problems is
due to the fact that they can model with high accuracy various phenomena which arise from
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the study of elastic mechanics, electrorheological fluids, or image restoration; for information
on modeling physical phenomena by equations involving p(x)-growth condition we refer
to [7–12]. The understanding of such physical models was facilitated by the development
of variable Lebesgue and Sobolev spaces, Lp(x) and W1,p(x), where p(x) is a real-valued
function. Variable exponent Lebesgue spaces appeared for the first time in literature as early
as 1931 in an article by Orlicz [13]. The spaces Lp(x) are special cases of Orlicz spaces Lϕ

originated by Nakano [14] and developed by Musielak and Orlicz [15, 16], where f ∈ Lϕ

if and only if
∫
ϕ(x, |f(x)|)dx < ∞ for a suitable ϕ. For some interesting results on elliptic

equation involving variable exponent growth conditions see [17–19]. We point out the
presence of the p(x)-Laplace operator. This is a natural extension of the p-Laplace operator,
with p positive constant. However, such generalizations are not trivial since the p(x)-Laplace
operator possesses a more complicated structure than p-Laplace operator; for example, it is
inhomogeneous.

In this paper we prove Strong Unique Continuation Property of the solutions of the
quasilinear elliptic equation:

−div
(
|∇u|p(x)−2∇u

)
+ V (x)|u|p(x)−2u = 0 in Ω, (1.1)

where 1 < p(x) < N, V ∈ LN/p(x)(Ω) and Ω ⊂ R
N is a bounded domain with smooth

boundary.
Finally, we recall some definitions and basic properties of the variable exponent

Lebesgue-Sobolev spaces Lp(·)(Ω) andW1,p(·)
0 (Ω), where Ω is a bounded domain in R

N .
Set C+(Ω) = {h ∈ C(Ω) : minx∈Ωh(x) > 1}. For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x), h− = inf
x∈Ω

h(x). (1.2)

For p ∈ C+(Ω), we introduce the variable exponent Lebesgue space:

Lp(·)(Ω) =
{
u : u is a measurable real-valued function such that

∫

Ω
|u(x)|p(x)dx <∞

}
,

(1.3)

endowed with the so-called Luxemburg norm:

|u|p(·) = inf

{

μ > 0;
∫

Ω

∣∣∣∣
u(x)
μ

∣∣∣∣

p(x)

dx ≤ 1

}

, (1.4)

which is a separable and reflexive Banach space. For basic properties of the variable exponent
Lebesgue spaces we refer to [20]. If 0 < |Ω| < ∞ and p1, p2 are variable exponents in
C+(Ω) such that p1 ≤ p2 in Ω, then the embedding Lp2(·)(Ω) ↪→ Lp1(·)(Ω) is continuous
[20, Theorem 2.8].
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Let Lp
′(·)(Ω) be the conjugate space of Lp(·)(Ω), obtained by conjugating the exponent

pointwise, that is, 1/p(x) + 1/p′(x) = 1, [20, Corollary 2.7]. For any u ∈ Lp(·)(Ω) and v ∈
Lp

′(·)(Ω) the following Hölder type inequality

∣
∣
∣
∣

∫

Ω
uv dx

∣
∣
∣
∣ ≤

(
1
p−

+
1
p′−

)
|u|p(·)|v|p′(·) (1.5)

is valid.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is played

by the p(·)-modular of the Lp(·)(Ω) space, which is the mapping ρp(·) : Lp(·)(Ω) → R defined
by

ρp(·)(u) =
∫

Ω
|u|p(x)dx. (1.6)

If (un), u ∈ Lp(·)(Ω) then the following relations hold:

|u|p(·) < 1 (= 1; > 1) ⇐⇒ ρp(·)(u) < 1 (= 1; > 1), (1.7)

|u|p(·) > 1 =⇒ |u|p−p(·) ≤ ρp(·)(u) ≤ |u|p+p(·), (1.8)

|u|p(·) < 1 =⇒ |u|p+p(·) ≤ ρp(·)(u) ≤ |u|p−p(·), (1.9)

|un − u|p(·) −→ 0 ⇐⇒ ρp(·)(un − u) −→ 0, (1.10)

since p+ < ∞. For a proof of these facts see [20]. Spaces with p+ = ∞ have been studied by
Edmunds et al. [21].

