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1. Introduction

In probability theory, conditional expectations play a fundamental role. Conditional expecta-
tions for von Neumann algebra have been studied in noncommutative probability theory. In
particular, Takesaki [1] characterized the existence of conditional expectation using Tomita’s
modular theory. Thus a conditional expectation does not necessarily exist for a general von
Neumann algebra. The study of conditional expectations for O∗-algebras was begun by
Gudder and Hudson [2]. After that, in [3, 4]we have investigated an unbounded conditional
expectation which is a positive linear map E of an O∗-algebra M onto a given O∗-subalgebra
N of M. In this paper we will consider conditional expectations for partial O∗-algebras.
Suppose thatM is a self-adjoint partial O∗-algebra containing identity I on dense subspaceD
of Hilbert spaceHwith a strongly cyclic vector ξ0, andN is a partial O∗-subalgebra ofM such
that (N ∩ Rw(M))ξ0 is dense in HN ≡ Nξ0, where Rw(M) is the set of all right multiplier of
M. The definitions of (self-adjoint) partial O∗-algebra and a strongly cyclic vector are stated
in Section 2. A map E of M onto N is said to be a weak conditional-expectation of (M, ξ0) with
respect to, N if it satisfies (AXξ0 | Yξ0) = (E(A)Xξ0 | Yξ0), for all A ∈ M, for all X,Y ∈
N ∩ Rw(M); but, the range E(A) of the weak conditional-expectation E is not necessarily
contained inN, and so we have considered a map E of M onto N satisfying the following:

(i) the domain D(E) of E is a †-invariant subspace of M containing N;

(ii) E is a projection; that is, it is hermitian (E(A)† = E(A†), for all A ∈ D(E)) and
E(X) = X, for all X ∈ N;
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(iii) E(A�X) = E(A)�X, for all A ∈ D(E), for all X ∈ N ∩ Rw(M), E(X�A) =
X�E(A), for all A ∈ D(E) ∩ Rw(N), for all X ∈ N;

(iv) ωξ0(E(A)) = ωξ0(A), for all A ∈ D(E), where ωξ0 is a state on M defined by
ωξ0(A) = (Aξ0 | ξ0), A ∈ M;

and call it an unbounded conditional expectation of (M, ξ0) with respect to, N. In particular, if
D(E) = M, then E is said to be a conditional expectation of (M, ξ0)with respect to, N.

Finally, we will investigate the scale of the domain of unbounded conditional
expectations of partial GW∗-algebra which is unbounded generalizations of von Neumann
algebras.

2. Preliminaries

In this section we review the definitions and the basic theory of partial O∗-algebras, partial
GW∗-algebras and partial EW∗-algebras. For more details, refer to [5].

A partial ∗-algebra is a complex vector space A with an involution x → x∗ and a subset
Γ ⊂ A × A such that

(i) (x, y) ∈ Γ implies (y∗, x∗) ∈ Γ;

(ii) (x, y1), (x, y2) ∈ Γ implies (x, λy1 + μy2) ∈ Γ, for all λ, μ ∈ C;

(iii) whenever (x, y) ∈ Γ, there exists a product x ·y ∈ A with the usual properties of the
multiplication: x · (y + λz) = x · y + λ(x · z) and (x · y)∗ = y∗ · x∗ for (x, y), (x, z) ∈ Γ
and λ ∈ C.

The element e of the A is called a unit if e∗ = e, (e, x) ∈ Γ for all x ∈ A, and e · x = x · e = x, for
all x ∈ A. Notice that the partial multiplication is not required to be associative. Whenever
(x, y) ∈ Γ, x is called a left multiplier of y and y is called a right multiplier of x, and we write
x ∈ L(y) and y ∈ R(x). For a subset B ⊂ A, we write

L(B) =
⋂

x∈B
L(x), R(B) =

⋂

x∈B
R(x). (2.1)

Let H be a Hilbert space with inner product (· | ·) and D a dense subspace of H. We
denote by L†(D,H) the set of all closable linear operators X such that D(X) = D, D(X∗) ⊇ D.
The setL†(D,H) is a partial ∗-algebra with respect to the following operations: the usual sum
X + Y , the scalar multiplication λX, the involution X → X†(= X∗	D), and the weak partial
multiplication X�Y ≡ X†∗Y , defined whenever Y is a weak right multiplier of X (X ∈ Lw(Y )
or Y ∈ Rw(X)), that is, if and only if YD ⊂ D(X†∗) and X∗D ⊂ D(Y ∗). A partial ∗-subalgebra
of L†(D,H) is called a partial O∗-algebra on D.

