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1. Introduction

The renowned Rabinowitsch result for complex quadratic fields proved in 1913, published
in [1], says that if Δ = 1 − 4m is square-free, then the class number, hΔ, of the complex
quadratic field Q(

√
Δ) is 1 exactly when x2 + x + m is prime for all integers x ∈ [0, m − 3].

The Rabinowitsch-Mollin-Williams Theorem is the real quadratic field analogue of the
Rabinowitsch result, introduced in 1988, published in [2] by this author and Williams. In
[2] and in subsequent renderings of the result, we considered all values of Δ. However, the
case where Δ/≡ 1(mod4) is essentially trivial, and the values (unconditionally) known for
these Rabinowitsch polynomials are Δ ∈ {2, 3, 6, 7, 11}—see [3]. Therefore, we consider only
the interesting case, namely, Δ ≡ 1(mod 4).

Theorem 1.1 (Rabinowitsch-Mollin-Williams). If Δ = 1 + 4m, where m ∈ N, then the following
are equivalent.

(a) fm(x) = x2 + x −m is 1 or prime for all integers x ∈ [1,
√
m].

(b) hΔ = 1 and Δ = s2 + r, where r ∈ {1,±4}.

Proof. See [2], as well as [4, 5] and Theorem 3.14 below for an update.
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A version of Theorem 1.1 was rediscovered by Byeon and Stark [6] in 2002. Then
in 2003 [7], they claimed to have classified all of the Rabinowitsch polynomials. However,
their list is incomplete. In this paper, we provide the complete and unconditional solution
of finding all Rabinowitsch polynomials of narrow Richaud-Degert type, namely, those for
which Δ = s2 + r where r ∈ {±1,±4}, adding three values missed in [7]. The balance of the
Rabinowitsch polynomials turn out to be of wide Richaud-Degert type, namely for those of the
form Δ = s2 + r, where r | 4s. In this case, we cite the well-known methodology for showing
that the balance of the list is complete “with one possible GRH-ruled-out exception” and add
two values missed in [7]. (Here GRHmeans the generalized Riemann hypothesis.) Lastly, we
show how four conjectures posed by this author in 1988 in [8] are affirmatively settled via the
above and complement another conjecture by this author affirmatively verified by Byeon et
al. in [9].

2. Preliminaries

We will be discussing continued fraction expansions herein for which we remind the reader
of the following, the details and background of which may be found in [10] or for a more
advanced approach in [4].

We denote the infinite simple continued fraction expansion of a given α ∈ R by

α =
〈
q0; q1, q2, . . .

〉
where qj ∈ N for j ∈ N, q0 = �α�, (2.1)

where �α� is the floor of α, namely, the greatest integer less than or equal to α. It turns out
that infinite simple continued fraction expansions are irrational. There is a specific type of
irrational that we need as follows.

Definition 2.1 (quadratic irrationals). A real number α is called a quadratic irrational if it is an
irrational number which is the root of f(x) = ax2 + bx + c,where a, b, c ∈ Z and a/= 0.

Remark 2.2. A real number α is a quadratic irrational if and only if there exist P,Q,Δ ∈ Z such
that Q/= 0, Δ ∈ N is not a perfect square, and

α =
P +

√
Δ

Q
, (P,Q ∈ Z). (2.2)

Moreover, if α is a quadratic irrational, then Q | (P 2 −Δ). Also,

α′ =

(
P −

√
Δ
)

Q
(2.3)

is called the algebraic conjugate of α. Here both α and α′ are the roots of

f(x) = x2 − Tr(α)x +N(α), (2.4)

where Tr(α) = α + α′ is the trace of α, andN(α) = α · α′ is the norm of α—see [10, Theorem 5.9,
page 222].



International Journal of Mathematics and Mathematical Sciences 3

Now, given a quadratic irrational α = (P +
√
Δ)/Q, set P = P0, Q = Q0, and for j ≥ 0

define

Pj+1 = qjQj − Pj, (2.5)

Δ = P 2
j+1 +QjQj+1, (2.6)

αj =
Pj +

√
Δ

Qj
, (2.7)

qj =
⌊
αj

⌋
. (2.8)

Since we are primarily concerned with the case Δ ≡ 1(mod4), we assume this for the
balance of the discussion.

