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Sufficient conditions for the existence of a common fixed point of generalized f-weakly con-
tractive noncommuting mappings are derived. As applications, some results on the set of best
approximation for this class of mappings are obtained. The proved results generalize and extend
various known results in the literature.

1. Introduction and Preliminaries

It is well known that Banach’s fixed point theorem for contraction mappings is one of the
pivotal result of analysis. Let (X, d) be a metric space. A mapping T : X → X is said to be
contraction if there exists 0 ≤ k < 1 such that for all x, y ∈ X,

d
(
Tx, Ty

) ≤ kd(x, y). (1.1)

If the metric space (X, d) is complete, then the mapping satisfying (1.1) has a unique fixed
point.

A natural question is that whether we can find contractive conditions which will imply
existence of fixed point in a complete metric space but will not imply continuity. Kannan [1, 2]
proved the following result, giving an affirmative answer to the above question.

Theorem 1.1. If T : X → X, where (X, d) is a complete metric space, satisfies

d
(
Tx, Ty

) ≤ k[d(x, Tx) + d(y, Ty)], (1.2)

where 0 ≤ k < 1/2 and x, y ∈ X, then T has a unique fixed point.
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The mappings satisfying (1.2) are called Kannan type mappings. A similar type of
contractive condition has been studied by Chatterjea [3] and he proved the following result.

Theorem 1.2. If T : X → X, where (X, d) is a complete metric space, satisfies

d
(
Tx, Ty

) ≤ k[d(x, Ty) + d(y, Tx)], (1.3)

where 0 ≤ k < 1/2 and x, y ∈ X, then T has a unique fixed point.

In Theorems 1.1 and 1.2 there is no requirement of continuity of T .
A map T : X → X is called a weakly contractive (see [4–6]) if for each x, y ∈ X,

d
(
Tx, Ty

) ≤ d(x, y) − ψ(d(x, y)), (1.4)

where ψ : [0,∞) → [0,∞) is continuous and nondecreasing, ψ(x) = 0 if and only if x = 0 and
limψ(x) = ∞.

If we take ψ(x) = (1 − k)x, 0 ≤ k < 1, then a weakly contractive mapping is called
contraction.

A map T : X → X is called f-weakly contractive (see [7]) if for each x, y ∈ X,

d
(
Tx, Ty

) ≤ d(fx, fy) − ψ(d(fx, fy)), (1.5)

where f : X → X is a self-mapping, ψ : [0,∞) → [0,∞) is continuous and nondecreasing,
ψ(x) = 0 if and only if x = 0 and limψ(x) = ∞.

If we take ψ(x) = (1 − k)x, 0 ≤ k < 1, then a f-weakly contractive mapping is called
f-contraction. Further, if f = identity mapping and ψ(x) = (1−k)x, 0 ≤ k < 1, then a f-weakly
contractive mapping is called contraction.

A map T : X → X is called a generalized weakly contractive (see [5]) if for each x, y ∈ X,

d
(
Tx, Ty

) ≤ 1
2
[
d
(
x, Ty

)
+ d

(
y, Tx

)] − ψ(d(x, Ty), d(y, Tx)), (1.6)

where ψ : [0,∞)2 → [0,∞) is continuous such that ψ(x, y) = 0 if and only if x = y = 0.
If we take ψ(x, y) = (1−(k/2))(x+y), 0 ≤ k < 1/2, then inequality (1.6) reduces to (1.3).

Choudhury [5] shows that generalized weakly contractive mappings are generalizations of
contractive mappings given by Chatterjea (1.3), and it constitutes a strictly larger class of
mappings than given by Chatterjea.

A map T : X → X is called a generalized f-weakly contractive [8] if for each x, y ∈ X,

d
(
Tx, Ty

) ≤ 1
2
[
d
(
fx, Ty

)
+ d

(
fy, Tx

)] − ψ(d(fx, Ty), d(fy, Tx)), (1.7)

where f : X → X is a self-mapping, ψ : [0,∞)2 → [0,∞) is continuous such that ψ(x, y) = 0
if and only if x = y = 0.

