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We extend the classical Bishop-Gromov volume comparison from constant Ricci curvature lower
bound to radially symmetric Ricci curvature lower bound, and apply it to investigate the volume
growth, total Betti number, and finite topological type of manifolds with nonasymptotically almost
nonnegative Ricci curvature.

1. Introduction

In comparison geometry of Ricci curvature, the classical Bishop-Gromov volume comparison
has many applications, such as at least the linear volume growth of complete noncompact
Riemannian manifolds with nonnegative Ricci curvature (see [1]), the upper bound of total
Betti number (growth) of Riemannianmanifolds (see [2–4]), and the finite topological type of
complete noncompact Riemannian manifolds with nonnegative Ricci curvature or quadratic
Ricci curvature decay (see [3, 5, 6]).

In [7], Lott and Shen establish a volume comparison estimate with quadratic
Ricci curvature decay, and apply it to investigate the finite topological type of complete
noncompact Riemannian manifolds with quadratic Ricci curvature decay, which generalizes
a related result by Sha and Shen in [6].

In [8], we apply the volume comparison with asymptotically nonnegative Ricci cur-
vature to investigate the corresponding topological results for manifolds with asymptotically
nonnegative Ricci curvature.
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In this paper, we will extend the classical Bishop-Gromov volume comparison from
constant Ricci curvature lower bound to general radially symmetric Ricci curvature lower
bound, and apply it to investigate the volume growth, total Betti number and finite
topological type of manifolds with non-asymptotically almost nonnegative Ricci curvature.
(See Definitions 1.1 and 1.2 below for the notions of radially symmetric Ricci curvature lower
bound, asymptotically almost nonnegative Ricci curvature, and non-asymptotically almost
nonnegative Ricci curvature, resp.)

Note that quadratic Ricci curvature decay is non-asymptotically almost nonnegative
Ricci curvature, so our result is a generalization of the corresponding result of Lott and Shen
in [7] mentioned above. (See Theorem 1.7.)

Definition 1.1. Let M be a complete n-Riemannian manifold (n ≥ 2), p ∈ M, and l :=
sup{d(p, x) | x ∈ M}. M has a radially symmetric Ricci curvature lower bound,k at the
point p if there exists a continuous function k : [0, l) → R such that, for any tangent vector
v ∈ TxM radial from the point p,

Ric(v) ≥ (n − 1)k
(
d
(
p, x
))
. (1.1)

One can refer to [9] for generalized space forms with radially symmetric curvature
and the notion of tangent vector radial from a point.

Definition 1.2. Let M a complete noncompact n-Riemannian manifold (n ≥ 2), p ∈ M, k :
[0,∞) → R be a continuous positive function, and limt→∞k(t) = 0.

(i) M has almost nonnegative Ricci curvature if Ric(x) ≥ (n − 1)k(d(p, x)).

Furthermore,

(ii) M has asymptotically nonnegative Ricci curvature if Ric(x) ≥ (n− 1)k(d(p, x)) and
C(k) :=

∫∞
0 tk(t)dt < ∞.

(iii) M has non-asymptotically almost nonnegative Ricci curvature if Ric(x) ≥ (n −
1)k(d(p, x)) and C(k) :=

∫∞
0 tk(t)dt = ∞.

The following is a volume comparison estimate for manifolds with general radially
symmetric Ricci curvature lower bound, which is a generalization of that for manifolds with
asymptotically nonnegative Ricci curvature and quadratic Ricci curvature decay by Zhu in
[10] and Lott and Shen in [7], respectively.

Theorem 1.3. Let M be a complete n-Riemannian manifold (n ≥ 2) with a radially symmetric Ricci
curvature lower bound k : [0, l) → R at the point p ∈ M, and let r ≤ R, s ≤ S, r ≤ s, R ≤ S, Γ be a
measurable subset of the unit sphere in the tangent space TpM:

AΓ
r,R

(
p
)
:=
{
x ∈ M | r ≤ d

(
p, x
) ≤ R, γ̇(0) ∈ Γ for any minimal geodesic γ from p to x

}
.

