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1. Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disc in the complex plane C. Let dA(z) =
(1/π)dx dy = (1/π)rdrdθ and L2(D, dA) be the Hilbert space of complex-valued, absolutely
square-integrable, Lebesgue measurable functions f on D with the inner product

〈f, g〉 =
∫

f(z)g(z)dA(z). (1.1)

Let L∞(D, dA) denote the Banach space of Lebesgue measurable functions f on D with

∥

∥f
∥

∥

∞ = ess sup
{∣

∣f(z)
∣

∣ : z ∈ D
}

<∞, (1.2)

and letH∞(D) be the space of bounded analytic functions on D. Let L2
a(D) be the subspace of

L2(D, dA) consisting of analytic functions. The space L2
a(D) is called the Bergman space. Since
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point evaluation at z ∈ D is a bounded linear functional on the Hilbert space L2
a(D), the Riesz

representation theorem implies that there exists a unique function Kz in L2
a(D) such that

f(z) =
∫

D

f(w)Kz(w)dA(w) (1.3)

for all f in L2
a(D). Let K(z,w) be the function on D × D defined by

K(z,w) = Kz(w). (1.4)

The functionK(z,w) is thus the reproducing kernel for the Bergman space L2
a(D) and is called

the Bergman kernel. It can be shown that the sequence of functions {en(z)} = {
√
n + 1zn}n≥0

forms the standard orthonormal basis for L2
a(D) and K(z,w) =

∑∞
n=1 en(z)en(w). The

Bergman kernel is independent of the choice of orthonormal basis andK(z,w) = 1/(1−zw)2.
Let ka(z) = K(z, a)/

√

K(a, a) = (1 − |a|2)/(1 − az)2. These functions ka are called
the normalized reproducing kernels of L2

a; it is clear that they are unit vectors in L2
a. For any

a ∈ D, let φa be the analytic mapping on D defined by φa(z) = (a − z)/(1 − az), z ∈ D. An
easy calculation shows that the derivative of φa at z is equal to −ka(z). It follows that the real
Jacobian determinant of φa at z is

Jφa(z) = |ka(z)|2 =

(

1 − |a|2
)2

|1 − az|4
. (1.5)

When |z| → 1, kz → 0 weakly and the normalized reproducing kernels kz, z ∈ D span
L2
a(D) [1]. Since L2

a(D) is a closed subspace of L2(D, dA) (see [1]), there exists an orthogonal
projection P from L2(D, dA) onto L2

a(D). For φ ∈ L∞(D), we define the Toeplitz operator Tφ on
L2
a(D) by Tφf = P(φf), f ∈ L2

a(D). For φ ∈ L∞(D), let ˜φ(z) = 〈Tφkz, kz〉. The function ˜φ(z) is
called the Berezin transform of φ. LetHφ be theHankel operator from L2

a into (L
2
a)

⊥ defined by
Hφf = (I−P)(φf). It is easy to check thatH∗

φ
Hφ = T|φ|2 −TφTφ (see [1]). For ψ ∈ L∞(D), define

Sψ : L2
a → L2

a as Sψf = PJ(ψf), where J : L2 → L2 is defined as Jf(z) = f(z). The operator
Sψ is called the little Hankel operator on L2

a(D). Let dλ(z) = K(z, z)dA(z) = dA(z)/(1−|z|2)2,
the Mobius invariant measure on D. Let L(H) be the set of all bounded linear operators from
the Hilbert spaceH into itself, and let LC(H) be the set of all compact operators in L(H).

Often it is not easy to verify that a linear operator is bounded, and it is even more
difficult to determine its norm. No conditions on thematrix entries aij have been foundwhich
are necessary and sufficient forA to be bounded, nor has ‖A‖ been determined in the general
case. For the more general problem we also need analogues of the notions of operator norm.
For more details see [2, 3]. The family of norms that has received much attention during the
last decade is the Schatten norm.

A proper two-sided ideal T in L(H) is said to be a norm ideal if there is a norm on T
satisfying the following properties:

(i) (T, ‖ · ‖T) is a Banach space;

(ii) ‖AXB‖T ≤ ‖A‖‖X‖T‖B‖ for all A,B ∈ L(H) and for all X ∈ T;

(iii) ‖X‖T = ‖X‖ for X a rank one operator.
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If (T, ‖ · ‖T) is a norm ideal, then the norm ‖ · ‖T is unitarily invariant, in the sense
that ‖UAV ‖T = ‖A‖T for all A in T and unitary U,V in L(H). Each proper ideal of L(H) is
contained in the ideal of compact operators. Two special families of unitarily invariant norms
satisfying conditions (i), (ii), and (iii) are the Schatten p-norms defined on the set of compact
operators and the Ky Fan norms.

For any nonnegative integer n, the nth singular value of T ∈ LC(H) is defined by

sn(T) = inf{‖T −K‖ : K ∈ L(H), rank K ≤ n}. (1.6)

Here ‖ · ‖ is the operator norm. Clearly, s0(T) = ‖T‖ and

s0(T) ≥ s1(T) ≥ s2(T) ≥ · · · ≥ 0. (1.7)

Thus sn(T) is the distance, with respect to the operator norm, of T from the set of
operators of rank at most n in L(H). The spectral theorem shows that the singular values
of the compact operator T are the square roots of the eigenvalues of T ∗T as long as H is
separable and infinite dimensional. Notice that sn(T) can be defined for any T ∈ L(H) but
clearly, sn(T) → 0 if and only if T is compact.