Let M be a partial O∗-algebra on D. The locally convex topology on D defined by the
family {‖ · ‖X ; X ∈ M} of seminorms ‖ξ‖X = ‖ξ‖ + ‖Xξ‖, ξ ∈ D is called the graph topology
on D and denoted by tM. The completion of D[tM] is denoted by D̃[tM]. If the locally convex
space D[tM] is complete, then M is called closed. We also define the following domains:

D̂(M) =
⋂

X∈M
D(X), D∗(M) =

⋂

X∈M
D(X∗),

D∗∗(M) =
⋂

X∈M
D(

(X∗	D∗(M))∗
)
,

(2.2)
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and then

D ⊂ D̃(M) ⊂ D̂(M) ⊂ D∗∗(M) ⊂ D∗(M). (2.3)

The partial O∗-algebraM is called fully closed ifD = D̂(M), self-adjoint ifD = D∗(M), essentially
self-adjoint if D∗(M) = D̂(M), and algebraically self-adjoint if D∗(M) = D∗∗(M).

We defined two weak commutants of M. The weak bounded commutant M′
w of M is the

set

M′
w =

{
C ∈ B(H); (CXξ | η) = (Cξ | X†η) for every X ∈ M, ξ, η ∈ D}

; (2.4)

but the partial multiplication is not required to be associative, so we define the quasi-weak
bounded commutant M′

qw of M as the set

M′
qw =

{
C ∈ M′

w;
(
CX†

1ξ | X2η
)
=
(
Cξ | (X1�X2)η

) ∀X1 ∈ L(X2), ξ, η ∈ D}
. (2.5)

In general, M′
qw � M′

w.

A ∗-representation of a partial ∗-algebra A is a ∗-homomorphism of A into L†(D,H),
satisfying π(e) = I whenever e ∈ A, that is,

(i) π is linear;

(ii) x ∈ Lw(y) in A implies π(x) ∈ Lw(π(y)) and π(x)�π(y) = π(xy);

(iii) π(x∗) = π(x)† for every x ∈ A.

Let π be a ∗-representation of a partial ∗-algebra A into L†(D,H). Then we define

D̃(π): the completion of D with respect to the graph topology tπ(A),

π̃(x) = π(x)	D̃(π), x ∈ A;

D̂(π) =
⋂

x∈A

D(π(x)),

π̂(x) = π(x)	D̂(π), x ∈ A;

D∗(π) =
⋂

x∈A

D(π(x)∗),

π∗(x) = π(x∗)∗	D∗(π), x ∈ A.

(2.6)

We say that π is closed if D = D̃(π); fully closed if D = D̂(π); essentially self-adjoint if
D̂(π) = D∗(π); and self-adjoint if D = D∗(π).
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We introduce the weak and the quasi-weak commutants of a ∗-representaion π of a
partial ∗-algebra A as follows:

π(A)′w =
{
C ∈ B(H);

(
Cξ | π(x)η) =

(
Cπ(x∗)ξ | η), ∀x ∈ A, ξ, η ∈ D(π)

}
,

Cqw(π) = {C ∈ π(A)′w;
(
Cπ(x∗

1)ξ | π(x2)η
)
=
(
Cξ | π(x1x2)η

)
,

∀x1, x2 ∈ A such that x1 ∈ L(x2), and all ξ, η ∈ D(π)},

(2.7)

respectively.
We define the notion of strongly cyclic vector for a partial O∗-algebra M on D in H.

A vector ξ0 in D is said to be strongly cyclic if Rw(M)ξ0 is dense in D[tM], and ξ0 is said to be
separating if M′

wξ0 = H, where Rw(M) = {Y ∈ M;X�Y is well-defined, for all X ∈ M}.
We introduce the notion of partial GW∗-algebras and partial EW∗-algebras which are

unbounded generalizations of von Neumann algebras. A fully closed partial O∗-algebra M
on D is called a partial GW∗-algebra if there exists a von Neumann algebraM0 onH such that
M′

0D ⊂ D andM = [M0	D]s
∗
. A partial O∗-algebraM onD is said to be a partial EW∗-algebra

ifMb ≡ {A ∈ B(H);A	D ∈ M} is a von Neumann algebra, MbD ⊂ D and Mb
′D ⊂ D.

