Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences
Volume 2011, Article ID 734567, 18 pages
doi:10.1155/2011/734567

Research Article

Approximate Quartic and Quadratic Mappings in
Quasi-Banach Spaces

M. Eshaghi Gordji," H. Khodaei,’ and Hark-Mahn Kim?

1 Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
2 Department of Mathematics, Chungnam National University, 220 Yuseong-Gu,
Daejeon 305-764, Republic of Korea

Correspondence should be addressed to Hark-Mahn Kim, hmkim@cnu.ac.kr
Received 17 March 2011; Accepted 13 May 2011
Academic Editor: Petru Jebelean

Copyright © 2011 M. Eshaghi Gordji et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

we establish the general solution for a mixed type functional equation of aquartic and a quadratic
mapping in linear spaces. In addition, we investigate the generalized Hyers-Ulam stability in p-
Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [1] in 1940,
concerning the stability of group homomorphisms. Let (G, ) be a group, and let (G, *) be
a metric group with the metric d(-,-). Given € > 0, does there exist a 6 > 0 such that if a
mapping h : Gi — G; satisfies the inequality d(h(x - y), h(x) x h(y)) < 6 forall x,y € Gy,
then there exists a homomorphism H : G; — G with d(h(x), H(x)) < e for all x € G;? In
other words, under what condition does there exists a homomorphism near an approximate
homomorphism? The concept of stability for functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the equation. In 1941,
Hyers [2] gave a first affirmative answer to the question of Ulam for Banach spaces. Let
f : X — X' be a mapping between Banach spaces such that

If(x+y) - fx) - fFW)ll <6, (1.1)
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for all x, y € X, and for some 6 > 0. Then, there exists a unique additive mapping T: X — X'
such that

[l f(x)-T(x)| <6, (1.2)

forall x € X.

The result of Hyers was generalized by Aoki [3] for approximate additive function and
by Rassias [4] for approximate linear function by allowing the difference Cauchy equation
IIf(x +y) = f(x) = f(y)|l to be controlled by &(||x[|” + [|y[|”). Taking into consideration a
lot of influence of Ulam, Hyers and Rassias on the development of stability problems of
functional equations, the stability phenomenon that was proved by Rassias may be called the
Hyers-Ulam-Rassias stability (see [5, 6]). In 1994, a generalization of Rassias theorem was
obtained by Gavruta [7], who replaced (||x||” + ||y||”) by a general control function ¢(x, y).
The functional equation

flx+y)+ f(x-y) =2f(x) +2f(y) (1.3)

is related to a symmetric biadditive function [8-10]. It is natural that this equation is called a
quadratic functional equation. In particular, every solution of the quadratic equation (1.3) is
said to be a quadratic function. It is well known that a function f between real vector spaces
is quadratic if and only if there exists a unique symmetric biadditive function B; such that
f(x) = Bi(x, x) for all x in the vector space. The biadditive function B is given by

Bi(xy) = 3 (fx+y) - fx-y)). (14)

A Hyers-Ulam stability problem for the quadratic functional equation (1.3) was proved by
Skof for functions f : X — Y, where X is normed space and Y is Banach space (see [11]). In
the paper [12], Czerwik proved the Hyers-Ulam-Rassias stability of (1.3).

Lee et al. [13] considered the following functional equation:

fx+y)+f(2x-y) =4f(x+y) +4f(x—-y) +24f (x) - 61 (y). (1.5)

In fact, they proved that a function f between two real vector spaces X and Y is a solution of
(1.5) if and only if there exists a unique symmetric biquadratic function B, : X x X — Y such
that f(x) = Bo(x, x) for all x € X. The biquadratic function B, is given by

Ba(x,y) = 75 (f(x +9) + f(x~y) =2/ () ~2f (¥)). (16)

It is easy to show that the function f(x) = ax* satisfies the functional equation (1.5), which is
called the quartic functional equation (see also [14]).

Jun and Kim [15] have obtained the generalized Hyers-Ulam stability for a mixed type
of cubic and additive functional equation. In addition, the generalized Hyers-Ulam stability
for a mixed type of cubic, quadratic, and additive functional equation has been investigated
by Gordji and Khodaei [16] (see also [17, 18]). The stability problems for several mixed types
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of functional equations have been extensively investigated by a number of authors and there
are many interesting results concerning this problem [19-27].