Next, we defineW1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖p(x) = |∇u|p(x). (1.11)

The space (W1,p(x)
0 (Ω), ‖ · ‖p(x)) is a separable and reflexive Banach space. We note that if

q ∈ C+(Ω) and q(x) < p∗(x) for all x ∈ Ω then the embedding W
1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) is

continuous, where p∗(x) = Np(x)/(N − p(x)) if p(x) < N or p∗(x) = +∞ if p(x) ≥ N [20,
Theorems 3.9 and 3.3] (see also [22, Theorems 1.3 and 1.1]).

The bounded variable exponent p is said to be Log-Hölder continuous if there is a
constant C > 0 such that

∣∣p(x) − p(y)∣∣ ≤ C

− log
(∣∣x − y∣∣) (1.12)

for all x, y ∈ R
N , such that |x − y| ≤ 1/2.
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A bounded exponent p is Log-Hölder continuous in Ω if and only if there exists a
constant C > 0 such that

|B|p−B−p+B ≤ C (1.13)

for every ball B ⊂ Ω [23, Lemma 4.1.6, page 101].
As a result of the Log-Hölder continuous condition we have

r−(p
+
B−p−B) ≤ C,

C−1r−p(y) ≤ rp(x) ≤ Cr−p(y),
(1.14)

for all x, y ∈ B := B(x0, r) ⊂ Ω and the constant C depends only on the constant Log-Hölder
continuous. It’s well known that Smooth Functions are dense in Variable Exponent Sobolev
Spaces if the exponent p satisfies the Log-Hölder condition [23, Proposition 11.2.3, page 346].

2. On Fefferman’s Type Inequality

For every u ∈W1,p(·)
0 (Ω) the norm Poincaré inequality

|u|Lp(·)(Ω) ≤ c diam(Ω)|∇u|Lp(·) , (2.1)

c = C(N,Ω, c log(p)) holds (we refer to [24] for notations and proofs). Nevertheless, the
modular inequality

∫

Ω
|u|p(x)dx ≤ C

∫

Ω
|∇u|p(x)dx, ∀u ∈W1,p(·)

0 (Ω) (2.2)

not always holds (see [18, Theorem 3.1]). It is known that (2.2) holds if, for instance (i)N > 1,
and the function f(t) := p(xo + tw) is monotone [18, Theorem 3.4] with xo + tw with an
appropriate setting inΩ; (ii) if there exists a function ξ ≥ 0 such that∇p ·∇ξ ≥ 0, ‖∇ξ‖/= 0 [25,
Theorem 1]; (iii) If there exists a : Ω → R

N bounded such that diva(x) ≥ a0 > 0 for all x ∈ Ω
and a(x) · ∇p(x) = 0 for all x ∈ Ω, [26, Theorem 1]. To the best of our knowledge necessary
and sufficient conditions in order to ensure that

inf
u∈W1,p(·)(Ω)/{0}

∫
Ω |∇u|p(x)
∫
Ω |u|p(x)

> 0 (2.3)

have not been obtained yet, except in the case N = 1, [18, Theorem 3.2]. The following
definition is in order.
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Definition 2.1. We say that p(·) belongs to the Modular Poincaré Inequality Class, MPIC(Ω),
if there exist necessary conditions to ensure that

∫

Ω
|u|p(x) ≤ C

∫

Ω
|∇u|p(x), ∀u ∈W1,p(·)

0 (Ω), (2.4)

C = C(N,Ω, clog(p)) > 0 holds.

