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1. Introduction

Let X be a real Hilbert space with the inner product 〈·, ·〉 and with the norm ‖ · ‖ on X. We
consider the inclusion problem. Find a solution to

0 ∈ M(x), (1.1)

where M : X → 2X is a set-valued mapping on X.
Rockafellar [1, Theorem 2] discussed general convergence of the proximal point

algorithm in the context of solving (1.1), by showing for M maximal monotone, that the
sequence {xk} generated for an initial point x0 by the proximal point algorithm

xk+1 ≈ Pk

(
xk

)
(1.2)
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converges strongly to a solution of (1.1), provided that the approximation is made sufficiently
accurate as the iteration proceeds, where Pk = (I + ckM)−1 is the resolvent operator for a
sequence {ck} of positive real numbers, that is bounded away from zero. We observe from
(1.2) that xk+1 is an approximate solution to inclusion problem

0 ∈ M(x) + c−1k
(
x − xk

)
. (1.3)

Next, we state the theorem of Rockafellar [1, Theorem 2], where an approach of using
the Lipschitz continuity of M−1 instead of the strong monotonicity of M is considered, that
turned out to be more application enhanced to convex programming. Moreover, it is well-
known that the resolvent operator Pk = (I + ckM)−1 is nonexpansive, so it does not seem to
be possible to achieve a linear convergence without having the Lipschitz continuity constant
less than one in that setting. This could have been the motivation behind looking for the
Lipschitz continuity of M−1 at zero which helped achieving the Lipschitz continuity of Pk

with Lipschitz constant that is less than one instead.

Theorem 1.1. Let X be a real Hilbert space, and let M : X → 2X be maximal monotone. For an
arbitrarily chosen initial point x0, let the sequence {xk} be generated by the proximal point algorithm
(1.2) such that

∥∥∥xk+1 − Pk

(
xk

)∥∥∥ ≤ εk, (1.4)

where Pk = (I + ckM)−1, and the scalar sequences {εk} and {ck}, respectively, satisfy Σ∞
k=0εk < ∞

and {ck} is bounded away from zero.

We further suppose that sequence {xk} is generated by the proximal point algorithm
(1.2) such that

∥∥∥xk+1 − Pk

(
xk

)∥∥∥ ≤ δk
∥∥∥xk+1 − xk

∥∥∥, (1.5)

where scalar sequences {δk} and {ck}, respectively, satisfy Σ∞
k=0δk < ∞ and ck ↑ c ≤ ∞.

Also, assume that {xk} is bounded in the sense that the solution set to (1.1) is
nonempty, and that M−1 is (a)-Lipschitz continuous at 0 for a > 0. Let

μk =
a√

a2 + c2
k

< 1. (1.6)

Then the sequence {xk} converges strongly to x∗, a unique solution to (1.1) with

∥∥∥xk+1 − x∗
∥∥∥ ≤ αk

∥∥∥xk − x∗
∥∥∥ ∀k ≥ k′, (1.7)
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where

0 ≤ αk =
μk + δk
1 − δk

< 1 ∀k ≥ k′,

αk −→ 0 as ck −→ ∞.

(1.8)

As we observe that most of the variational problems, including minimization or
maximization of functions, variational inequality problems, quasivariational inequality
problems, minimax problems, decision and management sciences, and engineering sciences
can be unified into form (1.1), the notion of the general maximal monotonicity has played
a crucially significant role by providing a powerful framework to develop and use suitable
proximal point algorithms in exploring and studying convex programming and variational
inequalities. Algorithms of this type turned out to be of more interest because of their roles
in certain computational methods based on duality, for instance the Hestenes-Powell method
of multipliers in nonlinear programming. For more details, we refer the reader to [1–15].

In this communication, we examine the approximation solvability of inclusion
problem (1.1) by introducing the notion of relatively maximal (m)-relaxed monotone
mappings, and derive some auxiliary results involving relatively maximal (m)-relaxed
monotone and cocoercive mappings. The notion of the relatively maximal (m)-relaxed
monotonicity is based on the notion of A-maximal (m)-relaxed monotonicity introduced
and studied in [9, 10], but it seems more application-oriented. We note that our approach
to the solvability of (1.1) differs significantly than that of [1] in the sense that M is without
the monotonicity assumption; there is no assumption of the Lipschitz continuity on M−1,
and the proof turns out to be simple and compact. Note that there exists a huge amount of
research on new developments and applications of proximal point algorithms in literature to
approximating solutions of inclusion problems of the form (1.1) in different space settings,
especially in Hilbert as well as in Banach space settings.