We need to link quadratic irrationals associated with discriminant Δ to OΔ-ideals,
namely, ideals in

OΔ = Z

[
1 +

√
Δ

2

]

= Z ⊕
(

1 +
√
Δ

2

)

Z, (2.9)

the ring of integers ormaximal order in Q(
√
Δ)—see [11, Theorem 1.77, page 41]. We begin with

the following.

Theorem 2.3 (ideal criterion). Let I be a nonzero Z-submodule of OΔ. Then I has a representation
in the form

I =

⎡

⎢
⎣a, b′ +

c
(
1 +

√
Δ
)

2

⎤

⎥
⎦, (2.10)

where a, c ∈ N, and 0 ≤ b′ < a. Furthermore, I is anOΔ-ideal if and only if this representation satisfies
c | a, c | b′, and ac | N((b′ + c(1 +

√
Δ)/2)).

Proof. See [4, Theorem 1.2.1, page 9] or [12, Theorem 3.5.1, page 173].

Remark 2.4. If c = 1, then I = [a, (b +
√
Δ)/2] is called a primitive OΔ-ideal, where b = 2b′ + 1

in Theorem 2.3, when b2 ≡ Δ(mod4a). Furthermore, there is a one-to-one correspondence
between the primitive OΔ-ideals and quadratic irrationals of the form

α =
P ′ +

(
1 +

√
Δ
)
/2

Q′ =
2P ′ + 1 +

√
Δ

2Q′ =
P +

√
Δ

Q
, (2.11)

where P = 2P ′ + 1, Q = 2Q′, and P 2 ≡ Δ(modQ). To see this, let I = [a, (b +
√
Δ)/2] be

a primitive OΔ-ideal, and set α = (b +
√
Δ)/(2a), which is a quadratic irrational, since b2 ≡

Δ(mod4a) by Theorem 2.3. By setting P = b and Q = 2a, then α = (P +
√
Δ)/Q and I =

[Q,/2, (P +
√
Δ)/2]. Thus, to each primitive OΔ-ideal there exists a quadratic irrational of the

form (2.11).
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Conversely, suppose that we have a quadratic irrational of the form (2.11). Then set
a = |Q|/2 and b = P . Then I = [a, (b +

√
Δ)/2] is a primitive OΔ-ideal by Theorem 2.3, so to

each quadratic irrational of type (2.11), there corresponds a primitive OΔ-ideal.

Example 2.5. It is possible to have a quadratic irrational of type (2.11) corresponding to
a nonprimitive OΔ-deal. However, this does not alter the fact that there is a one-to-one
correspondence between them and the primitive OΔ-deals, as demonstrated in Remark 2.4.
For instance, the principal ideal I = (4) = [4, 1+

√
5] is not primitive inOΔ = O5 = Z[(1+

√
5)/2]

since c = 2. Yet the quadratic irrational α = (1 +
√
5)/4 is of type (2.11). But α corresponds to

the primitive ideal [2, (1 +
√
5)/2] via the methodology in Remark 2.4. However, it is worthy

of note that if we allow nonmaximal orders, then this permits the solution of an interesting
Diophantine problem as follows. If Δ ≡ 5(mod8) and we conisder the nonmaximal order
Z[

√
Δ], then the Diophantine equation |x2 − Δy2| = 4 with gcd(x, y) = 1 is solvable if and

only if I = [4, 1 +
√
Δ] is a principal ideal in Z[

√
Δ]—see [4, Exercise 2.1.16, page 61] and [4,

Section 1.5, pages 23–30] for background details on nonmaximal orders.
Also, to see why we must specialize to quadratic irrationals of type (2.11), we have

2 +
√
5, which is a quadratic irrational by Definition 2.1, but is not of type (2.11). Moreover, it

corresponds to the ideal [1, 2+
√
5], which is not primitive, and it does not correspond to any

primitive ideal as does α above.

Remark 2.4 and Example 2.5 motivate the following.

Definition 2.6 (ideals and quadratic irrationals). To each quadratic irrational α = (P +
√
Δ)/Q,

with P odd, Q even, (and Δ ≡ 1(mod 4)), there corresponds the primitive OΔ-ideal

I =

⎡

⎢
⎣
|Q|
2

,

(
P +

√
Δ
)

2

⎤

⎥
⎦. (2.12)

We denote this ideal by [α] = I and write �(I) for �(α).