In [27] Fefferman proved the following inequality:

∫

RN

|u(x)|p∣∣f(x)∣∣dx ≤ C
∫

RN

|∇u(x)|pdx ∀u ∈ C∞
0

(
R
N
)
. (2.5)

in the case p = 2, assuming f in the Morrey’s space Lr,N−2r(RN), with 1 < r ≤ N/2.
Later in [28] Schechter showed the same result taking f in the Stummel-Kato class S(RN).
Chiarenza and Frasca [29] generalized Fefferman’s result proving (2.5) under the assumption
f ∈ Lr,N−pr(RN), with 1 < r < N/p and 1 < p < N. Zamboni in [30] generalized Schecter’s
result proving (2.5) under the assumption f ∈ M̃p(RN), with 1 < p < N. We stress out that it
is not possible to compare the assumptions f ∈ Lr,N−pr(RN), theMorrey class, and f ∈ S(RN),
the Stumel-Kato class. All the mentioned results were obtained for fixed p. The theory for
a variable exponent spaces is a growing area but Modular Fefferman-type inequalities are
more scarce than Poincaré inequalities in variable exponent setting. In [31]Cuadro and López
proved inequality (2.6) for variable exponent spaces. We use such inequality in order to prove
S.U.C.P. We include the proof for the convenience of the reader.

Theorem 2.2. Let p be a Log-Hölder continuous exponent with 1 < p(x) < N, and p ∈ MPIC(Ω).
Let V ∈ L1

loc(Ω) with 0 < ε < V (x) almost everywhere. Then there exists a positive constant C =
C(N,Ω, clog(p)) such that

∫

Ω
V (x)|u(x)|p(x)dx ≤ C

∫

Ω
|∇u(x)|p(x)dx (2.6)

for any u ∈W1,p(x)
0 (Ω).

Proof. Let u ∈W1,p(x)
0 (Ω) supported in B(x0, r). Given that V ∈ L1

loc(Ω) the function

w(x) :=

(∫x1

x01

V (ξ1, x2, . . . , xn)dξ1, . . . ,
∫xN

x0N

V (x1, . . . , xN−1, ξN)dξN

)

, (2.7)
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where x0 = (x0
1, . . . , x

0
N) and x = (x1, . . . , xN) ∈ B(x0, r), is well defined. Notice that∫xi

x0i
V (x1, . . . , ξi, . . . , xn)dξi ∈ C[x0

i , xi] for i = 1, . . . ,N (Lemme VIII.2 [32]) so that divw(x) =
NV (x). Moreover,

|V (x)|L1(B(x0,r)) ≥
∫x1

x01

· · ·
∫xN

x0N

V (ξ)dξn · · ·dξ1, (2.8)

where ξ = (ξ1, . . . , ξN). Therefore, |w(x)| ≤
√
N|V (x)|L1(B(x0,r)).

A direct calculation leads to

div
(
|u|p(x)w(x)

)
= |u(x)|p(x) divw(x) + p(x)|u|p(x)−2u∇u ·w(x)

+ |u|p(x) logu∇p(x) ·w(x).
(2.9)

Now the Divergence Theorem implies
∫
B(x0,r)

div(|u|p(x)w(x)) = 0, and so

∫

B(x0,r)
|u(x)|p(x) divw(x)dx ≤ p+

∫

B(x0,r)
|u(x)|p(x)−1|∇u(x)||w(x)|dx

+
∫

B(x0,r)
|u(x)|p(x) log|u(x)|∣∣∇p(x)∣∣|w(x)|dx.

(2.10)

Set

I1 := p+
∫

B(x0,r)
|u(x)|p(x)−1|∇u(x)||w(x)|dx,

I2 :=
∫

B(x0,r)
|u(x)|p(x) log|u(x)|∣∣∇p(x)∣∣|w(x)|dx.

(2.11)

Now we estimate I2 by distinguishing the case when |u(x)| ≤ 1 and |u(x)| > 1. Notice
that the relations

sup
0≤t≤1

tη
∣∣log t

∣∣ <∞ (2.12)

sup
t>1

t−η log t <∞ (2.13)

hold for η > 0.
LetΩ1 =: {x ∈ Br : |u(x)| ≤ 1} andΩ2 =: {x ∈ Br : |u(x)| > 1}, then for (2.12) and (2.13)

we have

I2 ≤ C1

∫

Ω1

|w(x)||u(x)|p(x)−η1dx + C2

∫

Ω2

|w(x)||u(x)|p(x)+η2dx. (2.14)
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We can choose k ∈ N such that p(x) − 1/k ≥ p−. Since u ∈ Lp
−
(B(x0, r)) and in Ω1, |u(x)| ≤ 1

we have

|u(x)|p(x)−1/n ≤ |u(x)|p− , (2.15)

for n > k. The Lebesgue Dominated Convergence Theorem implies

lim
n→∞

∫

Ω1

|u(x)|p(x)−1/ndx =
∫

Ω1

|u(x)|p(x)dx. (2.16)