2. Preliminaries

In this section, first we introduce the notion of the relatively maximal (m)-relaxed monotonicity,
and then we derive some basic properties along with some auxiliary results for the problem
on hand.

LetX be a real Hilbert space with the norm ‖ · ‖ forX, and with the inner product 〈·, ·〉.

Definition 2.1. Let X be a real Hilbert space, and let M : X → 2X be a multivalued mapping
and A : X → X a single-valued mapping on X. The map M is said to be the following.

(i) Monotone if

〈u∗ − v∗, u − v〉 ≥ 0 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.1)

(ii) Strictly monotone ifM is monotone and equality holds only if u = v.

(iii) (r)-strongly monotone if there exists a positive constant r such that

〈u∗ − v∗, u − v〉 ≥ r‖u − v‖2 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.2)
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(iv) (r)-expanding if there exists a positive constant r such that

‖u∗ − v∗‖ ≥ r‖u − v‖ ∀(u, u∗), (v, v∗) ∈ graph(M). (2.3)

(v) Strongly monotone if

〈u∗ − v∗, u − v〉 ≥ ‖u − v‖2 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.4)

(vi) Expanding if

‖u∗ − v∗‖ ≥ ‖u − v‖ ∀(u, u∗), (v, v∗) ∈ graph(M). (2.5)

(vii) (m)-relaxed monotone if there is a positive constant m such that

〈u∗ − v∗, u − v〉 ≥ −m‖u − v‖2 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.6)

(viii) (c)-cocoercive if there exists a positive constant c such that

〈u∗ − v∗, u − v〉 ≥ c‖u∗ − v∗‖2 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.7)

(ix) Monotone with respect to A if

〈u∗ − v∗, A(u) −A(v)〉 ≥ 0 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.8)

(x) Strictlymonotonewith respect toA ifM is monotonewith respect toA and equality
holds only if u = v.

(xi) (r)-strongly monotone with respect to A if there exists a positive constant r such
that

〈u∗ − v∗, A(u) −A(v)〉 ≥ r‖u − v‖2 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.9)

(xii) (m)-relaxed monotone with respect to A if there exists a positive constant m such
that

〈u∗ − v∗, A(u) −A(v)〉 ≥ −m‖u − v‖2 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.10)

(xiii) (h)-hybrid relaxed monotone with respect to A if there exists a positive constant h
such that

〈u∗ − v∗, A(u) −A(v)〉 ≥ −h‖A(u) −A(v)‖2 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.11)
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(xiv) (m)-cocoercive with respect to A if there exists a positive constant m such that

〈u∗ − v∗, A(u) −A(v)〉 ≥ m‖u∗ − v∗‖2 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.12)

Definition 2.2. Let X be a real Hilbert space, and let M : X → 2X be a mapping on X.
Furthermore, let A : X → X be a single-valued mapping on X. The map M is said to be
the following.

(i) Nonexpansive if

‖u∗ − v∗‖ ≤ ‖u − v‖ ∀(u, u∗), (v, v∗) ∈ graph(M). (2.13)

(ii) Cocoercive if

〈u∗ − v∗, u − v〉 ≥ ‖u∗ − v∗‖2 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.14)

(iii) Cocoercive with respect to A if

〈u∗ − v∗, A(u) −A(v)〉 ≥ ‖u∗ − v∗‖2 ∀(u, u∗), (v, v∗) ∈ graph(M). (2.15)

Definition 2.3. Let X be a real Hilbert space. Let A : X → X be a single-valued mapping. The
map M : X → 2X is said to be relatively maximal (m)-relaxed monotone (with respect to A)
if

(i) M is (m)-relaxed monotone with respect to A form > 0,

(ii) R(I + ρM) = X for ρ > 0.

Definition 2.4. Let X be a real Hilbert space. Let A : X → X be a single-valued mapping. The
map M : X → 2X is said to be relatively maximal monotone (with respect to A) if

(i) M is monotone with respect to A,

(ii) R(I + ρM) = X for ρ > 0.