3. Weak Conditional Expectations

In this section, let M be a self-adjoint partial O∗-algebra containing the identity I on D in H
with a strongly cyclic vector ξ0 and let N be a partial O∗-subalgebra ofM such that

(N) (N∩ Rw(M))ξ0 is dense in HN ≡ Nξ0.

The following is easily shown.

Lemma 3.1. Put

D(πN) = (N∩ Rw(M))ξ0,

πN(X)Yξ0 = (X�Y )ξ0, ∀X ∈ N, ∀Y ∈ N ∩ Rw(M).
(3.1)

Then πN is a ∗-representations of N in the Hilbert spaceHN ≡ D(πN).

We denote by PN the projection of H onto HN ≡ D(πN). This projection PN plays an
important role in this reserch. First we have the following.

Lemma 3.2. It holds that PND ⊂ D∗(πN) and π∗
N(X)PNξ = PNXξ, for all X ∈ N and for all ξ ∈

D.

Proof. Take arbitrary X ∈ N and ξ ∈ D. For any Y ∈ N ∩ Rw(M), we have

(
πN(X†)Yξ0 | PNξ

)
=
(
(X†� Y )ξ0 | PNξ

)
=
(
X†Yξ0 | ξ

)
=
(
Yξ0 | Xξ

)
=
(
Yξ0 | PNXξ

)
, (3.2)

and so PND ⊂ D∗(πN) and π∗
N(X)PNξ = PNXξ.
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Definition 3.3. Amap E ofM intoL†(D(πN),HN) is said to be aweak conditional-expectation
of (M, ξ0) with respect to,N if it satisfies

(
AXξ0 | Yξ0

)
=
(E(A)Xξ0 | Yξ0

)
, ∀A ∈ M, ∀X,Y ∈ N ∩ Rw(M). (3.3)

For weak conditional-expectation we have the following.

Theorem 3.4. There exists a unique weak conditional-expectation E(· | N) of (M, ξ0) with respect
to,N, and

E(A | N) = PNA	D(πN), ∀A ∈ M. (3.4)

The weak conditional-expectation E(· | N) of (M, ξ0) with respect to,N satisfies the following:

(i) E(· | N) is linear,

(ii) E(· | N) is hermitian, that is, E(A | N)† = E(A† | N), for all A ∈ M,

(iii) E(X | N) = X	D(πN), for all X ∈ N,

(iv) E(A†�A | N) ≥ 0, for all A ∈ M s.t. A†�A is well-defined,

(v) E(A | N)†�E(A | N) ≤ E(A†�A | N), for all A ∈ M s.t. A†�A and E(A | N)†�
E(A | N) are well-defined,

(vi) E(A | N)�πN(X) is well-defined for any A ∈ M and X ∈ N ∩ Rw(M), and E(A |
N)�πN(X) = E(A�X | N),

(vii) πN(X)�E(A | N) is well-defined for any A ∈ M ∩ Rw(N) and for all X ∈ N, and
πN(X)�E(A | N) = E(X�A | N),

(viii) ωξ0(E(A | N)) = ωξ0(A), for all A ∈ M.

Proof. We put

E(A | N) = PNA	D(πN), ∀A ∈ M. (3.5)

By Lemma 3.2, E(A | N) is a linear map of D(πN) into D∗(πN) for any A ∈ M, and
furthermore we have E(A | N)† = E(A† | N), for all A ∈ M, so E(· | N) is a map of M
into L†(D(πN),HN).