For Ω2 we can choose k′ such that p(x) + 1/k′ ≤ (p(x))∗ =Np(x)/(N − p(x)). So

|u(x)|p(x)+1/n ≤ |u(x)|(p(x))∗ , (2.17)

n > k′, and x ∈ Ω2. Since u ∈ L(p(x))∗(B(x0, r)) [23, Theorem 8.3.1] we may use the Lebesgue
Theorem again to obtain

lim
n→∞

∫

Ω2

|u(x)|p(x)+1/ndx =
∫

Ω2

|u(x)|p(x)dx. (2.18)

Given that p ∈ MPIC(Ω)we have

I2 ≤ C
∫

B(x0,r)
|u|p(x)dx ≤ C

∫

B(x0,r)
|∇u|p(x)dx. (2.19)

Now we estimate I1 by using the modular Young’s inequality [24, equation (3.2.21)]:

I1 ≤ p+C1

∫

B(x0,r)
|w(x)|p(x)/(p(x)−1)|u(x)|p(x) + p+C2

∫

B(x0,r)
|∇u(x)|p(x). (2.20)

Again, since p ∈ MPIC(Ω)we obtain

I1 ≤ C
∫

B(x0,r)
|∇u|p(x)dx. (2.21)

Finally, recalling that divw(x) =NV (x)we get

N

∫

B(xo,r)
V (x)|u(x)|p(x) ≤ C

∫

B(x0,r)
|∇u(x)|p(x)dx, (2.22)

which leads to the claim of the theorem.
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3. Strong Unique Continuation

Consider the equation

Hu := div
(
|∇u|p(x)−2∇u

)
+ V (x)|u|p(x)−2u = 0, x ∈ Ω, (3.1)

u ∈W1·p(x)
loc (Ω), 1 < p(x) < N, V ∈ LN/p(x)(Ω).

A weak solution of (3.1) is the function u ∈W1·p(x)
loc (Ω) such that

∫

Ω
|∇u|p(x)−2∇u · ∇ϕdx +

∫

Ω
V (x)|u|p(x)−2u · ϕdx = 0, (3.2)

for all ϕ ∈W1,p(x)
0 (Ω).

The main interest of this section is to prove a unique continuation result for solutions
of (3.1) according to the following definition.

Definition 3.1. A function u ∈ Lp(x)loc (Ω) has a zero of infinite order in the p(x)-mean at a point
x0 ∈ Ω if, for each k ∈ N,

∫

|x−x0|�R

|u|p(x)dx = O
(
Rk

)
. (3.3)

Recall that Ω ⊂ R
N is a bounded open set. We want to prove estimates’ independency

of p+ for bounded solutions. For this purpose we assume throughout this section that 1 < p− ≤
p+ < ∞ and p is Lipschitz continuous. In particular, p is Log-Hölder continuous. The new
feature in the estimate is the choice of a test function which includes the variable exponent.
This has both advantages and disadvantages: we need to assume that p is differentiable
almost everywhere, but, on the other hand, we avoid terms involving p+, which would be
impossible to control later, see [24].

Before proving Theorem 3.5 which is the main result of this paper we require the
following Lemmas.