If f = identity mapping, then generalized f-weakly contractive mapping is general-
ized weakly contractive.



International Journal of Mathematics and Mathematical Sciences 3

For a nonempty subsetM of a metric space (X, d) and x ∈ X, an element y ∈M is said
to be a best approximant to x or a best M-approximant to x if d(x, y) = d(x,M) ≡ inf{d(x, k) :
k ∈M}. The set of all such y ∈M is denoted by PM(x).

A subsetM of a normed linear space X is said to be a convex set if λx + (1 − λ)y ∈ M
for all x, y ∈ M and λ ∈ [0, 1]. A set M is said to be p-starshaped, where p ∈ M, provided
λx + (1 − λ)p ∈ M for all x ∈ M and λ ∈ [0, 1], that is, if the segment [p, x] = {λx + (1 − λ)p :
0 ≤ λ ≤ 1} joining p to x is contained in M for all x ∈ M. M is said to be starshaped if it is
p-starshaped for some p ∈M.

Clearly, each convex setM is starshaped but converse is not true.
Suppose that M is a subset of normed linear space X. A mapping T from M to X is

said to be demiclosed if for every sequence {xn} ⊆M such that xn converges weakly to x ∈M
and {T(xn)} converges strongly to y ∈ X imply y = Tx. T is said to be demiclosed at 0, if for
every sequence {xn} inM converging weakly to x and {Txn} converging strongly to 0, then
Tx = 0.

For a convex subsetM of a normed linear space X, a mapping T : M → M is said to
be affine if for all x, y ∈M, T(λx + (1 − λ)y) = λTx + (1 − λ)Ty for all λ ∈ [0, 1].

The ordered pair (T, I) of two self-maps of a metric space (X, d) is called a Banach
operator pair [9], if the set F(I) of fixed points of I is T -invariant, that is, T(F(I)) ⊆ F(I). A
point x ∈ X is a coincidence point (common fixed point) of I and T if Ix = Tx(x = Ix = Tx).
The set of fixed points (resp., coincidence points) of I and T is denoted by F(I, T) (resp.,
C(I, T)). The pair (I, T) is called commuting if TIx = ITx for all x ∈ X. Obviously, commuting
pair, (T, I) is a Banach operator pair but not conversely (see [9]). If (T, I) is a Banach operator
pair then (I, T) need not be a Banach operator pair (see [9]). If the self-maps T and I of X
satisfy d(ITx, Tx) ≤ kd(Ix, x), for all x ∈ X and for some k ≥ 0, ITx = TIx whenever
x ∈ F(I), that is, Tx ∈ F(I), then (T, I) is a Banach operator pair. This class of noncommuting
mappings is different from the known classes of noncommuting mappings namely, R-weakly
commuting, R-subweakly commuting, compatible, weakly compatible, Cq-commuting, and
so forth, existing in the literature.

Fixed point theory has gained impetus, due to its wide range of applicability, to resolve
diverse problems emanating from the theory of nonlinear differential equations, theory of
nonlinear integral equations, game theory, mathematical economics, control theory, and so
forth. For example, in theoretical economics, such as general equilibrium theory, a situation
arises where one needs to know whether the solution to a system of equations necessarily
exists, or, more specifically, under what conditions will a solution necessarily exist. The
mathematical analysis of this question usually relies on fixed point theorems. Hence, finding
necessary and sufficient conditions for the existence of fixed points is an interesting aspect.
Alber and Guerre-Delabriere [4] introduced the concept of weakly contractive mappings
and proved the existence of fixed points for single-valued weakly contractive mappings in
Hilbert spaces. Thereafter, Rhoades [6] proved a fixed point theorem which is one of the
generalizations of Banach’s Fixed Point Theorem in 1922, because the weakly contractions
contain many contractions as a special case, and he also showed that some results of [4]
are true for any Banach spaces. In fact, weakly contractive mappings are closely related to
the mappings introduced by Boyd and Wong [10] and Reich [11]. Many other nonlinear
contractive type mappings like Chatterjea, Ciric, Kannan, Reich type, and so forth and their
generalizations have been investigated by many authors. Fixed point and common fixed
point theorems for different types of nonlinear contractive mappings have been investigated
extensively by various researchers (see [1–21] and references cited therein). In this paper,
sufficient conditions for the existence of a common fixed point of generalized f-weakly
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contractive noncommuting mappings are obtained. As applications, we also establish some
results on the set of best approximation for this class of mappings. The proved results gener-
alize and extend the corresponding results of [5, 8, 9, 12–14, 18–20] and of few others.