The infinite simple continued fraction of α given by 〈q0; q1, q2, . . .〉 is called periodic
(sometimes called eventually periodic), if there exists an integer k ≥ 0 and � ∈ N such that
qn = qn+� for all integers n ≥ k. We use the notation

α =
〈
q0; q1, . . . , qk−1, qk, qk+1, . . . , q�+k−1

〉
, (2.13)

as a convenient abbreviation. The smallest such natural number � = �(α) is called the period
length of α, and q0, q1, . . . , qk−1 is called the preperiod of α. If k is the least nonnegative integer
such that qn = qn+� for all n ≥ k, then qk, qk+1, . . . , qk+�−1 is called the fundamental period of α.
In particular, we consider the so-called principal surd of OΔ, α = (1 +

√
Δ)/2 for which it is

known that

1 +
√
Δ

2
=
〈
q0; q1, . . . , q�−1, 2q0 − 1

〉
. (2.14)

We will need the following facts concerning period length.
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If �(α) = � is even, then

P�/2 = P�/2+1, (2.15)

and if � is odd, then

Q(�+1)/2 = Q(�−1)/2. (2.16)

Furthermore, since we are assuming Δ ≡ 1(mod 4), then for 1 ≤ j ≤ �(α),

Qj = Q0 = 2 iff j = �(α), (2.17)

Qj is even Pj is odd for all such j. (2.18)

Now we link pure periodicity with an important concept that will lead to the intimate link
with ideals.

Definition 2.7 (reduced quadratic irrationals). Let α = (P +
√
Δ)/Q be a quadratic irrational.

If α > 1 and −1 < α′ < 0, then α is called reduced.
The next result sets the stage for our primary discussion.

Theorem 2.8 (pure periodicity equals reduction). Let α = 〈q0; q1, . . .〉 be an infinite simple
continued fraction, with �(α) = � ∈ N. Then α is reduced if and only if α is purely periodic, which
means k = 0 in (2.13), namely,

α =
〈
q0; q1, . . . , q�−1

〉
. (2.19)

Proof. See [10, Theorem 5.12, page 228].

Note that the notion of reduction for quadratic irrationals translates to ideals, namely
we have the following.

Definition 2.9 (reduced ideals). An OΔ-ideal is said to be reduced if it is primitive and does not
contain any nonzero element α such that both |α| < N(I) and |α′| < N(I).

To see how this is tied to Definition 2.7, we need the following.

Theorem 2.10 (reduced ideals and quadratic irrationals). I = [a, (b +
√
Δ)/2] is reduced if and

only if there is a β ∈ I such that I = [N(I), β] with β > N(I) and −N(I) < β′ < 0.

Proof. See [4, Lemma 1.4.1, page 19] or [12, Theorem 5.5.1, page 258].

Corollary 2.11. If I = [a, (b +
√
Δ)/2] is a primitive OΔ-ideal, with γ = (b +

√
Δ)/a > 1 and

−1 < (b −
√
Δ)/2 < 0, then I is reduced.
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Now, we let CΔ be the ideal-class group of OΔ and hΔ = |CΔ| the ideal class number.
If I, J are OΔ-ideals, then equivalence of classes in CΔ is denoted by I ∼ J , and the class
of I is denoted by I. The following is crucial to the interplay between ideals and continued
fractions, known as the infrastructure theorem for real quadratic fields or the continued fraction
algorithm. (This holds for arbitrary Δ, not just Δ ≡ 1(mod 4).)

Theorem 2.12 (the continued fraction algorithm). Let I = I1 = [Q0/2, (P0 +
√
Δ + 1)/2] be an

OΔ-ideal corresponding to the quadratic irrational α = α0 = (P0 +
√
Δ)/2, and let Pj, Qj be as given

in (2.5)–(2.7). If Ij = [Qj−1/2, (Pj−1 +
√
Δ)/2], then I1 ∼ Ij for all j ≥ 1. Moreover, there exists a

least value m ∈ N such that Im+i is reduced for all i ≥ 0.

Proof. See [4, Theorem 2.1.2, page 44].

Corollary 2.13. A reduced OΔ-ideal, I = [Q/2, (P +
√
Δ/2] for Δ ≡ 1(mod 4) is principal if and

only ifQ = Qj for some positive integer j ≤ �((1+
√
Δ)/2) in the simple continued fraction expansion

of (1 +
√
Δ)/2.