Lemma 3.2. Let p be a Log-Hölder continuous exponent with 1 < p(x) < N, and p ∈ MPIC(Ω).
Let V ∈ LN/p(x), 0 < ε < V (x), almost everywhere and u ∈ W1,p(x)

0 (Ω). Then, for each εo > 0, there
exists K such that

∫

Ω
V |u|p(x)dx ≤ εo

∫

Ω
|∇u|p(x) +K

∫

Ω
|u|p(x)dx. (3.4)



International Journal of Mathematics and Mathematical Sciences 9

Proof. Let εo > 0 be given. We have

∫

Ω
V (x)|u|p(x) =

∫

{x:V (x)>t}
V (x)|u|p(x) +

∫

{x:V (x)≤t}
V (x)|u|p(x)

≤
∫

{x:V (x)>t}
V (x)|u|p(x) + t

∫

Ω
|u|p(x)

≤ C

∫

{x:V (x)>t}
|∇u|p(x) + t

∫

Ω
|u|p(x),

(3.5)

where the last inequality follows from Theorem 2.2. Now, notice that the measure λ(E) =∫
E |∇u|p(x) is absolutely continuous with respect to the Lebesgue measure μ. It follows that for
ε1 := (εo/C)

∫
Ω |∇u|p(x) > 0 there exists δ > 0 such that

∫
E |∇u|p(x)dμ < ε1 whenever μ(E) < δ.

Moreover, by Chebyshev’s type inequality,

μ({x : V (x) > t}) ≤ t−N/p+
∫

Ω
V (x)N/p(x). (3.6)

So taking t sufficiently big, we get the desired inequality.

Lemma 3.3. Let p : Ω → (1,N) be an exponent with 1 < p− ≤ p+ <∞ and such that p ∈ MPIC(Ω)
is Lipschitz continuous. Let u be solution of (3.1) inΩ, and Br and B2r two concentric balls contained
in Ω. Then

∫

Br

|∇u|p(x) ≤ C

rp(x0)

∫

B2r

|u|p(x), (3.7)

where the constant C does not depend on r, x0 ∈ B2r and V ∈ LN/p(x).

Proof. Take η ∈ C∞
0 (Ω), with sup pη ⊂ B2r , 0 ≤ η ≤ 1 such that η(x) = 1 for any x ∈ Br

and |∇η| ≤ C/r. We want to use as test function ψ = ηp(x)u. To this end we show first that
ψ ∈ W

1,p(x)
0 (Ω); it is clear that ψ ∈ Lp(x)(Ω) since u is solution of (3.1). Furthermore, since

0 � η � 1 then |η logη| � a for some constant a, so

∣∣∇ψ∣∣ ≤
∣∣∣∇uηp(x)

∣∣∣ +
∣∣∣up(x)ηp(x)−1∇η

∣∣∣ +
∣∣∣uηp(x) logη∇p(x)

∣∣∣

≤
∣∣∣∇uηp(x)

∣∣∣ +
∣∣∣up(x)ηp(x)−1∇η

∣∣∣ +
∣∣∣uηp(x)−1∇p(x)η logη

∣∣∣

≤
∣∣∣∇uηp(x)

∣∣∣ +
∣∣∣up(x)ηp(x)−1∇η

∣∣∣ +
∣∣∣uηp(x)−1∇p(x)

∣∣∣a

≤
∣∣∣∇uηp(x)

∣∣∣ +
∣∣∣uηp(x)−1

∣∣∣
(∣∣∇η∣∣p(x) + a∣∣∇p(x)∣∣)

≤ |∇u| + |u|(Cp+ + aL)

≤ |∇u| + Cp|u|.

(3.8)
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Hence, |∇ψ|p(x) � 2p
+−1|∇u|p(x) + Cp+

p 2p
+−1|u|p(x). Therefore, |∇ψ| ∈ Lp(x)(Ω).

Now we can use ψ = ηp(x)u as a test function to obtain

0 =
∫

B2r

|∇u|p(x)−2∇u · ∇ψ dx +
∫

B2r

V |u|p(x)−2uψ dx

=
∫

B2r

|∇u|p(x)ηp(x)dx +
∫

B2r

|∇u|p(x)−2u∇u ·
(
p(x)ηp(x)−1∇η + ηp(x) logη∇p(x)

)
dx

+
∫

B2r

V ηp(x)|u|p(x)dx.