(1.2)
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Then

vol
(
AΓ

s,S

(
p
))

vol
(
AΓ

r,R

(
p
)) ≤

∫S
s yn−1(t)dt
∫R
r yn−1(t)dt

, (1.3)

where y(t) is the unique solution of one of the following two equations:

y′′ − k(t)y = 0,

y(0) = 0, y′(0) = 1,
(1.4)

y′′ − k(t)y = 0,

y(0) = 0, y′(0) = 1,

y > 0 on (0, l).

(1.5)

In particular, (1) if y(t) is the unique solution of (1.4), then

vol
(
AΓ

s,S

(
p
)) ≤ vol(Γ)

∫S

s

yn−1(t)dt. (1.6)

if y(t) is the unique solution of (1.5), then

vol
(
AΓ

s,S

(
p
)) ≤ vol

(
AΓ

s,s

(
p
))

yn−1(s)

∫S

s

yn−1(t)dt. (1.7)

(2) If there exist constants C1, C2, K, L > 0 (0 ≤ L − K < 1/(n − 1)) such that the unique
solution of (1.4) or (1.5) satisfies C1t

K ≤ y(t) ≤ C2t
L, then one has a constant C(n, k) > 0 depending

only on n and k such that

vol
(
Bp(r + 1) − Bp(r − 1)

) ≤ C(n, k)
vol
(
Bp(r − 1)

)

(r − 1)1−(n−1)(L−K)
. (1.8)

Remark 1.4. The condition y > 0 on (0, l) in (1.5) constitutes an extra assumption imposed on
the unique solution y of (1.4). In Theorem 1.3, we do not require that the radially symmetric
Ricci curvature lower bound k : [0, l) → R corresponds to the generalized space forms with
radially symmetric curvature lower bound. Our purpose is to establish a volume comparison
estimate effectively.

Applying the generalized volume comparison estimate, we can now investigate the
volume growth, total Betti number, and finite topological type of manifolds with non-
asymptotically almost nonnegative Ricci curvature.

Theorem 1.5. LetM be a complete n-Riemannian manifold (n ≥ 2) with non-asymptotically almost
nonnegative Ricci curvature k : [0, l) → R at the point p ∈ M, and let M be noncollapsing, that
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is, infx∈Mvol(Bx(1)) ≥ v > 0. If there exist constants C1, C2, K, L > 0 (0 ≤ L − K < 1/(n − 1))
such that, the unique solution of (1.4) or (1.5) satisfies C1t

K ≤ y(t) ≤ C2t
L, then one has a constant

C(n, k) > 0 depending only on n and k such that for r > 1,

vol
(
Bp(r)

) ≥ C(n, k, v)r1−(n−1)(L−K). (1.9)

Theorem 1.6. LetM be a complete n-Riemannian manifold (n ≥ 2) with non-asymptotically almost
nonnegative Ricci curvature k : [0, l) → R at the point p ∈ M, andM has weakly bounded geometry,
that is, sec(M) ≥ −1, and infx∈Mvol(Bx(7−n−1/2)) ≥ v > 0.

(1) If there exist constantsC, L > 0 such that the unique solution of (1.4) satisfies y(t) ≤ C2t
L,

then one has a constant C(n, k, v) > 0 depending only on n, k, and v such that, for r > 0,

n∑

i=0

bi
(
p, r
) ≤ C(n, k, v)(1 + r)(n

2−1)L+n+1. (1.10)

(2) If there exist constants C1, C2, K, L > 0 such that the unique solution of (1.5) satisfies
C1t

K ≤ y(t) ≤ C2t
L, then one has a constant C(n, k, v,vol(Sp(1)), vol(Bp(1))) > 0 depending only

on n, k, v, vol(Sp(1)), and vol(Bp(1)) such that, for r > 1,

n∑

i=0

bi
(
p, r
) ≤ C

(
n,C, v,vol

(
Sp(1)

)
,vol

(
Bp(1)

))
(1 + r)(n

2−1)L+n+1. (1.11)