2. Main Results

The following result is a consequence of the main theorem of Choudhury [5].

Lemma 2.1. Let M be a subset of a metric space (X, d) and T is a self-mapping of M such that
cl T(M) ⊆M. If cl T(M) is complete and T satisfies

d
(
Tx, Ty

) ≤ 1
2
[
d
(
x, Ty

)
+ d

(
y, Tx

)] − ψ(d(x, Ty), d(y, Tx)), (2.1)

where ψ : [0,∞)2 → [0,∞) is a continuous mapping such that ψ(x, y) = 0 if and only if x = y = 0,
for all x, y ∈ X, then T has a unique fixed point inM.

Corollary 2.2 (see [5]). Let T be a self-mapping of X, where (X, d) is a complete metric space. If T
satisfies

d
(
Tx, Ty

) ≤ 1
2
[
d
(
x, Ty

)
+ d

(
y, Tx

)] − ψ(d(x, Ty), d(y, Tx)), (2.2)

where ψ : [0,∞)2 → [0,∞) is a continuous mapping such that ψ(x, y) = 0 if and only if x = y = 0,
for all x, y ∈ X, then T has a unique fixed point.

If ψ(x, y) = ((1/2) − k)(x + y), 0 ≤ k < (1/2), we have Theorem 1.2.

Theorem 2.3. LetM be a subset of a metric space (X, d), and f and T are self-mappings ofM such
that cl T(F(f)) ⊆ F(f). If cl T(M) is complete, F(f) is nonempty, and f and T satisfy

d
(
Tx, Ty

) ≤ 1
2
[
d
(
fx, Ty

)
+ d

(
fy, Tx

)] − ψ(d(fx, Ty), d(fy, Tx)), (2.3)

where ψ : [0,∞)2 → [0,∞) is a continuous mapping such that ψ(x, y) = 0 if and only if x = y = 0,
for all x, y ∈ X, thenM ∩ F(T) ∩ F(f) is a singleton.

Proof. cl T(F(f)) being a subset of cl T(M) is complete and and cl T(F(f)) ⊆ F(f). So for all
x, y ∈ F(f), we have

d
(
Tx, Ty

) ≤ 1
2
[
d
(
fx, Ty

)
+ d

(
fy, Tx

)] − ψ(d(fx, Ty), d(fy, Tx))

=
1
2
[
d
(
x, Ty

)
+ d

(
y, Tx

)] − ψ(d(x, Ty), d(y, Tx)).
(2.4)

Thus, by Lemma 2.1, T has a unique fixed point z in F(f) and consequently,M ∩F(T)∩F(f)
is a singleton.
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Corollary 2.4. Let M be a subset of a metric space (X, d), and f and T are self-mappings of M.
If cl T(M) is complete, (T, f) is a Banach operator pair, F(f) is nonempty and closed, and f and T
satisfy

d
(
Tx, Ty

) ≤ 1
2
[
d
(
fx, Ty

)
+ d

(
fy, Tx

)] − ψ(d(fx, Ty), d(fy, Tx)), (2.5)

where ψ : [0,∞)2 → [0,∞) is a continuous mapping such that ψ(x, y) = 0 if and only if x = y = 0,
for all x, y ∈ X, thenM ∩ F(T) ∩ F(f) is a singleton.

Example 2.5. Let X = {p, q, r} and d is a metric defined on X. Let T and f be self-mappings
of X such that Tp = fq, Tq = fq, Tr = fp, d(fp, fq) = 1, d(fq, fr) = 2, d(fr, fp) = 1.5 and
ψ(a, b) = (1/2)min{a, b}. Then T is a generalized f-weakly contraction, and q is the coin-
cidence point of T and f .