(3.9)

Let

I1 :=
∫

B2r

|∇u|p(x)−2u∇u ·
(
p(x)ηp(x)−1∇η + ηp(x) logη∇p(x)

)
dx,

I2 :=
∫

B2r

V ηp(x)|u|p(x)dx.
(3.10)

We can estimate I1 by

I1 ≤
∫

B2r

|∇u|p(x)−2|u||∇u|
(∣∣∣p(x)ηp(x)−1∇η

∣∣∣ +
∣∣∣ηp(x) logη∇p(x)

∣∣∣
)
dx

≤
∫

B2r

(|∇u|∣∣η∣∣)p(x)−1(|u|∣∣∇η∣∣)(∣∣p(x)∣∣ + a∣∣∇p(x)∣∣)dx

≤
∫

B2r

(|∇u|∣∣η∣∣)p(x)−1(|u|∣∣∇η∣∣)(p+ + aL)dx

≤ Cp

∫

B2r

(|∇u|∣∣η∣∣)p(x)−1(|u|∣∣∇η∣∣)dx

≤ Cp

∫

B2r

ε
(|∇u|∣∣η∣∣)p(x) +

(
1
ε

)p(x)−1(|u|∣∣∇η∣∣)p(x)dx,

(3.11)

where the Young-type inequality

fg ≤ εfp(x)/(p(x)−1) +
(
1
ε

)p(x)−1
gp(x) (3.12)

was used in the last inequality. Moreover,

I1 ≤ Cpε

∫

B2r

|∇u|p(x)ηp(x)dx + Cp

∫

B2r

(
1
ε

)p(x)−1
|u|p(x)∣∣∇η∣∣p(x)dx

≤ Cpε

∫

B2r

|∇u|p(x)ηp(x)dx + Cp

(
1
ε

)p+−1 ∫

B2r

|u|p(x)∣∣∇η∣∣p(x)dx.
(3.13)
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We estimate I2:

I2 =
∫

B2r

V ηp(x)|u|p(x)dx

=
∫

B2r

V
∣
∣ηu

∣
∣p(x)dx

≤ ε

∫

B2r

∣
∣∇(

uη
)∣∣p(x)dx + Cε

∫

B2r

∣
∣ηu

∣
∣p(x)dx,

(3.14)

where Lemma (3.2)was used in the last inequality.
Now using the estimates for I1 and I2, we have

∫

B2r

|∇u|p(x)ηp(x)dx ≤ Cpε

∫

B2r

|∇u|p(x)ηp(x)dx + Cp

(
1
ε

)p+−1 ∫

B2r

|u|p(x)∣∣∇η∣∣p(x)dx dx

+ ε
∫

B2r

∣∣∇(
uη

)∣∣p(x) + Cε

∫

B2r

∣∣ηu
∣∣p(x)dx

≤ ε(C1 + C2)
∫

B2r

|∇u|p(x)ηp(x)dx

+
ε

εp
+

(
C1 + C2ε

p+
)∫

B2r

|u|p(x)∣∣∇η∣∣p(x)dx + Cε

∫

B2r

ηp(x)|u|p(x)dx

(3.15)

for 0 < ε ≤ 1. By choosing ε ≤ min{1, 1/2(C1 + C2)}, we have

∫

B2r

|∇u|p(x)ηp(x)dx ≤ 1
εp

+

∫

B2r

|u|p(x)∣∣∇η∣∣p(x)dx + 2Cε

∫

B2r

|u|p(x)ηp(x)dx

≤ 1
εp

+

∫

B2r

|u|p(x)
(
C

r

)p(x)

dx + 2Cε

∫

B2r

|u|p(x)
(
C

r

)p(x)

dx.

(3.16)

Since p(x) is Log-Hölder r−p(x) ≤ Cr−p(x0) for all x0 ∈ B2r , then

∫

B2r

|∇u|p(x)ηp(x)dx ≤ 1
εp

+

∫

B2r

|u|p(x)
(
C

r

)p(x0)

dx + 2Cε

∫

B2r

|u|p(x)
(
C

r

)p(x0)

dx

≤
(

1
εp

+ + Cε

)
Cp(x0)

rp(x0)

∫

B2r

|u|p(x)dx

≤ C

rp(x0)

∫

B2r

|u|p(x)dx.