In this paper, we deal with the following functional equation derived from quartic and
quadratic functions:

fkx+y) + f(kx -y)
2012 _ (1.7)
— R f (e y) +Rf - y) + D (1) afw) -2(2 1) ()

for fixed integers k #0, £1. It is easy to see that the function f(x) = ax* + bx? is a solution of
the functional equation (1.7). In the sequel, we investigate the general solution of functional
equation (1.7) when f is a function between vector spaces, and then we prove the generalized
Hyers-Ulam stability of (1.7) in the spirit of Hyers, Ulam, and Rassias using the direct
method.

We recall some basic facts concerning quasi-Banach spaces and some preliminary
results.

Definition 1.1 (see [28,29]). Let X be areallinear space. A quasinorm is a real-valued function
on X satisfying the following:

(1) |Ix]l > 0 for all x € X and ||x|| = 0 if and only if x = 0,
2) [|A-x|| =M - |lx|]| forall A € Rand all x € X,
(3) there is a constant M > 1 such that ||x + y|| < M(||x|| + |ly||) for all x, y € X.

The pair (X, || - ||) is called a quasinormed space if || - || is a quasinorm on X.
The smallest possible M is called the modulus of concavity of || - ||. A quasi-Banach
space is a complete quasinormed space. A quasinorm || - || is called a p-norm (0 < p < 1) if

P, (1.8)

llx+yll” < llxll” + ||y

for all x, y € X. In this case, a quasi-Banach space is called a p-Banach space.

Given a p-norm, the formula d(x, y) := ||x — y|| gives us a translation invariant metric
on X. By the Aoki-Rolewicz Theorem [29], each quasinorm is equivalent to some p-norm (see
also [28]). Since it is much easier to work with p-norms, henceforth we restrict our attention
mainly to p-norms.

Lemma 1.2 (see [17]). Let x1,x3, ..., x, be nonnegative real numbers. Then, one has
n P n
<in> < inp, (1.9)
i=1 i=1
for a positive real number p withp < 1.

2. General Solution

We here present the general solution of (1.7).
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Theorem 2.1. Let both X and Y be real vector spaces. A function f : X — Y satisfies (1.7) for all
x,y € X if and only if there exists a unique symmetric biquadratic function B, : X x X — Y and a
unique symmetric biadditive function By : X x X — Y such that

f(x) = Ba(x,x) + Bi(x, x), (2.1)

forall x € X.

Proof. Let f satisfy (1.7) and let g, h : X — Y be functions defined by
g(x) = f2x)~16f(x),  h(x) = f(2x) ~4f(x), (2.2)

for all x € X. We claim that the functions g and h are quadratic and quartic, respectively.
Letting x = v = 0 in (1.7), we have f(0) = 0. By putting x = 0 in (1.7), one leads to the
evenness f(-y) = f(y) of f. Replacing y by x + y in (1.7), we have

f(k+Dx+y) + f((k-1)x-y)

= ef @ y) + k() + D () -ap0) +2(1- ) (x4, -
for all x, y € X. Replacing y by —y in (2.3), we obtain
f(k+Dx-y) + f((k-Dx+y)
, ) K2(k2 - 1) ) 24)
=2 f(2x-y) + K f (y) + ———(f20) - 4f () +2(1- k) f(x - ),
for all x, y € X. Adding (2.3) to (2.4), we get by evenness of f,
f((k+Dx+y) + f((k+Dx-y) + f((k=Dx+y) + f((k-1)x - y)
Ry + fr-y)+ D () - ap) 25)
+2(1-K2) (f(x +y) + f(x =) +2K*f (y),
for all x, v € X. From the substitution y = kx + y in (1.7), we have by evenness of f,
fQkx+y) + f(y) =k f((k+Dx+y) + K f((k-1)x +y)
(2.6)

D o) - ap) 4 2(1- ) (kx4 ),



International Journal of Mathematics and Mathematical Sciences 5

for all x, y € X. Replacing y by —y in (2.6), we get

f@kx-y)+ f(-y) =k f((k+Dx-y) + K*f (k- 1)x - y)

2ia 2.7)

W (k6 D (Fax) - 40) +2(1- ) fkx - ),

for all x, y € X. Adding (2.6) to (2.7), we get by evenness of f,
fQkx+y) + f(2kx - y)
=K(f((k+Dx+y) + f((k+Dx-y) + f((k=D)x+y) + f((k-1Dx-y))
k2 k2 _
2D () -ap(e) +2(1- ) (Flkx+ ) + Flkx -y) -2 (1),