The Schatten Von Neumann class Sp = Sp(H), 0 < p < ∞, consists of all operators
T ∈ LC(H) such that

‖T‖Sp =
(

∞
∑

n=0
(sn(T))

p

)1/p

<∞. (1.8)

If 1 ≤ p < ∞, then ‖ · ‖Sp is a norm, which makes Sp a Banach space. For p < 1, ‖ · ‖Sp
does not satisfy the triangle inequality, it is a quasinorm (i.e., ‖T1 + T2‖Sp ≤ C(‖T1‖Sp + ‖T2‖Sp)
for T1, T2 ∈ Sp and C, a constant), which makes Sp a quasiBanach space. We will be mainly
concerned with the range 1 ≤ p <∞. The space S1 is also called the trace class and S2 is called
the Hilbert-Schmidt class. The linear functional trace is defined on S1 by

trace T =
∞
∑

n=0
〈Tεn, εn〉, T ∈ S1, (1.9)

where {εn}n≥0 is an orthonormal basis in H. Moreover, the right-hand side does not depend
on the choice of the basis. If 1 < p <∞, the dual space S∗

p can be identifiedwith Sq with respect
to the pairing 〈T, R〉 = trace TR∗, T ∈ Sp, R ∈ Sq. Here q = p/(p−1) is the dual exponent. With
respect to the same pairing one can identify S∗

1 with L(H) and (LC(H))∗ with S1. We refer
the reader to [2, 3] for basic facts about Schatten p-classes. The Schatten p-classes should be
seen as gradations of compactness for an operator. Each Schatten p-class is dense in the space
of compact operators in the operator norm. For this reason, it is of interest, given a certain
class of operators, to ask whether or not there are compact operators not in any Schatten p-
class. For instance, this was proved by Arazy et al. [4] and Zhu [1] for Hankel operators on
Bergman space.

Hankel operators are closely related to Toeplitz operators. Many problems about
Toeplitz operators can also be formulated in terms Hankel operators and vice versa. The
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singular values of Hankel operators on the Hardy space play a crucial role in rational
approximation. The celebrated results of Adamjan et al. [5] which give the achievable error
in approximating a Hankel operator Γ by another one of smaller rank in terms of the singular
values of the Hankel operator is an illustration of this. It may be noted here that the Adamjan,
Arov, and Krein theorem has had a considerable influence on the treatment of the problem
that arises in engineering applications in the context of model reduction, that is, the problem
of finding a simple model to replace a relatively complicated one without too great a loss of
accuracy. In view of this it would be nice to have a satisfactory characterization for Schatten
class Toeplitz operators on the Bergman space.

In this paper we find necessary and sufficient conditions on φ that will ensure that the
Toeplitz operator Tφ belong to Sp, 1 ≤ p < +∞. This will provide some quantitative estimates
(size estimates of these operators) in terms of norms. We will also use S∞ to denote the full
algebra of bounded linear operators from the Bergman space L2

a(D) into itself.
For z and w in D, let φz(w) = (z − w)/(1 − zw). These are involutive Mobius

transformations on D. In fact

(1) φz ◦ φz(w) ≡ w;

(2) φz(0) = z, φz(z) = 0;

(3) φz has a unique fixed point in D.

Given z ∈ D and f any measurable function on D, we define a function Uzf(w) =
kz(w)f(φz(w)). Since |kz|2 is the real Jacobian determinant of the mapping φz (see [1]),
Uz is easily seen to be a unitary operator on L2(D, dA) and L2

a(D). It is also easy to check
that U∗

z = Uz, thus Uz is a self-adjoint unitary operator. If φ ∈ L∞(D, dA) and z ∈ D then
UzTφ = Tφ◦φzUz. This is because PUz = UzP and for f ∈ L2

a, Tφ◦φzUzf = Tφ◦φz((f ◦ φz)kz) =
P((φ ◦ φz)(f ◦ φz)kz) = P(Uz(φf)) = UzP(φf) = UzTφf . Let Aut(D) be the Lie group of all
automorphisms (biholomorphic mappings) of D, and G0 the isotropy subgroup at 0; that is,
G0 = {Ψ ∈ Aut(D) : Ψ(0) = 0}.

2. Compact Operators Whose Real and Imaginary Parts
Are Positive

Zhu [1] had shown that if φ is a nonnegative function on D, 1 ≤ p ≤ ∞, then Tφ is in the
Schatten class Sp if and only if ˜φ(z) is in Lp(D, dλ). The following is an easy consequence of
it.

Proposition 2.1. Suppose that Tφ ∈ L(L2
a(D)) is such that Tφ = Tφ1 + iTφ2 , where φ1 ≥ 0 and

φ2 ≥ 0. The Toeplitz operator Tφ ∈ Sp, 1 ≤ p ≤ ∞ if and only if ˜φ(z) ∈ Lp(D, dλ). In this case,
‖Tφ‖2p ≤ ‖Tφ1‖2p + ‖Tφ2‖2p if 2 ≤ p <∞ and ‖Tφ‖2p ≥ ‖Tφ1‖2p + ‖Tφ2‖2p if 1 ≤ p ≤ 2.

Proof. Suppose 2 ≤ p ≤ ∞ and Tφ ∈ Sp. Notice that Tφ1 = (Tφ + T ∗
φ)/2 and Tφ2 = (Tφ − T ∗

φ)/2i
and since Sp is a Banach space and is closed under adjoints, hence Tφ1 and Tφ2 belong to Sp.
From [1], it follows that˜φ1,˜φ2 ∈ Lp(D, dλ). Hence ˜φ = ˜φ1 + i˜φ2 ∈ Lp(D, dλ). Now suppose ˜φ ∈
Lp(D, dλ), 2 ≤ p ≤ ∞. This implies ˜φ1,˜φ2 ∈ Lp(D, dλ). From [1], it follows that Tφ1 , Tφ2 ∈ Sp.
Hence Tφ ∈ Sp as Sp is a vector space and ‖Tφ‖2p ≤ ‖Tφ1‖2p + ‖Tφ2‖2p (see [6]). Now let 1 ≤ p < 2

and assume Tφ ∈ Sp. This implies Tφ1 , Tφ2 ∈ Sp and therefore by [1], ˜φ1,˜φ2 ∈ Lp(D, dλ). Hence
˜φ ∈ Lp(D, dλ) and by [6], ‖Tφ‖2p ≥ ‖Tφ1‖2p + ‖Tφ2‖2p. Now suppose ˜φ ∈ Lp(D, dλ), 1 ≤ p < 2.