(3.17)
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Therefore,

∫

Br

|∇u|p(x)dx ≤ C

rp(x0)

∫

B2r

|u|p(x)dx. (3.18)

Lemma 3.4. Let u ∈ W1,1(B(x0, r)), where B(x0, r) is the ball of radius r > 0 in R
N and E = {x ∈

B(x0, r) : u(x) = 0}. Then there exists a constant β > 0 depending only onN, such that

∫

D

|u(x)|dx ≤ βr
N

|E| |D|1/N
∫

B(x0,r)
|∇u(x)|dx (3.19)

for all B(x0, r), u as above, and all mensurable sets D ⊂ B(x0, r).
Proof. See [33, Lemma 3.4, page 54].

Now we are ready to prove the main result in this paper.

Theorem 3.5. Let Ω be a bounded domain in R
N , p : Ω → (1,N) an exponent with 1 < p− ≤ p+ <

∞ and such that p ∈ MPIC(Ω) is Lipschitz continuous, and u ∈ W1,p(x)
loc (Ω) a solution of (3.1). If u

vanishes on set E ⊂ Ω of positive measure, then u has a zero of infinite order in the p(x)-mean.

Proof. We know that almost every point of E is a point of density, let x0 be such a point, that
is,

∣∣EC ∩ B(x0, r)
∣∣

|B(x0, r)| −→ 0,
|E ∩ B(x0, r)|
|B(x0, r)| −→ 1 (3.20)

as r → 0.
Let Br := B(x0, r). So for a given ε > 0, there exists r0 = r0(ε) such that for r ≤ r0,

∣∣EC ∩ Br
∣∣

|Br | < ε,
|E ∩ Br |
|Br | > 1 − ε, (3.21)

where EC denote the complement of E in Ω. Taking r0 smaller if necessary, we may assume
that Br0 ⊂ Ω. Since u = 0 on E, and using Lemma 3.4 we have

∫

Br

|u(x)|p(x)dx =
∫

Br∩EC
|u(x)|p(x)dx +

∫

Br∩E
|u(x)|p(x)dx

=
∫

Br∩EC
|u(x)|p(x)dx

≤ β
rN

|Br ∩ E|
∣∣∣Br ∩ EC

∣∣∣
1/N

∫

Br

∣∣∣∇
(
|u(x)|p(x)

)∣∣∣dx

≤ Cβ
rN

rN−1
ε1/N

1 − ε
∫

Br

∣∣∣∇
(
|u(x)|p(x)

)∣∣∣dx

= Cr
ε1/N

1 − ε
∫

Br

∣∣∣∇
(
|u(x)|p(x)

)∣∣∣dx.

(3.22)
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But |∇(|u(x)|p(x))| ≤ |p(x)|||u(x)|p(x)−1||∇u(x)| + |∇p(x)|||u(x)|p(x) log |u(x)||. Hence,

∫

Br

|u(x)|p(x)dx ≤ Cr ε
1/N

1 − ε

[∫

Br

p+|u(x)|p(x) −1|∇u(x)|dx +
∫

Br

L|u(x)|p(x)∣∣log|u(x)|∣∣dx
]

.

(3.23)

Let

I1 :=
∫

Br

|u(x)|p(x)−1|∇u(x)|dx,

I2 :=
∫

Br

∣
∣
∣|u(x)|p(x) log |u(x)|

∣
∣
∣dx.

(3.24)

I1 can be estimated using the Young type inequality with ε = 1/r:

∫

Br

|u(x)|p(x)−1|∇u(x)|dx �
∫

Br

1
r
|u(x)|p(x)dx +

∫

Br

rp(x)−1|∇u(x)|p(x)dx. (3.25)

Now we estimate I2 by distinguishing the case when |u(x)| ≤ 1 and |u(x)| > 1, using the
relations (2.2) and (2.13).