Theorem 1.7. LetM be a complete n-Riemannian manifold (n ≥ 2) with non-asymptotically almost
nonnegative Ricci curvature k : [0, l) → R at the point p ∈ M, sec(x) ≥ −(C/d(p, x)α) where
C > 0, 0 ≤ α ≤ 2, and let M be non-collapsing, that is, infx∈Mvol(Bx(1)) ≥ v > 0. If there exist
constants C1, C2, K, L > 0 (0 ≤ L −K < (1/(n − 1)) such that the unique solution of (1.4) or (1.5)
satisfies C1t

K ≤ y(t) ≤ C2t
L, thenM is of finite topological type with the additional assumption that

lim sup
r→∞

vol
(
Bp(r)

)

r1+(α/2)−(n−1)(L−K)
< C(n, k, C, α, v) (1.12)

for some constant C̃(n, k, C, α, v) > 0 depending only on n, k, C, α, and v.

2. A Volume Comparison Estimate with
Radially Symmetric Ricci Curvature Lower Bound

Proof of Theorem 1.3. Choose polar coordinate (r, θ) at p. Define the function J(r, θ) by the
formula

dvM = Jn−1dr dθ. (2.1)

Then

vol
(
AΓ

s,S

(
p
))

=
∫

Γ
dθ

∫min{S,cut(θ)}

min{s,cut(θ)}
Jn−1dr, (2.2)
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where cut(θ) is the distance from p to the cut point in direction θ. It is well known (e.g., [11])
that J satisfies the following:

J ′′ − kJ ≤ 0, 0 ≤ t ≤ cut(θ),

J(0) = 0, J ′(0) = 1.
(2.3)

Let y(t) be the unique solution of one of (1.4) and (1.5) (Note that, by the uniqueness of the
solution of ordinary differential equation, the solution of (1.4) always exists.).

Then in the interval of y > 0, J ′′y − y′′J ≤ 0, that is, (J ′y − y′J)′ ≤ 0. By the initial
condition of J and y, J ′y − y′J ≤ 0. Thus, when y > 0,

(
J

y

)′
=

1
y2

(
J ′y − y′J

) ≤ 0. (2.4)

This shows that J/y is nonincreasing in the interval of y > 0.
Note that in the interval of J > 0 we must have y > 0. Thus it suffices to consider that

y(t) is the unique solution of (1.4).
Otherwise, suppose that t0 > 0 is the first point such that y > 0 in (0, t0), y(t0) = 0, and

J > 0 in (0, t0]. By J(0) = y(0) = 0, J ′(0) = y′(0) = 1, J/y is non-increasing in (0, t0):

J

y
(0) := lim

t→ 0

J(t)
y(t)

= lim
t→ 0

J ′(t)
y′(t)

= 1,

J

y
(t) ≤ J

y
(0) = 1, t ∈ (0, t0),

J(t) ≤ y(t), t ∈ (0, t0).

(2.5)

Let t → t0, then J(t0) ≤ y(t0) = 0. This is a contradiction.

Thus consider the following lemma.

Lemma 2.1 (see [12]). Let f, g be positive functions on [0,+∞); if f/g is nonincreasing, then for
all R > r > 0, S > s > 0, s > r, S > R, one has

∫S
s f(t)dt
∫R
r f(t)dt

≤
∫S
s g(t)dt
∫R
r g(t)dt

. (2.6)
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We have

∫min{S,cut(θ)}
min{r,cut(θ)} Jn−1(t, θ)dt
∫min{R,cut(θ)}
min{r,cut(θ)} Jn−1(t, θ)dt

≤
∫min{S,cut(θ)}
min{r,cut(θ)} yn−1(t)dt
∫min{R,cut(θ)}
min{r,cut(θ)} yn−1(t)dt

≤
∫min{S,cut(θ)}
r yn−1(t)dt
∫min{R,cut(θ)}
r yn−1(t)dt

≤
∫S
r yn−1(t)dt
∫R
r yn−1(t)dt

, (because R < S),

(2.7)

where the last equality is due to

∫min{S,cut(θ)}
r yn−1(t)dt
∫min{R,cut(θ)}
r yn−1(t)dt

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫cut(θ)
r yn−1(t)dt
∫cut(θ)
r yn−1(t)dt

= 1, when cut(θ) ≤ R ≤ S,

∫cut(θ)
r yn−1(t)dt
∫R
r yn−1(t)dt

, when R ≤ cut(θ) ≤ S,

∫S
r yn−1(t)dt
∫R
r yn−1(t)dt

, when R ≤ S ≤ cut(θ).