Then ˜φ1,˜φ2 ∈ Lp(D, dλ) and hence Tφ1 , Tφ2 ∈ Sp. Since Sp is a vector space, Tφ ∈ Sp.
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Example 2.2. Let φ(z) = (1 − |z|)r , r > 0. Then Tφ ∈ S2 only if r > 1/2, and Tφ ∈ S1 only if
r > 1. This can be seen as follows. The matrix of Tφ with respect to the standard orthonormal
basis {en(z)}n≥0 = {

√
n + 1zn}n≥0 of L2

a(D) is diagonal, tkk = 〈Tφek, ek〉 = (2k + 2)!/((r + 1)(r +
2) · · · (r + 2k + 2)) and

∑∞
k=0 |tkk|2 = ∞ for r ≤ 1/2. Similarly

∑∞
k=0 tkk < ∞ if r > 1. If r ≤ 1,

∑∞
k=0 tkk = ∞.

Proposition 2.3. Let φ ∈ L∞(D) and suppose that φ is not the zero function. If Tφ is compact then
Range Tφ is not closed.

Proof. Since Tφ is compact, hence Range Tφ contains no closed infinite-dimensional subspace
of L2

a(D). If now Range Tφ is closed then Range Tφ is finite dimensional. That is, Tφ is of finite
rank. This implies by [7] that φ ≡ 0. This is a contradiction as φ is not the zero function.

Recall the following.
Suppose that A is a positive operator on a Hilbert space H and x is unit vector in H,

then (i) 〈Apx, x〉 ≥ 〈Ax, x〉p for all p ≥ 1; (ii) 〈Apx, x〉 ≤ 〈Ax, x〉p for all 0 < p ≤ 1. For proof
see [1].

Suppose that ϕ : D → D is analytic. Define the composition operator Cϕ from L2
a(D)

into itself as Cϕf = f ◦ϕ. It is shown in [1] that Cϕ is a bounded linear operator on L2
a(D) and

‖Cϕ‖ ≤ (1 + |ϕ(0)|)/(1 − |ϕ(0)|). Given a ∈ D and f any measurable function on D, we define
the function Caf by Caf(z) = f(φa(z)), where φa ∈ Aut(D). The map Ca is a composition
operator on L2

a(D).

Proposition 2.4. If φ ∈ L∞(D) then Tφ is compact if and only if Tφ◦φz is compact.

Proof. This follows from the fact that Tφ◦φz = UzTφUz and asU2
z = I.

Proposition 2.5. For φ ∈ L∞(D), MO(φ)2(z) =˜|φ|2(z) − | ˜φ(z)|2 ≤ ‖Hφkz‖2 + ‖Hφkz‖2.

Proof. Observe that

‖Hφkz‖ = ‖(I − P)
(

φkz
)

‖

= ‖(I − P)Uz

(

φ ◦ φz
)

‖

= ‖Uz(I − P)
(

φ ◦ φz
)

‖

= ‖(I − P)
(

φ ◦ φz
)

‖

= ‖φ ◦ φz − P
(

φ ◦ φz
)

‖.

(2.1)

Similarly, we have ‖Hφkz‖ = ‖φ◦φz−P(φ◦φz)‖ = ‖φ◦φz−P(φ ◦ φz)‖. Since ˜φ(z) = P(φ◦φz)(0)
and Pg(z) = g(0) for any g ∈ L2

a and all z ∈ D, we have

MO
(

φ
)2(z) = ˜

∣

∣φ
∣

∣

2(z) −
∣

∣

∣

˜φ(z)
∣

∣

∣

2

=
∥

∥φ ◦ φz − P
(

φ ◦ φz
)

(0)
∥

∥

2

=
∥

∥φ ◦ φz − P
(

φ ◦ φz
)∥

∥

2 +
∥

∥P
(

φ ◦ φz
)

− P
(

φ ◦ φz
)

(0)
∥

∥

2
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=
∥

∥Hφkz
∥

∥

2 +
∥

∥

∥

∥

P(φ ◦ φz) − P
(

φ ◦ φz
)

(0)
∥

∥

∥

∥

2

=
∥

∥Hφkz
∥

∥

2 +
∥

∥

∥

∥

P

(

φ ◦ φz − P
(

φ ◦ φz
)

)∥

∥

∥

∥

2

≤
∥

∥Hφkz
∥

∥

2 +
∥

∥

∥

∥

φ ◦ φz − P
(

φ ◦ φz
)

∥

∥

∥

∥

2

=
∥

∥Hφkz
∥

∥

2 +
∥

∥

∥Hφkz
∥

∥

∥

2
.

(2.2)

Let h > 1. The generalized Kantorvich constant K(p) is defined by

K
(

p
)

=
hp − h

(

p − 1
)

(h − 1)

(

p − 1
p

hp − 1
hp − h

)p

(2.3)

for any real number p and it is known that K(p) ∈ (0, 1] for p ∈ [0, 1]. We state below
the known results on the generalized Kantorvich constant K(p). Let A be strictly positive
operator satisfying MI ≥ A ≥ mI > 0, where M > m > 0. Put h = M/m > 1. Then the
following [8] inequalities (2.4) and (2.5) hold for every unit vector x and are equivalent:

K
(

p
)

〈Ax, x〉p ≥ 〈Apx, x〉 ≥ 〈Ax, x〉p for any p > 1 or any p < 0; (2.4)

〈Ax, x〉p ≥ 〈Apx, x〉 ≥ K
(

p
)

〈Ax, x〉p for any p ∈ (0, 1]. (2.5)

The Kantorvich constant K(p) is symmetric with respect to p = 1/2 and K(p) is an
increasing function of p for p ≥ 1/2, K(p) is a decreasing function of p for p ≤ 1/2, and
K(0) = K(1) = 1. Further, K(p) ≥ 1 for p ≥ 1 or p ≤ 0, and 1 ≥ K(p) ≥ 2h1/4/(h1/2 + 1) for
p ∈ [0, 1].

Proposition 2.6. Let Tφ be strictly positive satisfyingMI ≥ Tφ ≥ mI > 0, whereM > m > 0. The
following hold.

(i) If 0 < p <∞ and Tφ ∈ Sp then ˜φ ∈ Lp(D, dλ).