Proof. See [13].

Remark 2.14. The infrastructure given in Theorem 2.12 demonstrates that if we begin with any
primitive OΔ-ideal I, then after applying the continued fraction algorithm to α = α0, we must
ultimately reach a reduced ideal Im ∼ I for somem ≥ 1. Furthermore, once we have produced
this ideal Im, we enter into a periodic cycle of reduced ideals, and this periodic cycle contains
all the reduced ideals equivalent to I.

By Remark 2.14, once we have achieved a reduced ideal Im via the continued fraction
algorithm, then the cycle becomes periodic. Thus, it makes sense to have a name for this
period length. This is given in what follows, motivated by Definition 2.6 and the continued
fraction algorithm.

Definition 2.15 (cycles and periods of reduced ideals). If I = I1 = [Q/2, (P +
√
Δ)/2] is a

reduced OΔ-ideal and � is the least positive integer such that I1 = I�+1 = [Q�/2, (P� +
√
Δ)/2],

then αj = (Pj +
√
Δ)/Qj for j ≥ 0 all have the same period length �(αj) = �(α0) = �(α) via

[
αj

]
= Ij+1 =

⎡

⎢
⎣
Qj

2
,

(
Pj +

√
Δ
)

2

⎤

⎥
⎦. (2.20)

We denote this common value by � = �(C) where C is the equivalence class of I in CΔ, and
call this value the period length of the cycle of reduced ideals equivalent to I. If we wish to keep
track of the specific ideal, then we write �(I) for �.

Remark 2.16. If I = [Q/2, (P +
√
Δ)/2] is a reduced OΔ-ideal, then the set

{
Q1

2
,
Q2

2
, . . . ,

Q�

2

}
(2.21)

represents the norms of all the reduced ideals equivelnt to I (via the continued fraction expansion
of α = (P +

√
Δ)/Q).
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3. Prime-Producing Polynomials

We begin by stating a very palatable result by Biro that we will employ in our classification.

Lemma 3.1 (Chowla’s conjecture verified). If Δ = 4p2 + 1 is square-free with some integer p >
1861, then hΔ > 1.

Proof. See [14, Corollary, page 179].

Corollary 3.2. The only values for which hΔ = 1 with Δ = 4p2 + 1 square-free are given by p ∈
{1, 2, 3, 5, 7, 13}.

In what follows, Δ = 4m + 1 for m ∈ N, and q ∈ N is a square-free divisor of Δ, with

FΔ,q(x) = qx2 + qx −m. (3.1)

FΔ,q(x) is called the Euler-Rabinowitsch polynomial, whichwas introduced by this author
in [4, Chapter 4], to discuss prime-producing quadratic polynomials and is a generalization
of fm(x) = FΔ,1(x) used in [6, 7], where he dubbed it the Rabinowitsch polynomial. We now
show how all Rabinowitsch polynomials may be determined.

Theorem 3.3. If |fm(x)| = |FΔ,1(x)| is prime for all x ∈ [1,
√
m], then Δ = 4p2 + 1 for some prime p

and hΔ = 1. Also, the only values for which the above holds are

Δ ∈ {17, 37, 101, 197, 677}. (3.2)

Proof. First we show that Δ cannot be a perfect square. If Δ = r2, then

FΔ,1

(
r − 1
2

)
=
(
r − 1
2

)2

+
r − 1
2

− r2 − 1
4

= 0, (3.3)

contradicting the hypothesis since (r − 1)/2 <
√
m.

Now we prove that Δ must be square-free. If Δ = r2Δ0, then Δ0 /= 1 since Δ is not a
perfect square. Hence, Δ0 ≥ 5. Also, if r >

√
m, then

r2 > m =
r2Δ0 − 1

4
≥ 5r2 − 1

4
> r2, (3.4)

a contradiction, so r ≤ √
m. Therefore, since

FΔ,1

(
r − 1
2

)
= r2
(
1 −Δ0

4

)
, (3.5)

this contradicts the hypothesis if r > 1. Hence, r = 1, and Δ is square-free and so may be used
for simple continued fraction expansions in the maximal order OΔ = Z[(1 +

√
Δ)/2].
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Ifm is even, then

|FΔ,1(2)| =
∣
∣
∣2
(
3 − m

2

)∣∣
∣ (3.6)

is composite unless m = 4, namely, unless Δ = 17, observing that m/= 2, 6 since 4 · 2 + 1 = 32

and 4 · 6 = 1 = 52. Thus, we may assume that m is odd.
In the continued fraction expansion of α = (1 +

√
Δ)/2, Δ = P 2

j +QjQj−1 for all natural
numbers j ≤ �(α) by (2.6). We now show that �(α) = 3.