2.8)

for all x, y € X. By using (1.7) and (2.5), it follows from (2.8) that

fQkx+vy) + f(2kx - y)

-efeees ) - 0)» e <470

#2(1-K2) (f(x+y) + f(x-y)) +2’<2f(1/>]

+ 2(1 - k2> [sz(x ty) K2 f(x—y) + kz(kZ_ D) (F(2x) —4f(x)) + 2(1 - k2>f(y)]

+ Zk(k‘%l)(f(z:c) ~4f(x)) -2f(y),

(2.9)
for all x, y € X. If we replace x by 2x in (1.7), then we get that

fQkx+vy) + f(2kx - y)
K2 (k

2-1
- ) (pan) -ar@0) +2(1-R) (),
(2.10)

=k f(2x+y) +K* f(2x —y) +
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for all x, y € X. It follows from (2.9) and (2.10) that

kz[kz(f(2x+y)+f(2x—y))+ 2D (2 - 4100

21 () (5= ) + 2650

2 | 12 2 k2 (k* - 1) 2
+2(1- 1) [IRf (x+y) + R2f (x—y) + —(f(2x) 4 (x)) +2(1-K2) ()
2k?(k? -
D (o) - 4500) - 27(1)
k*(k* -1
= Kf (2x+y) + K2 f (2x - y) + %)mzxx) -4f(2x)) +2(1- k) (),
(2.11)
for all x, y € X. On the other hand, putting y = 0in (1.7), we get
2( k2-1)
fllex) =2 f(x) + (f(2x) - 4f (x)), (212)
for all x € X. Putting v = x in (1.7), we get
T () :
F(Ue+ D) + £ (U = D) = k£ (2) + ———(f(2%) = 4f (x)) +2(1-K*) f (),
(2.13)

for all x € X. Putting y = kx in (1.7) and using the evenness of f, we obtain

K2 (k? -1
f(2kx) = kz(f((k +1)x) + f((k-1)x)) + ( g ) (f(2x) -4f(x)) +2<1 - k2>f(kx),
(2.14)
for all x € X. Letting y = 0 in (2.10), we have
f(2kx) = K2 f(2x) + k2(k122_ D (f (4x) - 4f(2x)), (2.15)

for all x € X. It follows from (2.14) and (2.15) that

k2(k2 1)

(f(4x) = 4f(2x)) = K> (f((k + 1)x) + f((k = 1)x)) + (f(2x) - 4f(x))

(K - 1)
6

+ 2(1 - k2> Fkx) - K2 (2x),
(2.16)
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for all x € X. Now, by using (2.12), (2.13) and (2.16), we lead to

. (klz_ 2 (f(4x) - 4f (22)) = k* [sz(Zx) K (k6_ D (f2x) - 4f(x)) +2(1 - k2>f(x)]

+2(1-12) [sz(x) . (klz_ D (f(2x) —4f(x))]

kK (k
R

) 2
—— (f(2x) - 4f (x)) - K*f (2x),

(2.17)
for all x € X. Finally, comparing (2.11) with (2.17), then we conclude that
fx+y)+fQRx-y) =4f(x+y) +4f (x—y) +2(f(2%) -4f (x)) -6f(y),  (218)
for all x, y € X. Replacing y by 2y in (2.18), we get

f(2x+2y) + f(2x = 2y) =4f (x +2y) +4f (x - 2y) +2(f (2x) - 4f (x)) = 6 (2y), o0

for all x, y € X. Interchanging x with y in (2.18), one gets
flx+2y) + f(x-2y) =4f (x+y) +4f (x—y) +2(f 2y) -4f (y)) -6f(x),  (2.20)
for all x, y € X. It follows from (2.19) and (2.20) that

fQRx+y))-16f(x+y) + f(2(x-y)) -16f(x-y)