If f =identity mapping, this example given in [5].

If ψ(x, y) = ((1/2) − k)(x + y), 0 ≤ k < 1/2, we have the following result.

Corollary 2.6. LetM be a subset of a metric space (X, d), and f and T be self-mappings ofM such
that cl T(F(f)) ⊆ F(f). If cl T(M) is complete, F(f) is nonempty, and f and T satisfy

d
(
Tx, Ty

) ≤ k[d(fx, Ty) + d(fy, Tx)], (2.6)

where 0 ≤ k < 1/2, for all x, y ∈M, thenM ∩ F(T) ∩ F(f) is a singleton.

Corollary 2.7. Let M be a subset of a metric space (X, d) and f and T be self-mappings of M. If
cl T(M) is complete, (T, f) is a Banach operator pair, F(f) is nonempty and closed, and f and T
satisfy

d
(
Tx, Ty

) ≤ k[d(fx, Ty) + d(fy, Tx)], (2.7)

where 0 ≤ k < 1/2, for all x, y ∈M, thenM ∩ F(T) ∩ F(f) is a singleton.

Theorem 2.8. Let M be a nonempty subset of a normed (resp., Banach) space X, and Tf be self-
mappings ofM. Suppose that F(f) is q-starshaped, cl T(F(f)) ⊆ F(f) (resp.,w cl T(F(f)) ⊆ F(f)),
cl T(M) is compact (resp.,w cl T(M) is weakly compact, and f −T is demiclosed at 0), and T satisfies

∥∥Tx − Ty∥∥ ≤ 1
2
[
dist

(
fx,

[
Ty, q

])
+ dist

(
fy,

[
Tx, q

])]

− ψ(dist(fx, [Ty, q]),dist(fy, [Tx, q])),
(2.8)

where ψ : [0,∞)2 → [0,∞) is a continuous mapping such that ψ(x, y) = 0 if and only if x = y = 0,
for all x, y ∈M. ThenM ∩ F(T) ∩ F(f)/= ∅.
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Proof. For each n, define Tn : M → M by Tnx = (1 − kn)q + knTx, x ∈ M where (kn) is a
sequence in (0, 1) such that kn → 1. Since F(f) is q-starshaped and cl T(F(f)) ⊆ F(f) (resp.,
w cl T(F(f)) ⊆ F(f)), we have

Tn(x) = (1 − kn)q + knTx = (1 − kn)fq + knTx ∈ F(f), (2.9)

for all x ∈ F(f) and so cl Tn(F(f)) ⊆ F(f) (resp., w cl Tn(F(f)) ⊆ F(f)) for each n. Consider
∥
∥Tnx − Tny

∥
∥ = kn

∥
∥Tx − Ty∥∥

≤ kn

[
1
2
[
dist

(
fx,

[
Ty, q

])
+ dist

(
fy,

[
Tx, q

])]

− ψ (
dist

(
fx,

[
Ty, q

])
,dist

(
fy,

[
Tx, q

]))]

≤ kn

[
1
2
[
dist

(
fx,

[
Ty, q

])
+ dist

(
fy,

[
Tx, q

])]
]

≤ kn
2
[∥∥fx − Tny

∥∥ +
∥∥fy − Tnx

∥∥],

(2.10)

for all x, y ∈ F(f). As cl T(M) is compact, cl Tn(M) is compact for each n and hence complete.
Now by Corollary 2.6, there exists xn ∈M such that xn is a common fixed point of f and Tn for
each n. The compactness of cl T(M) implies that there exists a subsequence {Txni} of {Txn}
such that Txni → z ∈ cl T(M). Since {Txn} is a sequence in T(F(f)), z ∈ cl T(F(f)) ⊆ F(f).
Now, as kni → 1, we have

xni = Tnixni = (1 − kni)q + kniTxni −→ z (2.11)

and ‖fxni − Txni‖ = ‖xni − Txni‖ → 0. Further, we have

‖Txni − Tz‖ ≤ 1
2
[
dist

(
fxni ,

[
Tz, q

])
+ dist

(
fz,

[
Txni , q

])]