(ii) If 0 < p ≤ 1, ˜φ ∈ Lp(D, dλ) then Tφ ∈ Sp.

(iii) Let p ∈ [1,∞) be such that K(p) <∞. If ˜φ ∈ Lp(D, dλ) then Tφ ∈ Sp.

Proof. Suppose p > 1 and Tφ ∈ Sp. Then

∫

D

〈

T
p

φkz, kz
〉

dλ(z) =
∫

D

〈∣

∣Tφ
∣

∣

p
kz, kz

〉

dλ(z) <∞. (2.6)

Hence by (2.4),
∫

D
〈Tφkz, kz〉pdλ(z) < ∞. That is, ˜φ ∈ Lp(D, dλ). Suppose 0 < p ≤ 1 and

Tφ ∈ Sp. Then
∫

D
〈Tp

φ
kz, kz〉dλ(z) =

∫

D
〈|Tφ|pkz, kz〉dλ(z) <∞. Hence from (2.5), it follows that

K(p)
∫

D
〈Tφkz, kz〉pdλ(z) <∞. Since K(p) ∈ (0, 1] for p ∈ [0, 1], hence ˜φ ∈ Lp(D, dλ).
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Now assume ˜φ ∈ Lp(D, dλ). Then if 0 < p ≤ 1 then by (2.5), we have
∫

D
〈|Tφ|pkz, kz〉dλ(z) <∞ and hence Tφ ∈ Sp. If 1 ≤ p <∞, then by (2.4) and (2.5), ifK(p) <∞

and ˜φ ∈ Lp(D, dλ) then
∫

D
〈|Tφ|pkz, kz〉dλ(z) <∞ and Tφ ∈ Sp.

3. Schatten Class Operators

In this section, we will obtain conditions to describe Schatten class Toeplitz operators on
Bergman space L2

a(D). The results of this paper hold for Bergman spaces L2
a(Ω), where Ω is

any bounded symmetric domain in C. For simplicity, we consider only the case of the open
unit disk D in C.

Let BT = {f ∈ L1 : ‖f‖BT = supz∈D
˜|f |(z) < ∞}. The space L∞ is properly contained

in BT (see [9]) and if φ ∈ BT then Tφ is bounded on L2
a and there is a constant C such that

‖Tφ‖ ≤ C‖φ‖BT .

Theorem 3.1. Suppose 1 ≤ p < ∞ and dλ(z) = dA(z)/(1 − |z|2)2. Then the following hold. (1) If
Tφ ∈ Sp, then ˜φ ∈ Lp(D, dλ). (2) If φ ∈ Lp(D, dλ) then ˜φ ∈ Lp(D, dλ) and Tφ ∈ Sp.

Proof. Suppose Tφ ∈ Sp. Then

∫

D

〈∣

∣Tφ
∣

∣

p
kw, kw

〉

dλ(w) <∞. (3.1)

That is,
∫

D
〈(T ∗

φTφ)
p/2kw, kw〉dλ(w) <∞. If 2 ≤ p <∞, then

∫

D

〈

T ∗
φTφkw, kw

〉p/2
dλ(w) ≤

∫

D

〈

(

T ∗
φTφ
)p/2

kw, kw

〉

dλ(w) <∞. (3.2)

This implies

∫

D

∥

∥P(φ ◦ φw)
∥

∥

p
dλ(w) =

∫

D

∥

∥P
(

Uw

(

φkw
))∥

∥

p
dλ(w)

=
∫

D

∥

∥UwTφkw
∥

∥

p
dλ(w)

=
∫

D

∥

∥Tφkw
∥

∥

p
dλ(w)

=
∫

D

〈

T ∗
φTφkw, kw

〉p/2
dλ(w) <∞.

(3.3)

Now |P(φ ◦ φw)(0)| = |〈P(φ ◦ φw), 1〉| = |〈Uw(Tφkw), 1〉| = |〈Tφkw,Uw1〉| = |〈Tφkw, kw〉| ≤
‖Tφkw‖ = ‖P(φ ◦ φw)‖. Thus

∫

D
|P(φ ◦ φw)(0)|pdλ(w) < ∞. That is,

∫

D
| ˜φ(w)|pdλ(w) <

∞ and ˜φ ∈ Lp(D, dλ). Suppose 1 ≤ p < 2. Then by Heinz inequality [10],
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it follows that

∞ >

∫

D

〈∣

∣Tφ
∣

∣

p
kw, kw

〉

dλ(w)

=
∫

D

〈

∣

∣Tφ
∣

∣

2·p/2
kw, kw

〉

dλ(w)

≥
∫

D

∣

∣

〈

Tφkw, kw
〉∣

∣

2

〈

∣

∣

∣T ∗
φ

∣

∣

∣

2(1−p/2)
kw, kw

〉
dλ(w)

=
∫

D

∣

∣

∣

˜φ(w)
∣

∣

∣

2

∥

∥

∥P(φ ◦ φw)
∥

∥

∥

2−p dλ(w)

=
∫

D

∣

∣

∣

˜φ(w)
∣

∣

∣

2∥
∥

∥P
(

φ ◦ φw
)∥

∥

∥

p−2
dλ(w)

≥
∫

D

∣

∣

∣

˜φ(w)
∣

∣

∣

2

∥

∥

∥P(φ ◦ φw)
∥

∥

∥

2

∥

∥

∥P
(

φ ◦ φw
)∥

∥

∥

p
dλ(w)

≥
∫

D

∣

∣

∣

˜φ(w)
∣

∣

∣

2

C2
∥

∥φ
∥

∥

2
BT

∣

∣P
(

φ ◦ φw
)

(0)
∣

∣

p
dλ(w)

=
∫

D

∣

∣

∣

˜φ(w)
∣

∣

∣

2

C2
∥

∥φ
∥

∥

2
BT

∣

∣

∣

˜φ(w)
∣

∣

∣

p
dλ(w),

(3.4)

since
〈

∣

∣

∣T ∗
φ

∣

∣

∣

2−p
kw, kw

〉

=
〈

∣

∣

∣T ∗
φ

∣

∣

∣

2·(2−p)/2
kw, kw

〉

≤
〈

∣

∣

∣T ∗
φ

∣

∣

∣

2
kw, kw

〉(2−p)/2

=
〈

TφT
∗
φkw, kw

〉(2−p)/2

=
∥

∥

∥T ∗
φkw
∥

∥

∥

2−p

=
∥

∥

∥P
(

φ ◦ φw
)∥

∥

∥

2−p
.