Suppose that �(α) > 3. By (2.18), for each j = 1, 2, . . . , �(α), we may set

xj =
Pj − 1
2

. (3.7)

Since 1 ≤ Pj <
√
Δ by (2.6), then 0 ≤ xj ≤ (

√
Δ − 1)/2. If Qj = 2 for any j = 1, 2, 3, then by

(2.17), �(α) ≤ 3, a contradiction. Thus,Qj /= 2 for j ∈ {1, 2, 3}. However, if xj /= 0, then |FΔ,1(xj)|
is prime by hypothesis since xj ≤ �√m� for j = 1, 2, 3. We have, by (2.6), that

∣∣FΔ,1
(
xj

)∣∣ =
∣∣∣x2

j + xj −m
∣∣∣ =

∣∣∣∣∣

P 2
j −Δ

4

∣∣∣∣∣
=

QjQj−1
4

. (3.8)

Therefore, QjQj−1 = 4p where p is prime if xj /= 0. Now suppose that j = 2. Since Qj is even
for all j ∈ N by (2.18), then Q1 = 2p and Q2 = 2, a contradiction as above. We have shown
that x2 = 0. If j = 3, then by the same argument Q3 = 2, a contradiction. We have shown that
x3 = 0. Hence, by (2.5),

P3 = 1 = q2Q2 − P2 = q2Q2 − 1, (3.9)

which implies that 2 = q2Q2 forcing Q2 = 2, a contradiction. We have shown that �(α) ≤ 3.
If �(α) = 1, then Q0 = Q1 = 2, and Δ = P 2

1 + 4 with

|FΔ,1(x1)| = Q1Q0

4
= 1, (3.10)

contradicting the hypothesis unless x1 = 0 which means Δ = 5. However, F5,1(1) = 1, where
1 ∈ [1,

√
m] = {1}, contradicting the hypothesis. Hence, �(α) > 1.

If �(α) = 2, then by (3.8), Q1 = 2p for a prime p, Q2 = 2, and P2 = P1 by (2.15). Hence,
by (2.5)

P1 = P2 = q12p − P1, (3.11)

which implies that P1 = q1p. Now we show that q1 = 1.
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Assume to the contrary that q1 ≥ 3, since P1 is odd by (2.18). Then by (2.6),Δ = P 2
1 +4p.

Therefore p <
√
Δ − 2. If we let x = (p − 1)/2 ≤ √

m, then

|FΔ,1(x)| =
∣
∣
∣
∣
∣
p2 −Δ

4

∣
∣
∣
∣
∣
= p

∣
∣
∣
∣
p −Δ/p

4

∣
∣
∣
∣ = p, (3.12)

by hypothesis, which forces p − Δ/p = −4, namely, Δ = p2 + 4p, and q1 = 1. Therefore,
m = (p2 + 4p − 1)/4, so (p + 1)/2 <

√
m < (p + 2)/2, which implies that �√m� = (p + 1)/2.

Therefore,

FΔ,1

(
p + 1
2

)
=
(
p + 1
2

)2

+
p + 1
2

−
(

p2 + 4p − 1
4

)

= 1, (3.13)

contradicting the hypothesis which says FΔ,1(x) is prime for all x ∈ [1,
√
m]. We have shown

that �(α) = 3. Thus, Q2 /= 2, so by (3.8), for j = 2, we get x2 = 0, which means P2 = 1. For j = 1,
(3.8) tells us that Q1 = 2p where p is prime since Q0 = 2. By (2.16), Q2 = Q1 since �(α) = 3, so
by (2.6)

Δ = 4m + 1 = P 2
2 +Q2Q1 = 1 + 4p2, (3.14)

as we sought to show. Now we show that hΔ = 1 for these values.
By Theorem 2.12, if I is an ideal class in CΔ, then I contains a reduced ideal I =

[Q/2, (P +
√
Δ)/2]. Using a similar argument to the above on β = (P +

√
Δ)/Q as we did

for α = (1 +
√
Δ)/2, we achieve that I is in a cycle of period length 3, namely �(β) = �(I) = 3.