Definition 2.5. Let X be a real Hilbert space, and let A : X → X be (r)-strongly monotone.
LetM : X → 2X be a relatively maximal (m)-relaxed monotone mapping. Then the resolvent
operator JMρ,m,A : X → X is defined by

JMρ,m,A(u) =
(
I + ρM

)−1(u) for r − ρm > 0. (2.16)

Proposition 2.6. Let X be a real Hilbert space. Let A : X → X be an (r)-strongly monotone
mapping, and let M : X → 2X be a relatively maximal (m)-relaxed monotone mapping. Then the
resolvent operator JMρ,m,A = (I + ρM)−1 is single valued for r − ρm > 0.
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Proof. For any z ∈ X, assume x, y ∈ (I + ρM)−1(z). Then we have

−x + z ∈ ρM(x), −y + z ∈ ρM
(
y
)
. (2.17)

Since M is relatively maximal (m)-relaxed monotone, and A is (r)-strongly monotone, it
follows that

−ρm∥∥x − y
∥∥2 ≤ −〈x − y,A(x) −A

(
y
)〉 ≤ −r∥∥x − y

∥∥2

=⇒ (
r − ρm

)∥∥x − y
∥∥2 ≤ 0

=⇒ x = y for r − ρm > 0.

(2.18)

Definition 2.7. Let X be a real Hilbert space. A map M : X → 2X is said to be maximal
monotone if

(i) M is monotone,

(ii) R(I + ρM) = X for ρ > 0.

Note that all relatively monotone mappings are relatively (m)-relaxed monotone for
m > 0.We include an example of the relativemonotonicity and other of the relative (h)-hybrid
relaxed monotonicity, a new notion to the problem on hand.

Example 2.8. Let X = (−∞,+∞), A(x) = −(1/2)x, and M(x) = −x for all x ∈ X. Then M
is relatively monotone but not monotone, while M is relatively (m)-relaxed monotone for
m > 0.

Example 2.9. Let X be a real Hilbert space, and let M : X → 2X be maximal (m)-relaxed
monotone. Then we have the Yosida approximationMρ = ρ−1(I−JMρ ),where JMρ = (I+ρM)−1

is the resolvent of M, that satisfies

〈
Mρ(u) −Mρ(v), JMρ (u) − JMρ (v)

〉
≥ −m

∥∥∥JMρ (u) − JMρ (v)
∥∥∥
2
, (2.19)

that is, Mρ is relatively (m)-hybrid relaxed monotone (with respect to JMρ ).

3. Generalization to Rockafellar’s Theorem

This section deals with a generalization to Rockafellar’s theorem [1, Theorem 2] in light of
the new framework of relative maximal (m)-relaxed monotonicity, while solving (1.1).

Theorem 3.1. Let X be a real Hilbert space, let A : X → X be (r)-strongly monotone, and let M :
X → 2X be relatively maximal (m)-relaxed monotone. Then the following statements are mutually
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equivalent:

(i) an element u ∈ X is a solution to (1.1),

(ii) for an u ∈ X, one has

u = RM
ρ,m,A(u), (3.1)

where

RM
ρ,m,A(u) =

(
I + ρM

)−1(u) for r − ρm > 0. (3.2)

Proof. To show (i)⇒ (ii), if u ∈ X is a solution to (1.1), then for ρ > 0 we have

0 ∈ ρM(u)

or u ∈ (
I + ρM

)
(u)

or RM
ρ,m,A(u) = u.

(3.3)

Similarly, to show (ii) ⇒ (i),we have

u = RM
ρ,m,A(u)

=⇒ u ∈ (
I + ρM

)
(u)

=⇒ 0 ∈ ρM(u)

=⇒ 0 ∈ M(u).

(3.4)

Theorem 3.2. Let X be a real Hilbert space, let A : X → X be (r)-strongly monotone, and let
M : X → 2X be relatively maximal (m)-relaxed monotone. Furthermore, suppose thatM : X → 2X

is relatively (h)-hybrid relaxed monotone and (AoRM
ρk,m,A) is (γ)-cocoercive with respect to R

M
ρk,m,A.

(i) For an arbitrarily chosen initial point x0, suppose that the sequence {xk} is
generated by the proximal point algorithm (1.2) such that

∥∥∥xk+1 − RM
ρk,m,A

(
xk

)∥∥∥ ≤ εk, (3.5)

where Σ∞
k=0εk < ∞, r − ρkm > 0, RM

ρk,m,A = (I + ρkM)−1, and the scalar sequence {ρk} satisfies
ρk ↑ ρ ≤ ∞. Suppose that the sequence {xk} is bounded in the sense that the solution set of
(1.1) is nonempty.