(2.21)
=2(f(2x) - 16f(x)) +2(f(2y) ~16f(y)),
for all x, y € X. This means that
glx+y) +g(x~y) =28(x) +2g(y), (2.22)

for all x, y € X. So the function g : X — Y defined by g(x) := f(2x) — 16 f(x) is quadratic.
To prove that h : X — Y defined by h(x) := f(2x) —4f(x) is quartic, we need to show
that

h(2x +y) + h(2x —y) = 4h(x +y) + 4h(x - y) + 24h(x) - 6h(y), (2.23)
for all x, y € X. Replacing x and y by 2x and 2y in (2.18), respectively, we obtain

f@Ex+y)) +f(2(2x-y)) =4f 2(x +y)) +4f (2(x ~y)) +2(f (4x) - 4f(2%)) - 6fgy2)i)
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for all x,y € X. But, since g(2x) = 4g(x) for all x € X, where ¢ : X — Y is a quadratic
function defined above, we see that

f(4x) =20f(2x) — 64f (x), (2.25)
for all x € X. Hence, according to (2.24) and (2.25), we get

f22x+y)) + f22x-y)) =4f2(x +y)) +4f (2(x —y)) +32(f (2x) - 4f (x)) - 6fgy2)6,)

for all x, y € X. By multiplying 4 on both sides of (2.18), we get that

4f2x+y) +4f(2x—y) =16f(x+y) +16f(x —y) +8(f (2x) - 4f (x)) - 24f (y), 02

for all x, y € X. If we subtract the last equation from (2.26), then we arrive at

f2@2x+y)) -4f Qx+y) + f(2(2x ~y)) ~4f (2x~y)
=4(fQ2(x+y)) —4f(x+y)) +4(f2(x-y)) - 4f (x - v)) (2.28)
+24(f (2x) =41 (x)) = 6(f (2y) = 4f (v)),
for all x,y € X. This means that h satisfies (2.23) and, therefore, the function h : X — Y
is quartic. Thus, there exists a unique symmetric biquadratic function B, : X x X — Y and

a unique symmetric biadditive function B; : X x X — Y such that h(x) = 12B,(x, x) and
g(x) = -12B;(x, x) for all x € X (see [8, 13]). Therefore, we obtain from (2.2) that

Fx) = 5h(x) = 358() = Ba(,2) + Bi (%, %), 229)

for all x € X.
The proof of the converse is trivial. O

3. Generalized Hyers-Ulam Stability

From this point on, assume that X is a quasinormed space with quasinorm || - ||x and that Y
is a p-Banach space with p-norm || - ||y. Let M be the modulus of concavity of || - ||y.

Before taking up the main subject, given a mapping f : X — Y, we define the
difference operator Df : X x X — Y by

Ds(x,y) = f(kx +y) + f(kx —y) =K’ f(x +y) =K f(x - y)

k2 (k2 -

) (3.1)
— (f2x)-4f(x)) + 2<k2 - 1)f(y)/

for all x,y € X. Let ¢”(x, y) := (¢(x,y))" for notational convenience.
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Theorem 3.1. Let j € {-1,1} be fixed and let ¢, : X x X — [0, c0) be a function such that

imanip (2 Y\ -
nlgr;oll (pq<2n]., o 0, (3.2)
forall x,y € X and
>, 4l (550 ) <o (33)
i=(+))/2 29729

forall (u,y) € {(x,0), (2x,0), (x,x), (x, kx) : x € X}. Suppose that an even function f : X — Y
with f(0) = 0 satisfies the inequality

D5 (2 ) lly < 0q(xy), (34)
forall x,y € X. Then, there exists a unique quadratic function Q : X — Y such that
M?
1 (2x) =167 () = Q) ly < =~ (@y(x))"", (3.5)

forall x € X, where

ne= 3 |02 WG - (200 -0) i (50)

i=(1+])/2

(3.6)
2 k
+6r’(p§<2—f;,o) + 12”(;)5(%, 2—’;)]
Proof. Let j = 1. Setting y = 0 in (3.4), we have
k*(k* -1
HZf(kx) -2k*f(x) - % (fQx)=4f(x)|| < g@q(x,0), (3.7)
Y
for all x € X. Putting y = x in (3.4), we obtain
2 kz(kz ~ 1) 2
F(Ue+ 1))+ f(U = 1)x) = Kf (2) = ———=(f(20) = 4f (x)) +2(k* = 1) f (x)
Y
< ¢q(x, %),
(3.8)
for all x € X. Replacing x by 2x in (3.7), we see that
k*(k*-1)
2f(2kx) - 2k*f (2x) - — (f(4x) —4f(2x))|| <q(2x,0), (3.9)
Y
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for all x € X. Setting y by kx in (3.4) and using the evenness of f, we get