Now in the simple continued fraction expansion of β, let Q = Q0 and P = P0. Then, as in the
case for α, (where we use the same symbols Qj without risk of confusion since we are done
with α),Q2 = Q1, P2 = 1, and by (3.8) applied to βs values ofQj , we must have thatQ1Q0 = 4q
for some prime q. If Q0 = 2, then by Corollary 2.13, I ∼ 1. If Q0 > 2, then since Q1 is even by
(2.18), we must have either q = 2 = Q1 and Q0 = 4, or Q0 = 2q and Q1 = 2. In either case, by
Corollary 2.13 again, I ∼ 1. Hence, hΔ = 1.

By Lemma 3.1, the only values for which the result holds are in the list (3.2).

The following is the affirmative solution of four conjectures by this author posed in
1988 in [8, Conjectures 1–4, page 20]—see also [15, page 311]. Note that the equivalence of
the conjectures follows from [2].

Corollary 3.4. For a prime p = 4m + 1 = 4q2 + 1, where q is prime, |fq2(x)| = |x2 + x − q2| is prime
for x ∈ [1, q] if and only if q ≤ 13.

Corollary 3.5. Suppose that p = 4q2 + 1 is prime, where q is prime. Then all odd primes r < q are
inert in Q(√p) if and only if q ≤ 13.

Corollary 3.6. Suppose that p = 4q2 + 1 is prime, where q is prime. Then fq2(x)/≡ 0(mod r) for all
positive integers x and primes r satisfying x < r < q if and only if q ≤ 13.

Corollary 3.7. Suppose that p = 4q2 + 1 is prime, where q is prime and F = Q(√p) with Dedekind-
zeta function ζF . Then 2ζF(−1) = q(2q2 + 7)/45 if and only if q ≤ 13.
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Example 3.8. A nice illustration of Corollary 3.7 is for q = 3, with p = 37, where

ζF(−1) =
q
(
2q2 + 7

)

90
=

5
6
. (3.15)

Now we look at a slight variation that captures more of the results in [6, 7], as well as some
missed by them. We will be using the following other beautiful result by Biro.

Lemma 3.9 (Yokoi’s conjecture verified). IfΔ = p2+4 is square-free for some odd integer p > 1861,
then hΔ > 1.

Proof. See [16].

Corollary 3.10. If hΔ = 1 for Δ = p2 + 4 square-free, then p ∈ {1, 3, 5, 7, 13, 17}.

As well, we will be employing the following equally pleasant result by Byeon, Kim,
and Lee, who used methods similar to those of Biro.

Lemma 3.11 (Mollin’s conjecture verified). If Δ = n2 − 4 is square-free, then hΔ > 1 for n > 21.

Proof. See [9].

Corollary 3.12. If hΔ = 1 for Δ = n2 − 4 square-free, then n ∈ {3, 5, 9, 21}.

Theorem 3.13. If |fm(x)| = |FΔ,1(x)| is 1 or prime for all x ∈ [0,
√
m − 1], where Δ = 4m + 1, then

for Δ/= 9, either

Δ = n2 − 4 for some n ∈ N, hΔ = 1, (3.16)

or

Δ = p2 + 4 for a prime p > 2, hΔ = 1. (3.17)

Also, the only values for which (3.16) holds are

Δ ∈ {5, 21, 77, 437}, (3.18)

and the only values for which (3.17) holds are

Δ ∈ {13, 29, 53, 173, 293}. (3.19)

Proof. IfΔ = r2, then by hypothesis |FΔ,1(0)| = (r2−1)/4 = p, where p is prime. Thus, (r−1)(r+
1) = 4p, from which we deduce that the only possibility is p = 2 = m and r = 3, namely,Δ = 9,
contradicting the hypothesis. Thus, Δ is not a square. Moreover, by the same argument as in
the proof of Theorem 3.3,Δ is square-free. Hence, we may apply continued fraction theory as
above.
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If m is even, then FΔ,1(0) = −m, contradicting the hypothesis unless m = 2, for which
Δ = 9. Hence we may assume that m is odd and since m = 1 gives Δ = 5 which satisfies the
hypothesis, we assume that m > 1 is odd.