(ii) In addition to assumptions in (i), we further suppose that, for an arbitrarily chosen
initial point x0, the sequence {xk} is generated by the proximal point algorithm (1.2) such that

∥∥∥xk+1 − RM
ρk,m,A

(
xk

)∥∥∥ ≤ δk
∥∥∥xk+1 − xk

∥∥∥, (3.6)
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where δk → 0, RM
ρk,m,A = (I + ρkM)−1, and the scalar sequences {δk} and {ρk}, respectively,

satisfy Σ∞
k=0δk < ∞, and ρk ↑ ρ ≤ ∞. Then the following implications hold:

(iii) the sequence {xk} converges strongly to a solution of (1.1),
(iv) rate of convergences

0 ≤ lim
k→∞

δk +
((
γ − hρk

)
r
)−1

1 − δk
< 1, (3.7)

where 1/((γ − hρk)r) < 1.

Proof. Suppose that x∗ is a zero of M.We begin with the proof for

∥∥∥RM
ρk,m,A

(
xk

)
− RM

ρk,m,A(x
∗)
∥∥∥ ≤ 1(

γ − hρk
)
r

∥∥∥xk − x∗
∥∥∥, (3.8)

where γ −hρk > 0. It follows from the definition of the generalized resolvent operator RM
ρk,m,A,

the relative (h)-hybrid relaxed monotonicity of M with respect to A and the (γ)-cocoercivity
of (AoRM

ρk,m,A) with respect to RM
ρk,m,A that

〈
xk − x∗ −

(
RM

ρk,m,A

(
xk

)
− RM

ρk,m,A(x
∗)
)
, A

(
RM

ρk,m,A

(
xk

))
−A

(
RM

ρk,m,A(x
∗)
)〉

≥ −hρk
∥∥∥A(RM

ρk,m,A(x
k)) −A

(
RM

ρk,m,A(x
∗)
)∥∥∥

2
(3.9)

or

〈
xk − x∗, A

(
RM

ρk,m,A

(
xk

))
−A

(
RM

ρk,m,A(x
∗)
)〉

≥
〈
RM

ρk,m,A

(
xk

)
− RM

ρk,m,A(x
∗), A

(
RM

ρk,m,A

(
xk

))
−A

(
RM

ρk,m,A(x
∗)
)〉

− hρk
∥∥∥A(RM

ρk,m,A(x
k)) −A

(
RM

ρk,m,A(x
∗)
)∥∥∥

2

≥ γ
∥∥∥A(RM

ρk,m,A(x
k)) −A

(
RM

ρk,m,A(x
∗)
)∥∥∥

2

− hρk
∥∥∥A(RM

ρk,m,A(x
k)) −A

(
RM

ρk,m,A(x
∗)
)∥∥∥

2
.

(3.10)

Next, we move to estimate

∥∥∥xk+1 − x∗
∥∥∥ ≤

∥∥∥RM
ρk,m,A

(
xk

)
− x∗

∥∥∥ + εk

=
∥∥∥RM

ρk,m,A

(
xk

)
− RM

ρk,m,A(x
∗)
∥∥∥ + εk

≤ 1(
γ − hρk

)
r

∥∥∥xk − x∗
∥∥∥ + εk.

(3.11)
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For (γ − hρk)r > 1, combining the previous inequality for all k, we have

∥∥∥xk+1 − x∗
∥∥∥ ≤

∥∥∥x0 − x∗
∥∥∥ +

k∑
i=0

εi ≤
∥∥∥x0 − x∗

∥∥∥ +
∞∑
k=0

εk. (3.12)

Hence, {xk} is bounded.
Next we turn our attention to convergence part of the proof. Since