(3.5)

Hence
∫

D

∣

∣

∣

˜φ(w)
∣

∣

∣

p+2
dλ(w) <∞, (3.6)

and therefore
∫

D
| ˜φ(w)|pdλ(w) <∞. Thus ˜φ ∈ Lp(D, dλ).
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Now suppose φ ∈ L1(D, dλ). Then the change of the order of integration

∫

D

∣

∣

∣

˜φ(w)
∣

∣

∣dλ(w) =
∫

D

∣

∣

∣

˜φ(w)
∣

∣

∣

dA(w)
(

1 − |w|2
)2

≤
∫

D

⎛

⎜

⎝

∫

D

∣

∣φ(z)
∣

∣

(

1 − |w|2
)2

|1 −wz|4
dA(z)

⎞

⎟

⎠

dA(w)
(

1 − |w|2
)2

=
∫

D

∣

∣φ(z)
∣

∣

∫

D

dA(w)

|1 −wz|4
dA(z) =

∫

D

∣

∣φ(z)
∣

∣〈kz, kz〉dA(z)

=
∫

D

∣

∣φ(z)
∣

∣

dA(z)
(

1 − |z|2
)2

(3.7)

is justified by the positivity of the integrand. Hence ˜φ ∈ L1(D, dλ). Similarly if φ ∈ L∞(D)
then ˜φ ∈ L∞(D) as | ˜φ(w)| = |〈φkw, kw〉| ≤ ‖φkw‖2‖kw‖2 ≤ ‖φ‖∞‖kw‖22 = ‖φ‖∞. By
Marcinkiewicz interpolation theorem it follows that if φ ∈ Lp(D, dλ) then ˜φ ∈ Lp(D, dλ)
for 1 ≤ p ≤ ∞. Now suppose φ ∈ Lp(D, dλ), 1 ≤ p ≤ ∞. We will prove Tφ ∈ Sp. The case
p = +∞ is trivial. By interpolation we need only to prove the result for p = 1. Suppose
φ ∈ L1(D, dλ) and {en} = {

√
n + 1zn}∞n=0 is the standard orthonormal basis for L2

a(D). Now
〈Tφen, en〉 =

∫

D
|en(z)|2φ(z)dA(z) and

∞
∑

n=0

∣

∣

〈

Tφen, en
〉∣

∣ ≤
∫

D

∞
∑

n=0
|en(z)|2

∣

∣φ(z)
∣

∣dA(z)

≤
∫

D

K(z, z)
∣

∣φ(z)
∣

∣dA(z)

=
∫

D

∣

∣φ(z)
∣

∣dλ(z).

(3.8)

Thus Tφ ∈ S1 and ‖Tφ‖S1 ≤
∫

D
|φ(z)|dλ(z).

It is not so difficult to verify the conditions in Theorem 3.1.

Example 3.2. Let Φ(z) = (1 − |z|2) log(1 − |z|2). Then Φ ∈ L2(D, dλ). This can be verified as
follows:

∫

D

(

1 − |z|2
)2∣
∣

∣log
(

1 − |z|2
)∣

∣

∣

2
dλ(z)

=
∫

D

(

1 − |z|2
)2∣
∣

∣log
(

1 − |z|2
)∣

∣

∣

2 dA(z)
∣

∣

∣

(

1 − |z|2
)∣

∣

∣

2
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=
∫

D

∣

∣

∣log
(

1 − |z|2
)∣

∣

∣

2
dA(z)

=
∫1

0

∣

∣

∣log
(

1 − r2
)∣

∣

∣

2
2r dr

=
∫1

0

∣

∣log(1 − t)
∣

∣

2
dt

=
∫1

0

∣

∣log t
∣

∣

2
dt,

(3.9)

and changing the variable to y = − log t, this reduces to
∫∞
0 y

2e−ydy = Γ(3) = 2 < ∞. Thus
TΦ ∈ S2.

Example 3.3. Let g(z) = ln |z|2. Then

∫

D

∣

∣g(z)
∣

∣

2
dλ(z) =

∫1

0

(

ln t
1 − t

)2

dt

=
∫1

0

∞
∑

n=0

∞
∑

m=0

tm+nln2t dt

=
∞
∑

n=0

∞
∑

m=0

2

(m + n + 1)3

=
∞
∑

k=0

2

(k + 1)2

=
π2

3
<∞.

(3.10)

Thus g ∈ L2(D, dλ). Direct computation reveals that g̃(x) = |x|2 − 1 and g̃ ∈ L2(D, dλ).

Example 3.4. Let φ(z) = 1 − |z|. Then by Example 2.2, Tφ ∈ S2 and

∫

D

∣

∣φ(z)
∣

∣

2
dλ(z) =

∫

D

(1 − |z|)2 dA(z)
(

1 − |z|2
)2

=
∫

D

dA(z)

(1 + |z|)2

≤
∫

D

dA(z) = 1.

(3.11)

Thus φ ∈ L2(D, dλ) and hence ˜φ ∈ L2(D, dλ).
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It may be noted that the space Lp(D, dλ), 1 ≤ p < ∞, contains no nonzero harmonic
functions and even no nonzero constants. To see this, for example, for L2(D, dλ), let

M(r) =
1
2π

∫2π

0

∣

∣

∣f
(

reit
)∣

∣

∣

2
dt. (3.12)

This is a nonnegative and nondecreasing function of r and ‖f‖2
L2(D,dλ) =

∫1
0M(r)(2r/(1 −

r2)2)dr <∞. SoM(r)must tend to 0 as r → 1. ThusM(r) ≡ 0, and therefore f ≡ 0.