(2.8)

Then by integration on Γ, we have

vol
(
AΓ

r,S

(
p
))

vol
(
AΓ

r,R

(
p
)) ≤

∫S
r yn−1(t)dt
∫R
r yn−1(t)dt

. (2.9)

Similarly,

vol
(
AΓ

s,S

(
p
))

vol
(
AΓ

r,R

(
p
)) ≤

∫S
s yn−1(t)dt
∫R
r yn−1(t)dt

. (2.10)
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In particular, (1)

vol
(
AΓ

s,S

(
p
)) ≤

vol
(
AΓ

r,R

(
p
))

∫R
r yn−1(t)dt

∫S

s

yn−1(t)dt

=

∫
Γ

∫min{R,cut(θ)}
min{r,cut(θ)} Jn−1(t, θ)dt dθ

∫R
r yn−1(t)dt

∫S

s

yn−1(t)dt

=
∫

Γ

∫min{R,cut(θ)}
min{r,cut(θ)} Jn−1(t, θ)dt

∫R
r yn−1(t)dt

dθ

∫S

s

yn−1(t)dt.

(2.11)

Let R → r, then

vol
(
AΓ

s,S

(
p
)) ≤

∫

Γ

Jn−1(r, θ)
yn−1(r)

dθ

∫S

s

yn−1(t)dt. (2.12)

When y(t) is the unique solution of (1.4), let r → 0; by J(0) = y(0) = 0, J ′(0) = y′(0) =
1; then we have

vol
(
AΓ

s,S

(
p
)) ≤ vol(Γ)

∫S

s

yn−1(t)dt. (2.13)

When y(t) is the unique solution of (1.5), let r = s, we have

vol
(
AΓ

s,S

(
p
)) ≤ ∫Γ

Jn−1(s, θ)
yn−1(s)

dθ
∫S
s yn−1(t)dt

=
vol
(
AΓ

s,s

(
p
))

yn−1(s)

∫S
s yn−1(t)dt.

(2.14)
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(2) Choose Γ = Sn−1
p ; for r ≥ 3, an easy computation shows that

vol
(
Bp(r + 1) − Bp(r − 1)

)

vol
(
Bp(r − 1) − Bp(1)

)

≤
∫r+1
r−1 y

n−1(t)dt
∫ r−1
1 yn−1(t)dt

≤
∫ r+1
r−1
(
C2t

L
)n−1

dt
∫ r−1
1

(
C1tK

)n−1
dt

=
Cn−1

2 ((n − 1)K + 1)

Cn−1
1 ((n − 1)L + 1)

· (r + 1)(n−1)L+1 − (r − 1)(n−1)L+1

(r − 1)(n−1)K+1 − 1

≤ 2Cn−1
2 ((n − 1)K + 1)

Cn−1
1 ((n − 1)L + 1)

· (r + 1)(n−1)L+1 − (r − 1)(n−1)L+1

(r − 1)(n−1)K+1

= C(n,C1, C2, K, L)

((
1 +

2
r − 1

)(n−1)K+1

· (r + 1)(n−1)(L−K) − (r − 1)(n−1)(L−K)

)

≤ C(n,C1, C2, K, L)
((

1 +
C(n,K)
r − 1

)
· (r + 1)(n−1)(L−K) − (r − 1)(n−1)(L−K)

)

= C(n,C1, C2, K, L) · (r − 1)(n−1)(L−K) ·
((

1 +
C(n,K)
r − 1

)
·
(
r + 1
r − 1

)(n−1)(L−K)

− 1

)

≤ C(n,C1, C2, K, L) · (r − 1)(n−1)(L−K) ·
((

1 +
C(n,K)
r − 1

)
·
(
1 +

C(n,K, L)
r − 1

)
− 1
)

= C(n,C1, C2, K, L) · (r − 1)(n−1)(L−K) ·
(

C(n,K) + C(n,K, L)
r − 1

+
C(n,K) · C(n,K, L)

(r − 1)2

)

≤ C(n,C1, C2, K, L)
1

(r − 1)1−(n−1)(L−K)
.