Let α = (1 +
√
Δ)/2, so in the continued fraction expansion of α, Δ = P 2

j + QjQj−1 for
1 ≤ j ≤ �(α) by (2.6). If xj is given by (3.7), then by (3.8), we see that since xj ∈ [0,

√
m − 1],

then by hypothesis

∣
∣FΔ,1

(
xj

)∣∣ =
QjQj−1

4
(3.20)

is prime for j = 1, 2, . . . , �(α). In particular, Q1 = 2p for a prime p, and Q1Q2 = 4q for a prime
q. However, sinceQj is even for all j by (2.18), thenQ2 = 2, andQ1 = 2q is the only possibility.
Thus, �(α) = 2, so p = q and Q1 = Q2. By the same argument as in the proof of Theorem 3.3,
Δ = p2 + 4p = (p + 2)2 − 4.

By virtually the same argument as used in the proof of Theorem 3.3, we get hΔ = 1.
However, by Corollary 3.12, the values of Δ are those in the list (3.18).

Lastly, we may assume that �(α) = 1, namely,Δ = P 2
1 +4. Again, by the same argument

as used in the proof of Theorem 3.3, we get that P1 = p, a prime, and hΔ = 1. Thus, by
Corollary 3.10, the values are those in the list (3.19).

Putting Theorems 3.3 and 3.13 together, we get an (unconditional) update on the
Rabinowitsch-Mollin-Williams Theorem as follows. This is a complete determination of
all narrow Richaud-Degert types with class number 1, for which there exist exactly 14
Rabinowitsch polynomials, based upon the recent solution of the Chowla, Mollin, and Yokoi
conjectures in Lemmas 3.1–3.11. Note as well that in both [7, 17] it is proved there are only
finitely many Rabinowitsch polynomials fm.

We list the 14 values (of narrow Richaud-Degert types) unconditionally in Theorem
3.14, whereas the remaining list of four wide Richaud-Degert types is complete with one
possible exception, whose existence would be a counterexample to the GRH. We list the 18
Rabinowitsch polynomials below, excluding the degenerate case of Δ = 9 which is included
in the 14 values in [7].

Note, as well, that although the original Theorem 1.1 only considers the values of
x ∈ [1,

√
m], and Theorem 3.13 considers x ∈ [0,

√
m − 1], the value of the Rabinowitsch

polynomials therein also has |fm(�
√
m�)| being 1 or prime as well. The restriction in

Theorem 3.13 for the range of x values was made to be in synch with the setup in [6, 7]
in order to correct and complete their results. Hence, the following is indeed an update and
an unconditional rendering of the original.

Theorem 3.14 (Rabinowitsch-Mollin-Williams updated). If Δ = 4m + 1, m/= 2, then the
followings are equivalent.

(a) |fm(x)| = |x2 + x −m| is 1 or prime for all x ∈ [1,
√
m].

(b) hΔ = 1 and Δ is one of the following forms:

(i) n2 − 4 for some n ∈ N,
(ii) p2 + 4 for a prime p > 2,
(iii) 4p2 + 1 for a prime p.

(c) Δ ∈ {5, 13, 17, 21, 29, 37, 53, 77, 101, 173, 197, 293, 437, 677}.
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Remark 3.15. This remark is provided for the sake of completeness and explaining details in
extending the results in [7]. Therein the authors missed all of the values 21, 77, and 437. The
value 21 is of their type (iii) with, in their notation, x0 = 0, n = −1, t = 2, and m = 5, so the
corresponding Rabinowitsch polynomial is

f5(x) = x2 + x − 5 which is prime for x ∈ [0, 1] = [x0, x0 + t − 1]. (3.21)

The value 77 is of type (iii) with x0 = 0, n = −1, t = 4, and m = 19, with Rabinowitsch
polynomial

f19(x) = x2 + x − 19 being prime for x ∈ [0, 3] = [x0, x0 + t − 1]. (3.22)

Indeed, f19(x) is prime or 1 for all x ∈ [0, 9] or three times the length. Lastly, 437 is of type
(iii)with x0 = 0, n = −1, t = 10, and m = 109, with

f109(x) = x2 + x − 109 which is 1 or prime for x ∈ [0, 9] = [x0, x0 + t − 1]. (3.23)

Again, here f109(x) is 1 or prime for triple the length, namely, for x ∈ [0, 27]. These 14
values are exactly the values listed in [4, Table 4.2.3, page 139], after the statement of
the Rabinowitsch-Mollin-Williams Theorem therein. Also in the following we capture the
remaining values from [7] and others they missed.