But although there is no nonzero harmonic functions in L2(D, dλ), there are plenty of
subharmonic functions. Consider the function f(z) = ln |z|2. We have verified in Example 3.3
that f ∈ L2(D, dλ). Suppose that f is real-valued subharmonic and f ∈ L2(D, dλ). The
subharmonicity of f implies that ˜f(w) =

∫

D
f(φw(z))dA(w) ≥ f(φw(0)) = f(w). Hence

˜f ≥ f . Let Δh := (1 − |z|2)2(∂2/∂z∂z). It can be verified that Δh(f ◦ φa) = (Δhf) ◦ φa and
note that Δh

˜f = ˜Δhf ≥ 0 since Δhf ≥ 0. In other words, ˜f is also subharmonic. Proceeding by
induction, if we define Bg = g̃ on L2(D, dλ) then we obtain Bnf is subharmonic for all n ∈ N

and {Bnf}n∈N
is a nondecreasing sequence of functions.

Corollary 3.5. If φ ∈ h∞(D), the space of bounded harmonic functions on D and 1 ≤ p < ∞, then
Tφ ∈ Sp if and only if φ ≡ 0.

Proof. The proof of the corollary follows from the above discussion and the fact [1] that φ ∈
h∞(D) if and only if ˜φ = φ.

Corollary 3.6. If φ is a real-valued bounded subharmonic function on D, 1 ≤ p <∞, then Tφ ∈ Sp if
and only if ˜φ ∈ Lp(D, dλ).

Proof. By Theorem 3.1, if Tφ ∈ Sp then ˜φ ∈ Lp(D, dλ). Conversely if φ is real-valued,
subharmonic, bounded on D and ˜φ ∈ Lp(D, dλ) then ˜φ is also subharmonic and the
subharmonicity of φ implies that ˜φ(w) =

∫

D
φ(φw(z))dA(z) ≥ φ(φw(0)) = φ(w). Hence

∫

D
| ˜φ(w)|pdλ(w) =

∫

D
|φ(w)|pdλ(w) as φ ∈ Lp(D, dλ) implies ˜φ ∈ Lp(D, dλ) and the result

follows from Theorem 3.1.

Corollary 3.7 follows immediately from Corollary 3.5. We present a proof of
Corollary 3.7 to show a different method of approach.

Corollary 3.7. If φ ∈ H∞(D) ∪H∞(D) then the Toeplitz operator Tφ ∈ Sp, 1 ≤ p < ∞ if and only if
φ ≡ 0.

Proof. Notice that if φ ∈ H∞(D) ∪H∞(D) then the following two possibilities hold.

(∗) For all z ∈ D, either P(φ ◦ φz)/=P(φ ◦ φz)(0) or P(φ ◦ φz)/=P(φ ◦ φz)(0).

(∗∗) There exists z ∈ D such that P(φ ◦ φz) = P(φ ◦ φz)(0) and P(φ ◦ φz) = P(φ ◦ φz)(0).

Suppose that (∗∗) holds and let z ∈ D be such that P(φ ◦ φz) = P(φ ◦ φz)(0) and
P(φ ◦ φz) = P(φ ◦ φz)(0). Then this implies Tφkz = czkz and Tφkz = czkz. Hence Tφ has an
eigenvalue. From [1], it follows that φ is a constant and Tφ is not compact unless φ ≡ 0.
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Now suppose that (∗) holds, 1 ≤ p < ∞. Then for all z ∈ D, ‖Hφkz‖2 + ‖Hφkz‖2 =

‖φ◦φz−P(φ◦φz)‖2+‖φ◦φz−P(φ◦φz)‖2 < ‖φ◦φz−P(φ◦φz)(0)‖2+‖φ◦φz−P(φ◦φz)(0)‖2 =
2(˜|φ|2(z) − | ˜φ(z)|2). Let cz = (‖Hφkz‖2 + ‖Hφkz‖2)/(˜|φ|2(z) − | ˜φ(z)|2). Note that 1 ≤ cz < 2 for
all z ∈ D. It follows from Proposition 2.5 and from the previous discussion.

Notice Tφ compact implies that T ∗
φ
Tφ = T|φ|2−H∗

φ
Hφ is compact. Thus 0 ≤ 〈T ∗

φ
Tφkz, kz〉 =

˜|φ|2(z)−‖Hφkz‖2 → 0 as |z| → 1−. Similarly since TφT ∗
φ is compact, 0 ≤˜|φ|2(z)−‖Hφkz‖2 → 0

as |z| → 1−.
Thus 0 ≤ 2˜|φ|2(z) − (‖Hφkz‖2 + ‖Hφkz‖2) → 0 as |z| → 1−. Hence it follows that

0 ≤ 2˜|φ|2(z) − cz(˜|φ|2(z) − | ˜φ(z)|2) = 2˜|φ|2(z) − (‖Hφkz‖2 + ‖Hφkz‖2) → 0 as |z| → 1−. So

0 ≤ (2 − cz)˜|φ|2(z) + cz| ˜φ(z)|2 → 0 as |z| → 1−, where 1 ≤ cz < 2. Since Tφ is compact,
| ˜φ(z)| → 0 as |z| → 1−. Thus ˜|φ|2(z) → 0 as |z| → 1−. Similarly since Tφ◦φz is compact we

can show that ˜|φ ◦ φz|2(z) → 0 as |z| → 1−. Thus

∫

D

∣

∣

(

φ ◦ φz
)

(w)
∣

∣

2|kz(w)|2dA(w) −→ 0 (3.13)

as |z| → 1−. Hence
∫

D
|φ(w)|2dA(w) = 0 as Uzkz = kz(φz(w))kz(w) = 1. It follows therefore

that φ(w) = 0 almost everywhere and hence φ ≡ 0. Therefore, Tφ ≡ 0.