(2.15)

3. Proof of Theorem 1.5

Proof of Theorem 1.5. Note that for r ≥ 3 there exists a point q ∈ Sp(r) such that (Bp(r + 1) −
Bp(r − 1)) ⊇ Bq(1); thus

vol
(
Bp(r + 1) − Bp(r − 1)

) ≥ volBq(1). (3.1)

And sinceM does not collapse at infinity, that is, infx∈Mvol(Bx(1)) ≥ v > 0, for r ≥ 3, we have

vol
(
Bp(r + 1) − Bp(r − 1)

) ≥ v. (3.2)
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Thus, for r ≥ 3, by Theorem 1.3(2), there is some constant C(n, k, v) such that vol(Bp(r)) ≥
C(n, k, v)r1−(n−1)(K−L). And note that for 1 < r ≤ 3,

Bp(r) ⊇ Bp(1). (3.3)

Theorem 1.5 is obtained.

4. Proof of Theorem 1.6

First let us recall Gromov’s theorems [2]; one can refer to [13] for the details.

Theorem 4.1 (see [2]). Let M be an n-dimensional complete Riemannian manifold with sectional
curvatureK ≥ −1. Then there is a constantC(n) > 1 depending only on n such that, for any 0 < ε < 1
and any bounded subset X ⊂ M,

n∑

k=0

bk(X, TεX) ≤
(
1 + diam(X)ε−1

)n
C(n)1+dia(X), (4.1)

where TεX denotes the ε-neighborhood of X inM.

Theorem 4.2 (see [2]). Let M be an n-dimensional complete Riemannian manifold and let p ∈ M.
For any fixed numbers r > 0 and r0 ≤ 7−n−1, let B0

j := B(pj , r0), j = 1, . . . ,N, be a ball covering of

B(p, r) with pj ∈ B(p, r). Let Bk
j := 7kB0

j := B(pj , 7kr0), k = 0, . . . , n + 1. Then

n∑

i=0

bi
(
B
(
p, r
)
, B
(
p, r + 1

)) ≤ (e − 1)Ntn sup

{
n∑

i=0

bi
(
Bk
j , 5B

k
j

)
: 0 ≤ k ≤ n, 1 ≤ j ≤ N

}

, (4.2)

where t is the smallest number such that, each ball Bn
j intersects at most t other balls Bn

j ′ .

Proof of Theorem 1.6. By Theorem 4.1, there is a constant C(n) depending only on n such that
for all balls B(x, r) with radius r ≤ 1 in M,

n∑

i=0

bi(B(x, r), B(x, 5r)) ≤ C1(n). (4.3)

Take r0 = 7−n−1, and let B(pj , (1/2)r0), j = 1, . . . ,N, be a maximal set of disjoint balls
with pj ∈ B(p, r), and let Bk

j , j = 1, . . . ,N, k = 0, . . . , n+1, be the same as in Theorem 4.2. Then
B0
j , j = 1, . . . ,N, is a covering of B(p, r). And let t, N be the same as in Theorem 4.2.
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If there exist constants C, L > 0 such that the unique solution of (1.4) satisfies y(t) ≤
C2t

L, choosing Γ = Sn−1
p , s = 0 in Theorem 1.3(1), then, for S ≥ 0,

vol
(
Bp(S)

) ≤ vol
(
Sn−1
1

)∫S

0

(
C2t

L
)n−1

dt

= vol
(
Sn−1
1

) C2

(n − 1)L + 1
S(n−1)L+1

=: C(n, k)S(n−1)L+1.