− ψ(dist(fxni ,
[
Tz, q

])
,dist

(
fz,

[
Txni , q

]))

=
1
2
[
dist

(
xni ,

[
Tz, q

])
+ dist

(
fz,

[
Txni , q

])]

− ψ(dist(xni ,
[
Tz, q

])
,dist

(
fz,

[
Txni , q

]))

≤ 1
2
[‖xni − Tz‖ +

∥∥fz − Txni
∥∥],

(2.12)

on taking limit, we get z = Tz and soM ∩ F(T) ∩ F(f)/= ∅.
Next, the weak compactness of w cl T(M) implies that w cl Tn(M) is weakly compact

and hence complete. Hence, by Corollary 2.6, for each n ∈ N, there exists xn ∈ F(f) such
that xn = fxn = Tnxn. The weak compactness of w cl T(M) implies that there is subsequence
{Txni} of {Txn} such that Txni ⇀ y ∈ w cl T(M). Since {Txn} is a sequence in T(F(f)),
y ∈ w cl T(F(f)) ⊆ F(f). Also, we have fxni − Txni = xni − Txni → 0.

If f − T is demiclosed at 0, then fy = Ty = y and soM ∩ F(T) ∩ F(f)/= ∅.
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LetM be a nonempty subset of a metric space (X, d). Suppose thatC = PM(u)∩Cf

M(u),

where Cf

M(u) = {x ∈M : fx ∈ PM(u)}.
Corollary 2.9. Let X be a normed (resp., Banach) space, and T , f are self-mappings of X. If u ∈ X,
D ⊆ C,G = D∩F(f) is q-starshaped, cl T(G) ⊆ G (resp.,w cl T(G) ⊆ G), cl T(D) is compact (resp.,
w cl T(D) is weakly compact and f − T is demiclosed at 0), and T satisfies the inequality (2.8) for all
x, y ∈ D, then PM(u) ∩ F(f, T) is nonempty.

Corollary 2.10. Let X be a normed (resp., Banach) space and T, f are self-mappings of X. If u ∈ X,
D ⊆ PM(u), G = D ∩ F(f) is q-starshaped, cl T(G) ⊆ G (resp., w cl T(G) ⊆ G), cl T(D) is compact
(resp., w cl T(D) is weakly compact and f − T is demiclosed at 0), and T satisfies the inequality (2.8)
for all x, y ∈ D, then PM(u) ∩ F(f, T) is nonempty.

Remark 2.11. Theorem 2.8 extends and generalizes the corresponding results of [8, 9, 13, 14,
18, 19].

LetG0 denote the class of closed convex subsets of a normed spaceX containing 0. For
M ∈ G0 and p ∈ X, letMp = {x ∈M : ‖x‖ ≤ 2‖p‖}. Then PM(p) ⊂Mp ∈ G0 (see [12, 20]).

Theorem 2.12. Let X be a normed (resp., Banach) space, and T , g are self-mappings of X. If p ∈ X
andM ∈ G0 such that T(Mp) ⊆M, cl T(Mp) is compact (resp.,w cl T(Mp) is weakly compact), and
‖Tx − p‖ ≤ ‖x − p‖ for all x ∈ Mp, then PM(p) is nonempty, closed, and convex with T(PM(p)) ⊆
PM(p). If, in addition, D is a subset of PM(p), G = D ∩ F(g) is q-starshaped, cl T(G) ⊆ G (resp.,
w cl T(G) ⊆ G and g − T is demiclosed at 0), and T satisfies inequality (2.8) for all x, y ∈ D, then
PM(p) ∩ F(g, T) is nonempty.

Proof. If p ∈ M, then the results are obvious. So assume that p /∈ M. If x ∈ M \ Mp, then
‖x−x0‖ > 2‖p−x0‖ and so ‖p−x‖ ≥ ‖x‖−‖p‖ > ‖p‖ ≥ dist(p,M). Thus α = dist(p,M) ≤ ‖p‖.
Since cl(T(Mp)) is compact, and by the continuity of norm, there exists z ∈ cl(T(Mp)) such
that β = dist(p, cl(T(Mp)) = ‖z − p‖.