Since

(E(A | N)Xξ0 | Yξ0
)
=
(
PNAXξ0 | Yξ0

)
=
(
AXξ0 | Yξ0

)
(3.6)

for each A ∈ M, X, Y ∈ N ∩ Rw(M), E(· | N) is a weak conditional-expectation of (M, ξ0)
with respect to, N. It is easily shown that if E is a weak conditional-expectation of (M, ξ0)
with respect to, N, E(A) = E(A | N) for each A ∈ M. Thus the existence and uniqueness of
weak conditional-expectations is shown. The statements (iii)–(viii) follow since E(A | N) =
PNA	D(πN), for all A ∈ M. This completes the proof.
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4. Unbounded Conditional Expectations for Partial O∗-Algebras

LetM be a self-adjoint partial O∗-algebra containing I on D inH and let ξ0 ∈ D be a strongly
cyclic and separating vector for M and suppose that N � I is a partial O∗-subalgebra of
M satisfying (N): (N ∩ Rw(M))ξ0 is dense in HN. We introduce unbounded conditional
expectations of (M, ξ0)with respect to, N.

Definition 4.1. A map E of M onto N is said to be an unbounded conditional expectation of
(M, ξ0)with respect to, N if

(i) the domain D(E) of E is a †-invariant subspace of M containing N;

(ii) E is a projection; that is, it is hermitian (E(A)† = E(A†), for all A ∈ D(E)) and
E(X) = X, for all X ∈ N;

(iii) E(A�X) = E(A)�X, for all A ∈ D(E), for all X ∈ N ∩ Rw(M), E(X�A) =
X�E(A), for all A ∈ D(E) ∩ Rw(N), for all X ∈ N;

(iv) ωξ0(E(A)) = ωξ0(A), for all A ∈ D(E).
In particular, if D(E) = M, then E is said to be a conditional expectation of (M, ξ0) with respect
to,N.

For unbounded conditional expectations we have the following.

Lemma 4.2. Let E be an unbounded conditional expectation of (M, ξ0) with respect to,N. Then,

E(A)Xξ0 = PNAXξ0 = E(A | N)Xξ0, ∀A ∈ D(E), ∀X ∈ N ∩ Rw(M). (4.1)

Proof. For all A ∈ D(E) and X,Y ∈ N ∩ Rw(M), we have

(E(A)Xξ0 | Yξ0
)
=
(E(A�X)ξ0 | Yξ0

)
=
(E(Y †�A�X)ξ0 | ξ0

)
=
((
Y †�A�X)ξ0 | ξ0

)

=
(
AXξ0 | Yξ0

)
=
(
AXξ0 | PNYξ0

)
=
(
PNAXξ0 | Yξ0

)
.

(4.2)

Hence, E(A)Xξ0 = PNAXξ0 = E(A | N)Xξ0, for all A ∈ D(E), for all X ∈ N ∩ Rw(M).

Let E be the set of all unbounded conditional expectations of (M, ξ0) with respect to,
N. Then E is an ordered set with the following order ⊂:

E1 ⊂ E2 iff D(E1) ⊂ D(E2), E1(A) = E2(A), ∀A ∈ D(E1). (4.3)

Theorem 4.3. There exists a maximal unbounded conditional expectation of (M, ξ0) with respect to,
N, and it is denoted by EN.

Proof. We put

D(E0) ≡
{
A ∈ M;PNA	(N∩Rw(M))ξ0 ∈ N	(N∩Rw(M))ξ0

}
. (4.4)

Then, for any A ∈ D(E0), there exists a unique map E0 such that

E0(A)Xξ0 = PNAXξ0 = E(A | N)Xξ0, ∀X ∈ N ∩ Rw(M). (4.5)
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It is easily shown that E0 is an unbounded conditional expectation of (M, ξ0) with respect to,
N. Furthermore, E0 is maximal in E. Indeed, let E ∈ E. Take an arbitrary A ∈ D(E). Then by
Lemma 4.2 we have

E(A)Xξ0 = PNAXξ0 = E(A | N)Xξ0, X ∈ N ∩ Rw(M), (4.6)

which implies E(A)Xξ0 ∈ N	(N∩Rw(M))ξ0. Hence E ⊂ E0 and E0 is maximal in E. This completes
the proof.

5. Existence of Conditional Expectations for Partial O∗-Algebras

Let M be a self-adjoint partial O∗-algebra containing I on D in H, ξ0 ∈ D be a strongly cyclic
and separating vector forM and N � I a partial O∗-subalgebra of M such that

(N) (N∩ Rw(M))ξ0 is dense in HN,

(N1) N′
wD̂(N) ⊂ D̂(N),

(N2) (N∩ Rw(M))ξ0 is essentially self-adjoint forN,

(N3) Δ′′ it
ξ0

(N′
w)

′Δ′′ − it
ξ0

= (N′
w)

′, for all t ∈ R, where Δ′′
ξ0
is the modular operator for the

full Hilbert algebra (M′
w)

′ξ0.