Let ˜T(z) = 〈Tkz, kz〉 for T ∈ L(L2
a(D)). It follows from Heinz inequality [10] that

∣

∣

〈

Tφkz, kz
〉∣

∣

2 ≤
〈

∣

∣Tφ
∣

∣

2α
kz, kz

〉

〈

∣

∣

∣T ∗
φ

∣

∣

∣

2(1−α)
kz, kz

〉

(3.14)

for all z ∈ D and 0 ≤ α ≤ 1. That is, | ˜φ(z)|2 ≤ |̃Tφ|2α(z) ˜|T ∗
φ
|2(1−α)(z) for all z ∈ D. Hence if

|̃Tφ|2α ∈ Lp(D, dλ) and ˜|T ∗
φ|2(1−α) ∈ L

q(D, dλ), 1/p + 1/q = 1, it follows from Holders inequality

that ˜φ ∈ L2(D, dλ). From Theorem 3.1, it follows that T
˜φ ∈ S2.

We say T majorizes S ∈ L(L2
a(D)) if ‖Sf‖ ≤M‖Tf‖ for all f ∈ L2

a(D).

Corollary 3.8. If φ ≥ 0, ˜φ ∈ Lp(D, dλ), 1 ≤ p ≤ 2, and Tφ majorizes Tψ then Tψ ∈ Sp.

Proof. Since Tφ majorizes Tψ , it follows that ‖Tψf‖ ≤ M‖Tφf‖ for some M > 0 and for all
f ∈ L2

a. Hence 〈T ∗
ψTψf, f〉 ≤ M2〈T ∗

φ
Tφf, f〉 for all f ∈ L2

a. That is, T
∗
ψTψ ≤ M2T ∗

φ
Tφ. Since

1 ≤ p ≤ 2, we obtain from [10, 11] that (T ∗
ψTψ)

p/2 ≤ Mp(T ∗
φ
Tφ)

p/2. That is, |Tψ |p ≤ Mp|Tφ|p for
1 ≤ p ≤ 2. Now if ˜φ ∈ Lp(D, dλ), φ ≥ 0, then by [1], Tφ ∈ Sp and

∫

D
〈|Tφ|pkz, kz〉dλ(z) < ∞.

Hence
∫

D
〈|Tψ |pkz, kz〉dλ(z) <∞ and Tψ ∈ Sp.

Corollary 3.9. Let φ, ψ ∈ L∞(D). If Range Tψ ⊆ Range Tφ and φ ∈ Lp(D, dλ), 1 ≤ p ≤ 2 then
Tψ ∈ Sp and ψ̃ ∈ Lp(D, dλ).

Proof. Range Tψ ⊆ Range Tφ implies that Tφ majorizes Tψ . Hence ‖Tψf‖ ≤ M‖Tφf‖ for some
M > 0 and for all f ∈ L2

a. Hence 〈T ∗
ψTψf, f〉 ≤ M2〈T ∗

φTφf, f〉 for all f ∈ L2
a. That is, T

∗
ψTψ ≤

M2T ∗
φ
Tφ. Since 1 ≤ p ≤ 2, we obtain from [10, 11] that (T ∗

ψTψ)
p/2 ≤ Mp(T ∗

φ
Tφ)

p/2. That is,
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|Tψ |p ≤Mp|Tφ|p for 1 ≤ p ≤ 2. Now if φ ∈ Lp(D, dλ) then Tφ ∈ Sp and
∫

D
〈|Tφ|pkz, kz〉dλ(z) <∞.

Hence
∫

D
〈|Tψ |pkz, kz〉dλ(z) <∞. Thus Tψ ∈ Sp and ψ̃ ∈ Lp(D, dλ).

Definition 3.10. A function G ∈ L2
a(D) (G ∈ H2) is called an inner function [12] in L2

a(D)
(resp.,H2) if |G|2 − 1 is orthogonal toH∞. If for some inner function G ∈ L2

a(D) the following
conditions hold then we call it a finite zero divisor in L2

a(D). (i) G vanishes on a = {aj}Nj=1,
a finite sequence of points in D. (ii) ‖G‖L2 = 1. (iii) G is equal to a constant plus a linear
combination of the Bergman kernel functions K(z, a1), K(z, a2), . . . , K(z, an) and certain of
their derivatives. (iv) |G|2 − 1 is orthogonal to L1

h, the class of harmonic functions in L1 of the
disc.

Corollary 3.11. Suppose φ ∈ L∞(D) and ker Tφ ⊆ GL2
a, where G is a finite inner divisor in L2

a(D).
If φ ∈ Lp(D, dλ), 1 ≤ p ≤ 2, then Sψ ∈ Sp, where Sψ is the little Hankel operator on L2

a(D) such that
kerSψ = GL2

a.

Proof. Let b = (bj)
N
j=1 be a finite set of points in D that are the zeroes of the finite inner divisor

G counting multiplicities and I = I(b) = {f ∈ L2
a(D) : f = 0 on b}. Then G is the solution of

the extremal problem

sup
{

Re f (n)(0) : f ∈ I, ‖f‖L2 ≤ 1
}

, (3.15)

where n is the number of times zero appears in the sequence b (i.e., the functions in I have
a common zero of order n at the origin). It is shown in [12] that for

ψ =
N
∑

j=1

mj−1
∑

ν=0

cjν
∂ν

∂bj
ν Kbj (z), (3.16)

where cjν /= 0 for all j, ν and mj is the number of times bj appear in b, kerSψ = GL2
a(D). Now

ker Tφ ⊆ GL2
a = kerSψ implies [13] the operator Tφ that majorizes Sψ . Since φ ∈ Lp(D, dλ),

1 ≤ p ≤ 2, Tφ ∈ Sp. By similar arguments as in Corollary 3.9 one can show that Sψ ∈ Sp.

For any a ∈ D, let γa be the unique geodesic such that γa(0) = 0, γa(1) = a. Then there
exists a unique φa ∈ Aut(D) such that φa ◦ φa(z) ≡ z and γa(1/2) is an isolated fixed point of
φa. Further φa is the geodesic symmetry at γa(1/2). We denote by ma the geodesic midpoint
γa(1/2) of 0 and a. It can easily be verified that each φa has ma as a unique fixed point and
for a ∈ D,ma = ((1 −

√

1 − |a|2)/|a|2)a.
Given λ ∈ D and a measurable function f on D, we have f ◦ φλ = f if and only if there

exists an even function g on D such that f = g ◦ φmλ ; f ◦ φλ = −f if and only if there exists an
odd function g on D such that f = g ◦ φmλ . For proof of this fact see [14].