On the other hand, if w cl(T(Mp)) is weakly compact, then using Lemma 5.5 of
Singh et al. [22, page 192], we can show that there exists z ∈ w cl(T(Mp)) such that
β = dist(p,w cl(T(Mp))) = ‖z − p‖.

Hence, in both cases, we have

α = dist
(
p,M

) ≤ dist
(
p, cl

(
T
(
Mp

)))

= β

= dist
(
p, T

(
Mp

))

≤ ∥∥Tx − p∥∥
≤ ∥∥x − p∥∥,

(2.13)

for all x ∈ Mp. Therefore, α = β = dist(p,M), that is, dist(p,M) = dist(p, cl(T(Mp)) = d(p, z),
that is, z ∈ PM(p) and so PM(p) is nonempty. The closedness and convexity of PM(p) follow
from that of M. Now to prove T(PM(p) ⊆ PM(p), let y ∈ T(PM(p)). Then y = Tx for x ∈
PM(p). Consider

d
(
p, y

)
= d

(
p, Tx

) ≤ d(p, x) = dist
(
p,M

)
, (2.14)

and so y ∈ PM(p) as PM(p) ⊂Mp ⇒ T(PM(p)) ⊂M, that is, y ∈M.
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The compactness of cl T(Mp) (resp., weakly compactness of w cl T(Mp)) implies that
cl T(D) is compact (resp., w cl T(D) is weakly compact). Hence, the result follows from
Corollary 2.10.

Corollary 2.13. Let X be a normed (resp., Banach) space, and T , g are self-mappings of X. If p ∈ X
andM ∈ G0 such that T(Mp) ⊆M, cl T(Mp) is compact (resp.,w cl T(Mp) is weakly compact), and
‖Tx − p‖ ≤ ‖x − p‖ for all x ∈ Mp, then PM(p) is nonempty, closed, and convex with T(PM(p)) ⊆
PM(p). If, in addition,D is a subset of PM(p),G = D∩F(g) is q-starshaped and closed (resp., weakly
closed and g − T is demiclosed at 0), (T, g) is a Banach operator pair on D, and T satisfies inequality
(2.8) for all x, y ∈ D, then PM(p) ∩ F(g, T) is nonempty.

Remark 2.14. Theorem 2.12 extends and generalizes the corresponding results of Al-Thagafi
[12], Al-Thagafi and Shahzad [13], Habiniak [18], Narang and Chandok [20], and Shahzad
[21].

The following result will be used in the sequel.

Lemma 2.15. Let C be a nonempty subset of a metric space (X, d), f , g self-maps of C, cl T(F(f) ∩
F(g)) ⊆ F(f) ∩ F(g). Suppose that cl(T(C)) is complete, and T , f , g satisfy for all x, y ∈ C and
0 ≤ k < 1,

d
(
Tx, Ty

) ≤ kmax
{
d
(
fx, gy

)
, d

(
Tx, fx

)
, d

(
Ty, gy

)
, d

(
Tx, gy

)
, d

(
Ty, fx

)}
. (2.15)

If F(f)∩F(g) is nonempty and cl T(F(f)∩F(g)) ⊆ F(f)∩F(g), then there is a common fixed point
of T, f and g.

Proof. cl T(F(f)∩F(g)), being a closed subset of the complete set cl T(C), is complete. Further
for all x, y ∈ F(f) ∩ F(g), we have

d
(
Tx, Ty

) ≤ kmax
{
d
(
fx, gy

)
, d

(
Tx, fx

)
, d

(
Ty, gy

)
, d

(
Tx, gy

)
, d

(
Ty, fx

)}

= kmax
{
d
(
x, y

)
, d(Tx, x), d

(
Ty, y

)
, d

(
Tx, y

)
, d

(
Ty, x

)}
.

(2.16)

Hence, T is a generalized contraction on F(f) ∩ F(g) and cl T(F(f) ∩ F(g)) ⊆ F(f) ∩ F(g).
So by Lemma 3.1 of [13], T has a unique fixed point y in F(f) ∩ F(g) and consequently
F(T) ∩ F(f) ∩ F(g) is a singleton.