(4.4)

Then by the assumption that infx∈Mvol(Bx(7−n−1/2)) ≥ v > 0,

N ≤ vol(Bx(r + (r0/2)))

minjvol
(
Bpj (r0/2)

)

≤ C(n, k)(r + (r0/2))
(n−1)L+1

v

≤ C(n, k)(r + 1)(n−1)L+1

v

t ≤
vol
(
Bpj ((2/7) + (r0/2))

)

minj ′vol
(
Bpj′ (r0/2)

)

≤ vol
(
Bp(r + (2/7) + (r0/2))

)

v

≤ C(n, k)(r + (2/7) + (r0/2))
(n−1)L+1

v

≤ C(n, k)(r + 1)(n−1)L+1

v
.

(4.5)

Since each ball Bk
j has radius ≤ 1, it follows from (4.3) and Theorem 4.2 that

n∑

i=0

bi
(
Bp(r),M

) ≤
n∑

i=0

bi
(
Bp(r), Bp(r + 1)

)

≤ (e − 1)

(
C(n, k)(r + 1)(n−1)L+1

v

)n+1

C(n)

=: C(n, k, v)(1 + r)((n−1)L+1)(n+1).

(4.6)
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If there exist constants C1, C2, K, L > 0 such that the unique solution of (1.5) satisfies
C1t

K ≤ y(t) ≤ C2t
L, choosing Γ = Sn−1

p , s = 1 in Theorem 1.3(1), then, for S ≥ 1,

vol
(
Bp(S) − Bp(1)

) ≤ vol
(
Sp(1)

)

yn−1(1)

∫S

1
yn−1(t)dt

≤ vol
(
Sp(1)

)

C1

∫S

1

(
C2t

L
)n−1

dt

≤ vol
(
Sp(1)

)

C1

C2

(n − 1)L + 1
S(n−1)L+1

=: C
(
n, k,vol

(
Sp(1)

))
S(n−1)L+1,

vol
(
Bp(S)

) ≤ C
(
n, k,vol

(
Sp(1)

))
S(n−1)L+1 + vol

(
Bp(1)

)

≤ C
(
n, k,vol

(
Sp(1)

)
,vol

(
Bp(1)

))
S(n−1)L+1.

(4.7)

Similar to the above, there exists a constant C(n, k,vol(Sp(1)),vol(Bp(1))) > 0 such
that

n∑

i=0

bi
(
Bp(r),M

) ≤ C
(
n, k,vol

(
Sp(1)

)
,vol

(
Bp(1)

))
(1 + r)((n−1)L+1)(n+1). (4.8)

5. Proof of Theorem 1.7

We use critical point theory of the distance function to prove Theorem 1.7.
First of all, we recall some concepts (cf., e.g., [3, 7, 14]). Notice that the distance

function dp(x) := d(p, x) is not a smooth function (on the cutlocus of p). Hence the critical
points of dp are not defined in a usual sense. The notion of critical points of dp is introduced
by Grove and Shiohama [15].

A point x ∈ M is called a critical point of dp if for any unit vector v ∈ TxM there is a
minimizing geodesic σ from x to p such that ∠(σ ′(0), v) ≤ π/2.

For every r, the open set M \ B(p, r) contains only finitely many unbounded
components, Ur . Each Ur has finitely many boundary components, Σr ⊂ ∂B(p, r). In
particular, Σr is a closed subset. Let us say that a connected component Σr of S(p, r) is good if
it is part of the boundary of an unbounded component of M \ B(p, r) and there is a ray from
p passing through Σr .

Now we can introduce the following lemma.

Lemma 5.1 (see (Lemma 3.2, [7]); cf., also [14]). Suppose that there is a r0 > 0 such that if r > r0
then there is no critical point of dp on any good component Σr of S(p, r). ThenM has finite topological
type.

Another concept is the diameter growth function D(p, r).
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Definition 5.2. The diameter growth function D(p, r) is defined by

D(p, r) = sup
Σr

diam

(
∑

r

)

, (5.1)

where the supremum is taken over all good componentsΣt of St and the diameter ismeasured
using the metric on M.