Lemma 5.1. It holds that D(EN) = {A ∈ M;PNAξ0 ∈ Nξ0}.

Proof. We put

D(E) = {
A ∈ M;PNAξ0 ∈ Nξ0

}
. (5.1)

By Lemma 4.2, we have

PNAξ0 = EN(A)ξ0 ∈ Nξ0 (5.2)

for each A ∈ D(EN). Hence, D(EN) ⊂ D(E). We show the converse inclusion. Since ξ0 is
separating vector for M, it follows that for any A ∈ D(E), there exists a unique element E(A)
ofN such that PNAξ0 = E(A)ξ0. Indeed, since EN is maximal in E, it is sufficient to show that
E is an unbounded conditional expectation of (M, ξ0)with respect to,N. By assumption (N1)
and [5, Proposition 2.3.5], we have

X is affiliated with von Neumann algebra (N′
w)

′ for each X ∈ N, (5.3)

N′
w = N′

qw. (5.4)

Since M is self-adjoint and (N∩ Rw(M))ξ0 is dense in HN, it follows that (N∩ Rw(M))ξ0 is
a reducing subspace for N, that is,

N(N∩ Rw(M)
)
ξ0 ⊂

(N∩ Rw(M)
)
ξ0 = Nξ0, (5.5)
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which implies by assumption (N2) and [5, Theorem 7.4.4] that

PN ∈ N ′
w, PND̂(N) ⊂ D̂(N). (5.6)

Furthermore, by (5.3) and (5.6), we have

Nξ0 = (N′
w)

′ξ0, that is, PN = P(N′
w)

′ . (5.7)

Let Sξ0 and S′′
ξ0 be the closures of the maps:

Sξ0Aξ0 = A†ξ0, A ∈ M,

S′′
ξ0
Bξ0 = B∗ξ0, B ∈ (M′

w)
′.

(5.8)

By (5.3)we have

Sξ0 ⊂ S′′
ξ0
. (5.9)

Takesaki proved in [1] that assumtion (N3 ) implies

P(N′
w)

′S′′
ξ0
⊂ S′′

ξ0
P(N′

w)
′ (5.10)

and there exists a conditional expectation E′′ of the von Neumann algebra ((M′
w)

′, ξ0) with
respect to, (N′

w)
′.

By (5.6), (5.9), and (5.10), we have

E(A†)ξ0 = PNA†ξ0 = PNSξ0Aξ0 = PNS′′
ξ0
Aξ0

= S′′
ξ0
PNAξ0 = S′′

ξ0
E(A)ξ0 = Sξ0E(A)ξ0 = E(A)†ξ0

(5.11)

for each A ∈ D(E), which implies by the separateness of ξ0 that E is hermitian.
It is clear that E(X) = X, for all X ∈ N. Take arbitrary A ∈ D(E) and X ∈ N ∩ Lw(M).

Since

(
PN(X�A)ξ0 | Yξ0

)
=
(
PNAξ0 | X†Yξ0

)
=
(E(A)ξ0 | X†Yξ0

)
=
(
(X�E(A))ξ0 | Yξ0

)
(5.12)

for each Y ∈ N∩Rw(M), it follows that X�A ∈ D(E) and E(X�A) = X�E(A). Furthermore,
since E is hermitian, it follows that A�X ∈ D(E) and E(A�X) = E(A)�X for each A ∈ D(E)
and X ∈ N ∩ Rw(M). It is clear that ωξ0(E(A)) = ωξ0(A) for each A ∈ D(E). Thus
E is an unbounded conditional expectation of (M, ξ0) with respect to, N. This completes
that proof.
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By Lemma 5.1, we have the following.

Theorem 5.2. Let M be a self-adjoint partial O∗-algebra containing I on D in H and let ξ0 ∈ D be
a strongly cyclic and separating vector for M and suppose that N � I is a partial O∗-subalgebra of
M satisfying (N), (N1), (N2), and (N3). Then there exists a conditional expectation of (M, ξ0) with
respect to,N if and only if PNMξ0 = Nξ0.