Remark 2.16. If f = g, then Theorem 3.2 of Al-Thagafi and Shahzad [13] is a particular case of
Lemma 2.15.

The following result extends and improves the corresponding results of [9, 12–14, 18,
20].

Theorem 2.17. Let T, g, h be self-mappings of a Banach space X. If p ∈ F(T) ∩ F(g) ∩ F(h) and
M ∈ G◦ such that T(Mp) ⊆ g(M) ⊆M ⊆ h(M), cl g(Mp) is compact, and ‖Tx − p‖ ≤ ‖gx − hp‖,
‖gx − u‖ ≤ ‖x − u‖, ‖hx − u‖ = ‖x − u‖ for all x ∈Mp, then

(i) PM(p) is nonempty, closed, and convex,

(ii) T(PM(p)) ⊆ g(PM(p)) ⊆ PM(p) = h(PM(p)),
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(iii) PM(p) ∩ F(T) ∩ F(g) ∩ F(h)/= ∅, provided T is continuous, F(g) is q-starshaped,
cl g(F(h)) ⊆ F(h), and the pair (g, h) satisfies the inequality (2.8) for all x, y ∈ PM(p),
F(g) is q-starshaped with q ∈ PM(p)∩F(g)∩F(h) = G, cl T(F(g)∩F(h)) ⊆ F(g)∩F(h)
and T, g, h satisfy for all q ∈ F(g) ∩ F(h) and x, y ∈ PM(p)

d
(
Tx, Ty

) ≤ max
{
d
(
hx, gy

)
, dist

(
hx,

[
q, Tx

])
, dist

(
gy,

[
q, Ty

])
, dist

(
hx,

[
q, Ty

])
,

dist
(
gy,

[
q, Tx

])}
,

(2.17)

then there is a common fixed point of PM(p), T , g, and h.

Proof. Proceeding as in Theorem 2.12, we can prove (i) and (ii).
By (ii), the compactness of cl g(Mp) implies that cl g(PM(p)) and cl T(PM(p)) are

compact. Hence, Theorem 2.8 implies that F(g) ∩ F(h) ∩ PM(p)/= ∅.
For each n ∈ N, define Tn : X → X by Tnx = (1 − kn)q + knTx, for each x ∈ X, where

{kn} is a sequence in (0, 1) such that kn → 1. Then each Tn is a self-mapping of C. Since
cl T(F(g)∩F(h)) ⊆ F(g)∩F(h), F(g)∩F(h) is q-starshaped with q ∈ G, so cl Tn(F(g)∩F(h)) ⊆
F(g) ∩ F(h) for each n. Consider

∥∥Tnx − Tny
∥∥ = kn

∥∥Tx − Ty∥∥

≤ knmax
{∥∥hx − gy∥∥,dist(hx, [q, Tx]),dist(gy, [q, Ty]),dist(hx, [q, Ty]),
dist

(
gy,

[
q, Tx

])}

≤ knmax
{∥∥hx − gy∥∥, ‖hx − Tnx‖,

∥∥gy − Tny
∥∥,

∥∥hx − Tny
∥∥,

∥∥gy − Tnx
∥∥},

(2.18)

for all x, y ∈ PM(p). As cl(T(PM(p))) is compact, cl(Tn(PM(p))) is compact for each n and
hence complete. Now by Lemma 2.15, there exists xn ∈ M such that xn is a common fixed
point of g, h and Tn for each n. The compactness of cl(T(PM(p))) implies that there exists a
subsequence {Txni} of {Txn} such that Txni → z ∈ cl T(PM(p)). Since {Txn} is a sequence in
T(F(g) ∩ F(h)), and cl T(F(g) ∩ F(h)) ⊆ F(g) ∩ F(h), then z ∈ F(g) ∩ F(h). Now, as kni → 1,
we have

xni = Tnixni = (1 − kni)q + kniTxni −→ z, (2.19)

T is continuous, we have Tz = z and hence PM(p) ∩ F(T) ∩ F(g) ∩ F(h)/= ∅.