Corollary 3.12. If φ = θ ◦ φmz for some z ∈ D, θ ∈ L∞(D) and where θ is an even function and
Tφ ∈ Sp, 1 ≤ p <∞, then

∥

∥Tψ◦φz−ψ+φ
∥

∥

Sp
≥
∥

∥Tφ
∥

∥

Sp
(3.17)

for all Tψ ∈ Sp.
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Proof. Since φ = θ ◦ φmz where θ is an even function, by [14], we have φ ◦ φz = φ. Hence
UzTφUz = Tφ◦φz = Tφ. AsUz is unitary, from [15], it follows that

∥

∥UzTψUz − Tψ + Tφ
∥

∥

Sp
≥
∥

∥Tφ
∥

∥

Sp
(3.18)

for all Tψ ∈ Sp. Hence

∥

∥Tψ◦φz−ψ+φ
∥

∥

Sp
≥
∥

∥Tφ
∥

∥

Sp
(3.19)

for all Tψ ∈ Sp.

Theorem 3.13. Suppose there exist constants C,M > 0 such that C > M and ‖P(φ ◦φz)−C‖ ≤M
for all z ∈ D, ˜φ ∈ Lp(D, dλ) and p ∈ [1,∞) is such that the Kantorvich constant K(p) ∈ (0,∞). If
Tφ is bounded below then Tφ ∈ Sp.

Proof. If there exist C > M > 0 such that for all z ∈ D, we have ‖P(φ ◦ φz) − C‖ ≤ M
then ‖Tφkz − Ckz‖ = ‖UzP(φ ◦ φz) − CUz1‖ = ‖P(φ ◦ φz) − C‖ ≤ M for all z ∈ D. Let
Γ = C + M and γ = C − M. Then 0 < γ < Γ and C = (Γ + γ)/2 and M = (Γ − γ)/2. Thus
for all z ∈ D, ‖Tφkz − ((Γ + γ)/2)kz‖ ≤ (1/2)|Γ − γ |‖kz‖. By [16], it follows that there exists
L > 0 such that | ˜φ(z)| = |〈Tφkz, kz〉| ≥ L‖Tφkz‖ for all z ∈ D. Notice that the reproducing
kernels {kz : z ∈ D} span L2

a(D) and Tφ is bounded below. Hence there exist r > 0, s > 0 such
that s ≤ T ∗

φTφ ≤ r. Now if ˜φ ∈ Lp(D, dλ) and p ∈ [1,∞) is such that the Kantorvich constant
K(p) ∈ (0,∞) then

∫

D
‖Tφkz‖pdλ(z) < ∞. From inequalities (2.4) and (2.5), it follows that

∫

D
〈|Tφ|pkz, kz〉dλ(z) <∞. Hence Tφ ∈ Sp.

Let L2(T) be the usual Lebesgue space of functions on the unit circle T, and let the
Hardy space H2 be the class of all L2(T) functions whose negative Fourier coefficients are
zero. Let L∞(T) be the algebra of essentially bounded complex valued functions on the
unit circle T and H∞(T) be the subalgebra of L∞(T) consisting of functions whose negative
Fourier coefficients are zero. Let Rn denote the rational functions with at most n poles
(counting multiplicities) all of which are in the interior of T, and let C(T) denote the algebra
of continuous functions on T. Notice that the following inclusion relations hold:

H∞(T) ⊂ H∞(T) + R1 ⊂ H∞(T) + R2 ⊂ · · ·H∞(T) + C(T). (3.20)

For φ ∈ L∞(T), let Bφ : H2 → H2 be the Toeplitz operator on H2 with symbol φ, and let
Γφ : H2 → H2 be the Hankel operator with symbol φ. Nehari [17], Adamjan et al. [5], and
Hartman [18], respectively, proved the following results:

(i) ‖Γφ‖ = d(φ,H∞(T));

(ii) sk(Γφ) = d(φ,H∞(T) +Rn);

(iii) ‖Γφ‖e = d(φ,H
∞(T) + C(T)),
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where ‖Γφ‖e denotes the essential norm of Γφ. Feintuch in [19, 20] obtained the following
operator theoretic analogues of these distance formulae. Given T ∈ L(H2(T)), define a
sequence {Γn(T)} of operators onH2(T) by Γn(T) = JnTSn+1, n = 1, 2, . . ., where for z ∈ T,

Jnz
i =

⎧

⎨

⎩

zn−i, if 0 ≤ i ≤ n,

0, if i > n,
(3.21)

and S is the unilateral shift on H2(T). Let ̂T denote the family of operators T for which
{Γn(T)} converges strongly and

L0 =
{

T ∈ ̂T : Γn(T) converges strongly to 0
}

;

Lk = L0 +
{

Bφ : φ ∈ H∞(T) + Rk

}

;

L∞ = L0 +
{

Bφ : φ ∈ H∞(T) + C(T)
}

.

(3.22)

Then (i) d(T,L0) = ‖Γ(T)‖; (ii) d(T,Lk) = sk(Γ(T)); (iii) d(T,L∞) = ‖Γ(T)‖e. In
particular when T = Bφ, φ ∈ L∞(T)we have

(i) d(Bφ,L0) = ‖Γφ‖ = d(φ,H∞(T));

(ii) d(Bφ,Lk) = sk(Γφ) = d(φ,H∞(T) + Rk);

(iii) d(Bφ,L∞) = ‖Γφ‖e = d(φ,H
∞(T) + C(T)).

Yamada [21] also obtained distance formulas involving the norm of Toeplitz operators
on the Hardy space.

It is well known that [1] there are no compact Toeplitz operators on the Hardy
space other than the zero operator. In the Bergman space setting, however, there are lots
of nontrivial compact Toeplitz operators belonging to different Schatten classes. In view of
this it is of interest to know whether such distance formulae is possible for Toeplitz and
Hankel operators defined on the Bergman space and the characterization of Schatten class
Toeplitz operators is also important in this context. These results play an important role in
approximation theory.
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