2 2 2 k2(k2 B 1)
f(2kx) =2 f((k + 1)) = K2 £ (k= 1)) +2(k* = 1) f (kx) = ———=(£(2x) = 4f (x))
Y
< @q(x, kx),
(3.10)
for all x € X. It follows from (3.9) and (3.10) that
2 kz(kz B 1) 2 2
K2 (2x) + — (£ (4) — 4f (2)) = K2 ((k + D) = K f (k= 1)x)
(3.11)

k*(

#2(k2 = 1) f (kx) - %1) (f(22) - 4f (x))

<M [%(pq(Zx,O) +¢q(x, kx)|,
Y
for all x € X. Also, it follows from (3.7) and (3.8) that

2 f (U + 1)) + K2 f (e = 1)x) =2 (k2 = 1) f (k) - k* £ (2x0)

KK 1)

—— (f(22) -4 (x)) + 4k* (K* = 1) f (x)

< M[kz‘Pq(x/ x) + (kz - 1>‘Pq(x'0)]'
Y (3.12)

for all x € X. Finally, using (3.11) and (3.12), we obtain that

|| f (4x) = 20f (2x) + 64 f (x) |,
2

< =D [12k2(pq(x, x) + 12<k2 - l)(pq(x,()) + 60p,(2x,0) + 120, (x, kx)] (3.13)

= qu’q(x)/

where

g (x) 1= m [12k2(pq(x,x) + 12<k2 - 1>(pq(x,0) +60p,(2x,0) + 120, (x, kx)],

(3.14)

forall x € X. Let g : X — Y be a function defined by g(x) := f(2x) — 16f(x) for all x € X.
From (3.13), we conclude that

g (2x) - 4g(x)lly < MPg,(x), (3.15)
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for all x € X. If we replace x in (3.15) by x/2™"*! and multiply both sides of (3.15) by 4", then
we get

n+ x n x n X
4 1g<ﬁ> -4 g<§>||y < M4 qrq<2n+1>, (3.16)

for all x € X and all non-negative integers n. Since Y is a p-Banach space, the inequality (3.16)
gives

wig(55) - +s(2)

4 n
<

i1 X . X P > L P X
ORI e )

. (3.17)

for all nonnegative integers n and m with n > m and all x € X. Since 0 < p <1, by Lemma 1.2
and (3.14), we conclude that

¢ (x) < m [<12k2>P(pZ(x, x) + (12(k2 - 1))”(p5(x, 0) + 6°¢F (2x,0) + 1274} (x, kx)],

(3.18)
for all x € X. Therefore, it follows from (3.3) and (3.18) that
Sayl <f> < o, (3.19)
i=1 -

for all x € X. It follows from (3.17) and (3.19) that the sequence {4"g(x/2")} is a Cauchy for
all x € X. Since Y is complete, the sequence {4"g(x/2")} converges for all x € X. So one can
define a function Q : X — Y by

Q) = lim4"g( ), (3.20)

for all x € X. Letting m = 0 and passing the limit n — oo in (3.17), we get

i x M»* & . x
260 = QEOlly < M¥ 3 474y (zm) e __14%5(5), (3.21)

for all x € X. Thus (3.5) follows from (3.18) and (3.21). Now we show that Q is quadratic. It
follows from (3.16), (3.19) and (3.20) that
,

4ng<2rf1) _4n+1g<21n>
(3.22)

=41lim
Y n— oo

1Q(2x) —4Q(x)[ly = lim

s(57) -9 (3)

< M2 lim 4%¢r,(25) = 0,

n—oo
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for all x € X. So,

Q(2x) =4Q(x), (3.23)

for all x € X. On the other hand, it follows from (3.2), (3.4) and (3.20) that

Dol = Jim a0y (5 2, = Jim D (557 555 ) - 1600 (5 %),
<m0, (55 2], vl G ),

, Xy y
< M,}gr;;l”{%(sz 2,&1) 16<Pq(2n 2)} =0,
(3.24)

for all x,y € X. Hence the function Q satisfies (1.7). Thus, by Theorem 2.1, the function
x ~ Q(2x) —16Q(x) is quadratic. Therefore, (3.23) implies that the function Q is quadratic.