Let Ω1 =: {x ∈ Br : |u(x)| ≤ 1} and Ω2 =: {x ∈ Br : |u(x)| > 1}, then

I2 ≤ C1

∫

Ω1

|u(x)|p(x)−η1dx + C2

∫

Ω2

|u(x)|p(x)+η2dx. (3.26)

We can choose k ∈ N such that p(x) − 1/k ≥ p−. Since u ∈ Lp
−
(B(x0, r)) and in Ω1,|u(x)| ≤ 1

we have

|u(x)|p(x)−1/n ≤ |u(x)|p− , (3.27)

for n > k. The Lebesgue Dominated Convergence Theorem implies

lim
n→∞

∫

Ω1

|u(x)|p(x)−1/ndx =
∫

Ω1

|u(x)|p(x)dx. (3.28)

For Ω2 we can choose k′ such that p(x) + 1/k′ ≤ (p(x))∗ =Np(x)/(N − p(x)). So

|u(x)|p(x)+1/n ≤ |u(x)|(p(x))∗ , (3.29)

for n > k′, and x ∈ Ω2. Since u ∈ L(p(x))∗(B(x0, r)) [23, Theorem 8.3.1] we may use the
Lebesgue Theorem again to obtain

lim
n→∞

∫

Ω2

|u(x)|p(x)+1/ndx =
∫

Ω2

|u(x)|p(x)dx. (3.30)
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Therefore,

I2 ≤ C
∫

B(x0,r)
|u|p(x)dx. (3.31)

Now, using estimates for I1 and I2, and noticing that for 0 < r < 1 we have rp(x) < rp
−
, we get

∫

Br

|u(x)|p(x)dx ≤ ε1/N

1 − ε

{

Cp+
∫

Br

|u(x)|p(x)dx

+Cp+rp
−
∫

Br

|∇u(x)|p(x)dx + Cp

∫

Br

|u(x)|p(x)dx
} (3.32)

and by Lemma (3.3) we have

∫

Br

|u(x)|p(x)dx ≤ ε1/N

1 − ε

{

Cp+
∫

B2r

|u(x)|p(x)dx + Cp+rp
−
r−p(x0)

∫

B2r

|u(x)|p(x)dx

+Cp

∫

B2r

|u(x)|p(x)dx
}

≤ C
ε1/N

1 − ε
∫

B2r

|u(x)|p(x)dx,

(3.33)

where C is independent of ε and of r as r → 0. Note that rp
−−p(x0) < C where C is the Log-

Hölder constant. From this point the argument in the proof is standard, see, for instance, in
[4] the proof of Lemma 1, page 344-345 from equation (10) to the end of the proof, or the
proof of Theorem 2.1 [6], from inequality (2.18) to (2.23), page 216; we include this last part
of the proof for the sake of completeness. Set f(r) :=

∫
Br
|u(x)|p(x) dx. Let us fix n ∈ N and

choose ε > 0 such that (Cε1/N)/(1 − ε) ≤ 2−n. Now, observe that r0 depends on n, hence by
the last inequality we deduce

f(r) ≤ 2−nf(2r), for r ≤ r0. (3.34)

Iterating (3.34), we get

f
(
ρ
) ≤ 2−knf

(
2kρ

)
, if 2k−1ρ ≤ r0. (3.35)

Thus, given that 0 < r < r0(n) and choosing k ∈ N such that

2−kr0 ≤ r ≤ 2−(k−1)r0. (3.36)
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From (3.35), we conclude that

f(r) ≤ 2−knf
(
2kr

)
≤ 2−knf(2r0), (3.37)

and since 2−k ≤ r/r0, we get

f(r) ≤
(
r

r0

)n

f(2r0), (3.38)

which shows that x0 is a zero infinite order in p(x)-mean.
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[24] P. Harjulehto, P. Hästö, and V. Latvala, “Harnack’s inequality for p(x)-harmonic functions with
unbounded exponent p,” Journal of Mathematical Analysis and Applications, vol. 352, no. 1, pp. 345–359,
2009.

[25] W. Allegretto, “Form estimates for the p(x)-Laplacean,” Proceedings of the American Mathematical
Society, vol. 135, no. 7, p. 2177–2185 (electronic), 2007.
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