The following deals with wide Richaud-Degert types and captures the balance of the
values using the Euler-Rabinowitsch polynomial FΔ,p(x) for a prime p dividingΔ. Recall that
hΔ = 1 for a composite Δ can occur only if Δ = pq,where p ≡ q ≡ 3(mod 4), are primes.

In [4, Conjecture 4.2.1, page 140], we provided the following conjecture for wide
Richaud-Degert types that remains open.

Conjecture 1. If Δ = pq ≡ 5(mod 8), where p ≡ q ≡ 3(mod 4), are primes with p < q, then the
following are equivalent.

(a) |FΔ,p(x)| is 1 or prime for all x ∈ [0, (
√
Δ − 2)/4].

(b) Δ = p2s2 ± 4p of Δ = 4p2s2 − p for some s ∈ N and hΔ = 1.

Remark 3.16. We have a list of values for Conjecture 1, which as above, we know is valid with
one possible GRH-ruled-out exception. It is

Δ ∈ {33, 69, 93, 141, 213, 237, 413, 453, 573, 717, 1077, 1133, 1253, 1293, 1757}. (3.24)

The use of FΔ,p(x) is much less demanding than the use of fm(x), and the lone two values
found in [7] attest to this. However, they missed two other values for fm(x) that we now
provide and we are able to pose a new conjecture on the basis of it, which does not appear in
literature thus far.
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Table 1

Δ m [x0, y0] Values of |fm(x)| for x ∈ [x0, y0]
5 1 [0, 1] 1, 1
13 3 [0, 1] 3, 1
17 4 [1, 2] 2, 2
21 5 [0, 2] 5, 3, 1
29 7 [0, 2] 7, 5, 1
37 9 [1, 3] 7, 3, 3
53 13 [0, 3] 13, 11, 7, 1
69 17 [2, 5] 17, 5, 3, 13
77 19 [0, 4] 19, 17, 13, 7, 1
93 23 [2, 5] 17, 11, 3, 7
101 25 [1, 5] 23, 19, 13, 5, 5
173 43 [0, 6] 43, 41, 37, 31, 23, 13, 1
197 49 [1, 7] 47, 43, 37, 29, 19, 7, 7
293 73 [0, 8] 73, 71, 67, 61, 53, 43, 31, 17, 1
413 103 [4, 13] 83, 73, 61, 47, 31, 13, 7, 29, 53, 79
437 109 [0, 10] 109, 107, 103, 97, 89, 79, 67, 53, 37, 19, 1
677 169 [1, 13] 167, 163, 157, 149, 139, 127, 113, 97, 79, 59, 37, 13, 13
1133 283 [6, 21] 241, 227, 211, 193, 173, 151, 127, 101, 73, 43, 11,

23, 59, 97, 137, 179

Conjecture 2. If 1 + 4m = Δ = pq with p < q primes and |fm(x)| is prime for all x ∈ [(p +
1)/2,

√
m + (p − 1)/2], then

Δ = 9p2 ± 4p for an odd prime p, hΔ = 1. (3.25)

Moreover, the only values for which (3.25) holds are

Δ ∈ {69, 93, 413, 1133}. (3.26)

By the above discussion, we know that the list (see Table 1) in (3.26) is complete with
one possible GRH-ruled-out exception. The wide Richaud-Degert values missed in [7] are
Δ = 69 and Δ = 93. We now have a complete list of the 18 Rabinowisch polynomials with one
possible exception on the wide Richaud-Degert types, where we exclude Δ = 9 for reasons
given above. If we included the latter then the corrected list in [7] grows from 14 to 19 values.

Remark 3.17. After the writing of this paper Anitha Srinivasan informed me that, in an
unpublished manuscript, she has proved Conjecture 2. Thus, we will address this and other
matters in later joint work.
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