Now, to prove the uniqueness property of Q, let Q' : X — Y be another quadratic
function satisfying (3.5). It follows from (3.3) that

i u vy i Yy
lm Sy (5 57 ) = fim 324 (557) =0 (6.29

i=n+1

for all (u,y) € {(x,0), (2x,0), (x,x), (x, kx) : x € X}. Hence,

lim 4 p(pq< ) -0, (3.26)

n—oo

for all x € X. It follows from (3.5), (3.20) and (3.26) that

| X
low-Q@l - i s () - ()], < M i () 0. 627
forallx e X.SoQ =Q'".
For j = -1, we can prove the theorem by a similar argument. O

Corollary 3.2. Let 0,1, s be nonnegative real numbers such that r, s > 2 or r, s < 2. Suppose that an
even function f : X — Y with f(0) = 0 satisfies the inequality

IDs (x, ) Ily < 0(llxll% + lyll%), (3.28)

or all x,y € X. Then there exists a unigue quadratic function Q : X — Y satisfyin
y que q 8

M?0

120 ~16f(0) = QW@)lly < =y

Yq(x), (3.29)
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forall x € X, where

1/p

127 (k% + (K2 - 1)P + (271 +1
[ ] x5 |- (3.30)

12° (K% + k)

rp
||x”X + |4P_2Sp|

Proof. In Theorem 3.1, putting ¢, (x, y) := 0(|[x|l; + [[y|l%) for all x, y € X, we get the desired
result. O

Corollary 3.3. Let 0 > 0 and r, s > 0 be real numbers such that X := r + s #2. Suppose that an even
function f : X — Y with f(0) = 0 satisfies the inequality

IDs (e ) lly < Ollxll lylx, (3.31)
orall x,y € X. Then there exists a unique quadratic function Q : X — Y satisfyin,
y que q 8
1/p
M?20 12P(k27” + ksF’) \
_ _ 3.32
1f22) = 16f(x) = Qv < k2(k2 - 1) < |47 — 22p| ke 552

forall x € X.

Proof. In Theorem 3.1, taking ¢,(x, y) := 0||x[/% ||yll%, for all x, y € X, we arrive at the desired
result. O

Theorem 3.4. Let j € {-1,1} be fixed and let ¢, : X x X — [0, o) be a function such that

. i x Y
1112;13016,1]()0-0 <E, E) = 0, (333)
forall x,y € X and
161 ”(i,l) <o,
i:(lzﬂ':)/z Yo\ 2i) =% (3:34)

forall (u,y) € {(x,0), (2x,0), (x,x), (x, kx) : x € X}. Suppose that an even function f : X — Y
with f(0) = 0 satisfies the inequality

I1Ds e )ly < 9o, y), (3.35)

forall x,y € X. Then there exists a unique quartic function V : X — Y such that

2
£ (20— 4£ () - V) [y < 2o (Fo()) 7, (3.36)
16
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forall x € X, where
G (x) = i BRI <12k2>P p(x X +(12(k2—1>>p P(X 0
Polx) == k2 (k2 - 1)? P\ 25" 2if Yo\ 2i’

i=(1+j)/2
2x x kx
P p
+6p(,,,,< o) F120h (21] 21])}

Proof. Being similar to the proof of Theorem 3.1, we omit its proof. O

(3.37)

Corollary 3.5. Let 6,1, s be nonnegative real numbers such that r,s > 4 or r, s < 4. Suppose that an
even function f : X — Y with f(0) = 0 satisfies the inequality (3.28) for all x,y € X. Then there
exists a unique quartic function V : X — Y satisfying

M0 3.38
1f(22) = 4f @) =V ly < 55z 1510 (3:38)
forall x € X, where
1/p
12° K% + (K2 = 1) + (271)" + 1 (R k) -
Yo(x) = 167 — 27| B[ WHXHX , (3.39)
forall x € X.

Corollary 3.6. Let 0 > 0 and r, s > 0 be real numbers such that A := r + s #4. Suppose that an even
function f : X — Y with f(0) = 0 satisfies the inequality (3.31) for all x,y € X. Then, there exists
a unique quartic function V : X — Y satisfying

M2 (120 (k> + kP) \
||f(2x)—4f(x)—V(x)||Yskz(k2_1)< |1(6”—;“’|)> Ik, (340)

forall x € X.

Now, we are ready to prove the main theorem concerning the stability problem for
(1.7).