Proof of Theorem 1.7. (i) We first show that if a complete noncompact Riemannian manifold
satisfies K(x) ≥ −C/d(p, x)α, where C > 0, 0 ≤ α ≤ 2, and the following diameter growth
condition

lim sup
r→∞

D(p, r)

rα/2
<

δ1
2
, (5.2)

where

δ1 = max
0<ε≤1/20

⎧
⎨

⎩
2ε −

arc cosh
(
cosh22αC1/2ε

)

2αC1/2
> 0

⎫
⎬

⎭
(5.3)

thenM is of finite topological type.
As (i) in the proof of Theorem 1.1 in [8], choose a good connected component Σr of

S(p, r), for any x ∈ Σr , and a ray γ from p passing through Σr , choose q = γ(t) such that
t ≥ 2d(p, x), and suppose that x is a critical point of dp, then

epq(x) ≥ δ1d
(
p, x
)α/2

. (5.4)

On the other hand, by the triangle inequality,

epq(x) ≤ 2D(p, r), (5.5)

thus,

D(p, r) ≥ δ1
2
d
(
p, x
)α/2

, (5.6)

For r large enough, by the assumption on the diameter growth, this is a contradiction.
Thus, there does not exist a critical point of d(p, ·) on any good connected component.

By Lemma 5.1,M is of finite topological type.
(ii) Given that r > 0, choose a good connected component Σr , of the boundary

of an unbounded component of M \ B(p, r). For any x, y ∈ Σr , there is a continuous
curve c : [0, s] → Σr from x to y. Suppose that d(x, y) > 2. Then there is a partition
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0 = t0 < t1 < · · · < tk = r such that {B(c(ti), 1)}ki=0 are disjoint and B(c(ti), 2)
⋂
B(c(ti+1), 2)/= ∅.

Note that B(c(ti), 1) ⊂ B(p, r + 1) − B(p, r − 1). Thus

(k + 1)v ≤
k∑

i=0

vol(B(c(ti), 1)) ≤ vol
(
B
(
p, r + 1

) − B
(
p, r − 1

))
,

diam

(
∑

r

)

≤
k−1∑

i=0

d(c(ti), c(ti+1)) ≤ C(n, k, v)vol
(
Bp(r + 1) − Bp(r − 1)

)
.

(5.7)

Then, by Theorem 1.3(2), there is a constant C̃(n, k, C, α, v) such that if the volume growth
satisfies

lim sup
r→∞

vol
(
Bp(r)

)

r1+(α/2)−(n−1)(L−K)
< C̃(n, k, C, α, v) (5.8)

the diameter growth satisfies

lim sup
r→∞

D(p, r)

rα/2
<

δ1
2
. (5.9)

Then by (i), Theorem 1.7 is obtained.
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Scientifiques de l’École Normale Supérieure, vol. 33, no. 2, pp. 275–290, 2000.

[8] Z. Hu and S. Xu, “Complete manifolds with asymptotically nonnegative Ricci curvature and weak
bounded geometry,” Archiv der Mathematik, vol. 88, no. 5, pp. 455–467, 2007.

[9] N. Katz and K. Kondo, “Generalized space forms,” Transactions of the American Mathematical Society,
vol. 354, no. 6, pp. 2279–2284, 2002.

[10] S. Zhu, “A volume comparison theorem for manifolds with asymptotically nonnegative curvature
and its applications,” American Journal of Mathematics, vol. 116, no. 3, pp. 669–682, 1994.



14 International Journal of Mathematics and Mathematical Sciences

[11] P. Petersen, Riemannian Geometry, vol. 171 of Graduate Texts in Mathematics, Springer, New York, NY,
USA, 1998.

[12] S. Zhu, “The comparison geometry of Ricci curvature,” in Comparison Geometry, vol. 30 of Math. Sci.
Res. Inst. Publ., pp. 221–262, Cambridge University, Cambridge, UK, 1997.

[13] U. Abresch, “Lower curvature bounds, Toponogov’s theorem, and bounded topology. II,” Annales
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