Remark 2.18. (i) Let M = [0, 1]. Let d be defined by d(x, y) = |x − y|. We set Tx = x/4 and
fx = x/2 for all x ∈M. Define ψ : [0,∞) × [0,∞) → [0,∞) by

ψ(t, s) =
t + s
8

. (2.20)
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Then for x, y ∈M, we have

d
(
Tx, Ty

)
= d

(x
4
,
y

4

)
=
∣
∣
∣
x

4
− y

4

∣
∣
∣ =

1
4
∣
∣x − y∣∣, (2.21)

1
2
[
d
(
fx, Ty

)
+ d

(
fy, Tx

)] − ψ(d(fx, Ty), d(fy, Tx))

=
1
2

[∣∣
∣
x

2
− y

4

∣
∣
∣ +

∣
∣
∣
y

2
− x

4

∣
∣
∣
]
− ψ

(∣∣
∣
x

2
− y

4

∣
∣
∣,
∣
∣
∣
y

2
− x

4

∣
∣
∣
)

=
1
2

[∣∣
∣
x

2
− y

4

∣
∣
∣ +

∣
∣
∣
y

2
− x

4

∣
∣
∣
]
− 1
8

[∣∣
∣
x

2
− y

4

∣
∣
∣ +

∣
∣
∣
y

2
− x

4

∣
∣
∣
]

=
3
8

[∣∣
∣
x

2
− y

4

∣
∣
∣ +

∣
∣
∣
y

2
− x

4

∣
∣
∣
]
.

(2.22)

From (2.21) and (2.22), without loss of generality assume that x ≥ y. Hence, we have two
cases:

Case 1. If 2y ≥ x, from (2.22), we have

1
2
[
d
(
fx, Ty

)
+ d

(
fy, Tx

)] − ψ(d(fx, Ty), d(fy, Tx))

=
3
8

[∣∣∣
x

2
− y

4

∣∣∣ +
∣∣∣
y

2
− x

4

∣∣∣
]
=

3
8

[(x
2
− y

4

)
+
(y
2
− x

4

)]

=
3
8

(x
4
+
y

4

)
=

3
32

(
x + y

) ≥ 1
4
(
x − y).

(2.23)

Case 2. If 2y < x, from (2.22), we have

1
2
[
d
(
fx, Ty

)
+ d

(
fy, Tx

)] − ψ(d(fx, Ty), d(fy, Tx))

=
3
8

[∣∣∣
x

2
− y

4

∣∣∣ +
∣∣∣
y

2
− x

4

∣∣∣
]
=

3
8

[(x
2
− y

4

)
+
(
−y
2
+
x

4

)]

=
3
8

(
3x
4

+
3y
4

)
=

9
32

(
x − y) ≥ 1

4
(
x − y).

(2.24)

Thus inequality (2.3) is satisfied and by Theorem 2.3; 0 is a common fixed point of T and f .
(ii) It may be noted that the assumption of linearity or affinity for I is necessary

in almost all known results about common fixed points of maps T , I such that T is
I-nonexpansive under the conditions of commuting, weakly commuting, R-subweakly
commuting, or compatibility (see [9, 12, 14, 20, 21] and the literature cited therein), but our
results in this paper are independent of the linearity or affinity.

(iii) Consider M = R
2 with usual metric d((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|,

(x1, y1), (x2, y2) ∈ R
2. Define T and I on M as T(x, y) = ((x − 2)/2, (x2 + y − 4)/2) and

I(x, y) = ((x−2)/2, x2+y−4). Obviously, T is I-nonexpansive, I-asymptotically nonexpansive,
but I is not linear or affine. Moreover, F(T) = (−2, 0), F(I) = {(−2, y) : y ∈ R} and C(I, T) =
{(x, y) : y = 4 − x2, x ∈ R}. Thus, cl T(F(I)) ⊂ F(I), which is not a compatible pair (see [9]),
F(I) is convex, starshaped for any z ∈ F(I), and (−2, 0) is a common fixed point of I and T .
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