∥∥∥xk+1 − x∗
∥∥∥ ≤

∥∥∥xk+1 − RM
ρk,m,A

(
xk

)∥∥∥ +
∥∥∥RM

ρk,m,A

(
xk

)
− RM

ρk,m,A(x
∗)
∥∥∥,

∥∥∥xk+1 − RM
ρk,m,A

(
xk

)∥∥∥ ≤ δk
∥∥∥xk+1 − xk

∥∥∥ ≤ δk
[∥∥∥xk+1 − x∗

∥∥∥ +
∥∥∥xk − x∗

∥∥∥
]
,

(3.13)

we get

∥∥∥xk+1 − x∗
∥∥∥ ≤

∥∥∥xk+1 − RM
ρk,m,A

(
xk

)∥∥∥

+
∥∥∥RM

ρk,m,A

(
xk

)
− RM

ρk,m,A(x
∗)
∥∥∥

≤ δk
[∥∥∥xk+1 − x∗

∥∥∥ +
∥∥∥xk − x∗

∥∥∥
]

+
1(

γ − hρk
)
r

∥∥∥xk − x∗
∥∥∥,

(3.14)

where 1/(γ − hρk)r < 1.
It follows that

∥∥∥xk+1 − x∗
∥∥∥ ≤

((
γ − hρk

)
r
)−1 + δk

1 − δk

∥∥∥xk − x∗
∥∥∥. (3.15)

It appears that (3.15) holds since 1/(γ − hρk)r < 1 (seems to hold) and δk → 0.
Hence, the sequence {xk} converges strongly to x∗.
To conclude the proof, we need to show the uniqueness of the solution to (1.1). Assume

that x∗ is a zero ofM. Then using ‖xk − x∗‖ ≤ ‖x0 − x∗‖ +∑∞
k=0 εk ∀k,we have that

a∗ = lim
k→∞

inf
∥∥∥xk − x∗

∥∥∥ (3.16)

is nonnegative and finite, and as a result, ‖xk −x∗‖ → a∗. Consider x∗
1 and x∗

2 to be two limit
points of {xk}, then we have

∥∥∥xk − x∗
1

∥∥∥ = a1,
∥∥∥xk − x∗

2

∥∥∥ = a2, (3.17)
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and both exist and are finite. If we express

∥∥∥xk − x∗
2

∥∥∥
2
=
∥∥∥xk − x∗

1

∥∥∥
2
+ 2

〈
xk − x∗

1, x
∗
1 − x∗

2

〉
+
∥∥x∗

1 − x∗
2

∥∥2
, (3.18)

then it follows that

lim
k→∞

〈
xk − x∗

1, x
∗
1 − x∗

2

〉
=

1
2

[
a2
2 − a2

1 −
∥∥x∗

1 − x∗
2

∥∥2
]
. (3.19)

Since x∗
1 is a limit point of {xk}, the left hand side limit must tend to zero. Therefore,

a2
1 = a2

2 −
∥∥x∗

1 − x∗
2

∥∥2
. (3.20)

Similarly, we obtain

a2
2 = a2

1 −
∥∥x∗

1 − x∗
2

∥∥2
. (3.21)

This results in x∗
1 = x∗

2.

Remark 3.3. WhenM : X → 2X
∗
equals ∂f, the subdifferential of f , where f : X → (−∞,+∞]

is a functional on a Hilbert spaceX, can be applied for minimizing f. The function f is proper
if f /≡ +∞ and is convex if

f
(
(1 − λ)x + λy

) ≤ (1 − λ)f(x) + λf
(
y
)
, (3.22)

where x, y ∈ X and 0 < λ < 1. Furthermore, the function f is lower semicontinuous on X if
the set

{
x : x ∈ X, f(x) ≤ λ ∀λ ∈ R

}
(3.23)

is closed in X.

The subdifferential ∂f : X → 2X
∗
of f at x is defined by

∂f(x) =
{
x∗ ∈ X∗ : f

(
y
) − f(x) ≥ 〈

y − x, x∗〉 ∀y ∈ X
}
. (3.24)

In an earlier work [7], Rockafellar has shown that if f is a lower semicontinuous proper
convex functional on X, then ∂f : X → 2X

∗
is maximal monotone on X, where X is any real

Banach space. Several other special cases can be derived.
Suppose that A : X → X is strongly monotone and (γ)-cocoercive, and let f : X → R

be (τ)-locally Lipschitz (for τ ≥ 0) such that ∂f : X → 2X
∗
is (m)-relaxed monotone with
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respect to A, that is,

〈u∗ − v∗, A(u) −A(v)〉 ≥ −‖u − v‖2 ∀u, v ∈ X, (3.25)

where u∗ ∈ ∂f(u), and v∗ ∈ ∂f(v). Then ∂f is relatively maximal (m)-relaxed monotone.
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