It is important to investigate the scale of the domain of an unbounded conditional
expectation. We consider the case of partial GW∗-algebras.

Theorem 5.3. Let M be a partial GW∗-algebra on D in H and let ξ0 ∈ D be a strongly cyclic and
separating vector for M and suppose that N be a partial GW∗-subalgebra of M satisfying (N), (N1),
(N2), and (N3).

Then, D(EN) ⊃ linear span of {X�A; X ∈ N, A ∈ (M′
w)

′ s.t. X�A and X�E′′(A) are
well defined} ⊃ linear span of (M′

w)
′ and N.

In particular, if NPN is a partial GW∗-algebra on PND, then EN is a conditional expectation
of (M, ξ0) with respect to,N.

Proof. Let X ∈ N, and A ∈ (M′
w)

′ s.t. X�A and X�E′′(A) are all defined. Then, it follows
since N is a partial GW∗-subalgebra of M that

PN(X�A)ξ0 = PNX†∗Aξ0 = X†∗PNAξ0 = (X�E′′(A))ξ0 ∈ Nξ0, (5.13)

which implies by Lemma 5.1 that X�A ∈ D(EN) and PN(X�A)ξ0 = (X�E′′(A))ξ0. Suppose
that NPN is a partial GW∗-algebra on PND.

By the result of Takesaki [1] there exists a unique conditional expectation E′′ of the von
Neumann algebra (N′

w)
′ such that E′′(Aα)PN = PNAPN for each A ∈ (M′

w)
′. Since M is a

partial GW∗-algebra, for any X ∈ M there is a net {Aα} ∈ (M′
w)

′ which converges strongly∗

to X. Then

E′′(Aα)PN ∈ (
(N′

w)
′)

PN
=
(
(NPN)

′
w

)′
, (5.14)

and E′′(Aα)PN converges strongly∗ to PNX	PND. Therefore, we have PNX	PND ∈ N. Hence,
X ∈ D(EN) and EN is a conditional expectation of (M, ξ0) with respect to, N. This completes
the proof.

Corollary 5.4. Let M be a partial EW∗-algebra on D in H and let ξ0 ∈ D be a strongly cyclic and
separating vector for M and suppose that N be a partial EW∗-subalgebra of M satisfying (N2) and
(N3). Then,

D(EN) ⊃ linear span of MbN and NMb. (5.15)

Proof. Since Mb ⊂ Rw(M), it follows that N ∩ Rw(M) ⊃ Nb, and so clearly (N) holds.
Furthermore, (N1) holds since N′

wD̂(N) = NbD̂(N) ⊂ D̂(N).This completes the proof.
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We consider the case of the well-known Segal Lp-space defined by τ .

Example 5.5. Let M0 be a von Neumann algebra on a Hilbert space H with a faithful finite
trace τ . We denote by Lp(τ) the Banach space completion of M0 with respect to, the norm

‖A‖p ≡ τ(|A|p)1/p, A ∈ M0. (5.16)

Then

M0 ≡ L∞(τ) ⊂ Lp(τ) ⊂ L2(τ) ⊂ Lq(τ) ⊂ L1(τ), 1 ≤ q ≤ 2 ≤ p < ∞. (5.17)

Let 2 ≤ p < ∞. Here we define a ∗-representation π of Lp(τ) by

π(X)A = XA, X ∈ Lp(τ), A ∈ L∞(τ). (5.18)

ThenM ≡ π(Lp(τ)) is a partial EW∗-algebra on L∞(τ) in L2(τ)withMb = π(L∞(τ))which is
integrable, that is, π(X†) = π(X)∗ for each X ∈ Lp(τ). Furthremore, π(Lp(τ)) has a strongly
cyclic and separating vector ξ0 ≡ λτ(I), where I is an identity operator onH. LetN0 be a von
Neumann subalgebra ofM0. We put

N =
{
π(X); X ∈ Lp(τ), π(X)λτ(I) ∈ Lp(τ	N0)

}
, 2 ≤ p ≤ ∞. (5.19)

ThenN is an integrable partial EW∗-subalgebra ofM satisfying (N2) and (N3) and PNMξ0 =
Nξ0. By Theorem 5.2, there exists a conditional expectation of (M, ξ0).
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