Theorem 3.7. Let j € (1,1} be fixed and let ¢ : X x X — [0, o0) be a function such that

: L=\ (X Y I+j y
I\ = L nj -
nlgr;)(( > )4 (P<2"J"2"f>+< > >16 (p(zn] 2n}>> 0, (3.41)

forall x,y € X and

& 1-j5 u y 1+7j u y>>
— L \4iri P ipj P
i=<1z+];>/z<< 2 >4 v <2” 217>+< 2 >6 ¢ (211 27)) =% (342
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forall (u,y) € {(x,0),(2x,0), (x,x), (x, kx) : x € X}. Suppose that an even function f : X — Y
with f(0) = 0 satisfies the inequality

I1Ds e, ) ly < o(x v), (3.43)

forall x,y € X. Then, there exists a unique quadratic function Q : X — Y and a unique quartic
function V : X — Y such that

3
| f(x) - Q(x) - V(x)]y < %{4(%(@)1/;’ + (q?v(x))l/r’}, (3.44)

forall x € X, where
ner= S | 0290 (5.5) (200 -0)) v (50)
q . 1+])/2k2p(k2 1)?’ 21] 2ij 21]
+6P<pp<2—?§,o>+12p P(x kx)}
24 2ij” Dij
- & 16 p x x P
Fo(x) = > —kzp(kz—l)”{<12k2> (PP<2] 21]) <12<k2 >> (pp<21] >

i=(1+4)/2
2
+6p<pp<—.x.,0> +12° P( a kx)}
2ii 201" 21

Proof. By Theorems 3.1 and 3.4, there exists a quadratic function Qg : X — Y and a quartic
function Vy : X — Y such that

(3.45)

2 2
1£@0 - 16£) - Qo) lly < - [300]7, [0 -4 () - Vol < %[qfv(x)]”",

(3.46)
for all x € X. Therefore, it follows from (3.46) that
1 1 M3, p | r~ 1/
[0+ o0 - v <3G EE@I " F@1 ), e

for all x € X. Thus we obtain (3.44) by letting Q(x) = —(1/12)Qo(x) and V (x) = (1/12)Vy(x)
for all x € X.
To prove the uniqueness property of Q and V, let Q', V' : X — Y be another quadratic

and quartic functions satisfying (3.44). Let Q = Q - Q' and V = V - V'. Hence,

[ + V|, < M{lIf@) - Q) - V@l + [ f) - Q@) -V}

4 (3.48)

M ~
< (40T + o] 7).
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for all x € X. Since limnﬂw4”p7q'}q(x/2”) = limnﬁwlénpf(]}v(x/Z") =0, for all x € X, we figure
out that

m 16| O(E) + V(E)| =
Jim 16 Q<2n> +V<2">||y =0, (3.49)
for all x € X. Therefore, we get V = 0 and then Q = 0. O

Corollary 3.8. Let 0,1, s be nonnegative real numbers such that r,s >4 or2 <r,s <4orr,s <2.
Suppose that an even function f : X — Y with f(0) = 0 satisfies the inequality (3.28), for all
x,y € X. Then, there exists a unique quadratic function Q : X — Y and a unique quartic function
V : X — Y such that

3
If () = Q) = V() Iy < ﬁf_l)(w) (), (350)

forall x € X, where y,(x) and y,(x) are defined as in Corollaries 3.2 and 3.5.
Corollary 3.9. Let 6 > 0 and r, s > 0 be non-negative real numbers such that A :=r+s € (0,2) U
(2,4) U (4, 00). Suppose that an even function f : X — Y with f(0) = 0 satisfies the inequality

(3.31) for all x, y € X. Then there exist a unique quadratic function Q : X — Y and a unique quartic
function V : X — Y such that

1 (x) - Q(x) - V()|
< M?30 127 (K% + k°P) p 127 (K% + k) 1/p \ (3.51)
= 12k2(k2 - 1) |47 = 27| + e 2] lIxI%.

forall x € X.

Corollary 3.10. Suppose that an even function f : X — Y with f(0) = 0 satisfies the inequality
1D y)llx <, (3:52)

forall x,y € X where € > 0. Then there exist a unique quadratic function Q : X — Y and a unique
quartic function V : X — Y such that

[f(x) - Q) -V

< M3¢ k% + (k2 -1)P +277 +1 1/”+ kK + (K2 -1)P+27 +1 r
= k2(k2-1) 4r -1 167 — 1 ’

(3.53)

forall x € X.
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