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1. Introduction
Let

sn :=
(
1
1
+
1
2
+
1
3
+ · · · + 1

n − 1

)
− logn (n ≥ 2). (1.1)

It is well known that the sequence (sn)n≥1 converges to Euler’s constant γ = 0, 577 . . ., where

sn = γ +O
(
1
n

)
(n ≥ 1). (1.2)

Nothing is known on the algebraic background of such mathematical constants like Euler’s
constant γ . So we are interested in better diophantine approximations of these numbers,
particularly in rational approximations.

In 1995 the author [1] introduced a linear transformation for the series (sn)n≥1 with
integer coefficients which improves the rate of convergence. Let τ be an additional positive
integer parameter.
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Proposition 1.1 (see [1]). For any integers n ≥ 1 and τ ≥ 2 one has

∣∣∣∣∣
n∑
k=0

(−1)n+k
(
n + k + τ − 1

n

)(
n

k

)
· sk+τ − γ

∣∣∣∣∣ ≤
(τ − 1)!

2n(n + 1)(n + 2) · · · (n + τ)
. (1.3)

Particularly, by choosing τ = n ≥ 2, one gets the following result.

Corollary 1.2. For any integer n ≥ 2one has

∣∣∣∣∣
n∑
k=0

(−1)n+k
(
2n + k − 1

n

)(
n

k

)
· sn+k − γ

∣∣∣∣∣ ≤
1

2n2
(

2n

n

) ≤ 1
n3/2 · 4n . (1.4)

Some authors have generalized the result of Proposition 1.1 under various aspects. At
first one cites a result due to Rivoal [2].

Proposition 1.3 (see [2]). For n tending to infinity, one has

∣∣∣∣∣γ −
1

(−2)n
n∑
k=0

(−1)k
(
2n + 2k

n

)(
n

k

)
s2k+n+1

∣∣∣∣∣ = O
(

1
n 27n/2

)
. (1.5)

Kh. Hessami Pilehrood and T. Hessami Pilehrood have found some approximation
formulas for the logarithms of some infinite products including Euler’s constant γ . These
results are obtained by using Euler-type integrals, hypergeometric series, and the Laplace
method [3].

Proposition 1.4 ([3]). For n tending to infinity the following asymptotic formula holds:

∣∣∣∣∣γ −
n∑
k=0

(−1)n+k
(
n + k

n

)(
n

k

)
sk+n+1

∣∣∣∣∣ =
1

4n+o(n)
. (1.6)

Recently the author has found series transformations involving three parameters n, τ1
and τ2, [4]. In Propositions 1.5 and 1.6 certain integral representations of the (discrete) series
transformations are given, which exhibit important (analytical) tools to estimate the error
terms of the transformations.

Proposition 1.5 (see [4]). Let n ≥ 1, τ1 ≥ 1, and τ2 ≥ 1 be integers. Additionally one assumes that

1 + τ1 ≤ τ2. (1.7)
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Then one has

n∑
k=0

(−1)n+k
(
n + τ1 + k

n

)(
n

k

)
· sk+τ2 − γ

= (−1)n+1
∫1

0

(
1

1 − u +
1

log u

)
· uτ2−τ1−1 · ∂

n

∂un

(
un+τ1(1 − u)n

n!

)
du.

(1.8)

Proposition 1.6 (see [4]). Let n ≥ 1, τ1 ≥ 1 and τ2 ≥ 1 be integers. Additionally one assumes that

1 + τ1 ≤ τ2 ≤ 1 + n + τ1. (1.9)

Then one has

n∑
k=0

(−1)n+k
(
n + τ1 + k

n

)(
n

k

)
· sk+τ2 − γ

= (−1)n+τ2−τ1
∫1

0

∫1

0
w(t) · (1 − u)

n+τ1un(1 − t)τ2−τ1−1tn+τ1−τ2+1
(1 − ut)n+1

dudt,

(1.10)

with

w(t) :=
1

t ·
(
π2 + log2

(
1
t
− 1
)) . (1.11)

Setting

n = τ2 = dm, τ1 = (d − 1)m − 1, (d ≥ 2), (1.12)

one gets an explicit upper bound from Proposition 1.6

Corollary 1.7. For integersm ≥ 2, d ≥ 3, one has

∣∣∣∣∣
dm∑
k=0

(−1)dm+k

(
(2d − 1)m + k − 1

dm

)(
dm

k

)
· sk+dm − γ

∣∣∣∣∣ < Cd ·
(

(1 − 1/d )d

(d − 1)4d

)m−2
, (1.13)

where 0 < Cd ≤ 1/16π2 is some constant depending only on d. For d = 2 one gets

∣∣∣∣∣
2m∑
k=0

(−1)k
(
3m + k − 1

2m

)(
2m

k

)
· sk+2m − γ

∣∣∣∣∣ <
(

16
7π

)2

· 1
64m

(m ≥ 1). (1.14)
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For an application of Corollary 1.7 let the integers Bm and Am be defined by

Bm := l.c.m. (1, 2, 3, . . . , 4m),

Am := Bm
2m∑
k=0

(−1)k
(
3m + k − 1

2m

)(
2m

k

)
·
(
1 +

1
2
+ · · · + 1

k + 2m − 1

)
.

(1.15)

Λ(k) denotes the von Mangoldt function. By [5, Theorem 434] one has

ψ(m) :=
∑
k≤m

Λ(k) ∼ m. (1.16)

Then, for ε := (log 55)/4 − 1 > 0.0018, there is some integerm0 such that

Bm = eψ(4m) < e4(1+ε)m = 55m (m ≥ m0). (1.17)

Multiplying (1.14) by Bm, we deduce the following corollary.

Corollary 1.8. There is an integerm0 such that one has for all integersm ≥ m0 that

∣∣∣∣∣Bm
2m∑
k=0

(−1)k
(
3m + k − 1

2m

)(
2m

k

)
· log(k + 2m) + γBm −Am

∣∣∣∣∣ <
(

16
7π

)2

·
(

55
64

)m
. (1.18)

2. Results on Rational Approximations to γ

In 2007, Aptekarev and his collaborators [6] found rational approximations to γ , which are
based on a linear third-order recurrence. For the sake of brevity, letD(n) = l.c.m. (1, 2, . . . , n).

Proposition 2.1 (see [6]). Let (pn)n≥0 and (qn)n≥0 be two solutions of the linear recurrence

(16n − 15)(n + 1)un+1 =
(
128n3 + 40n2 − 82n − 45

)
un

− n
(
256n3 − 240n2 + 64n − 7

)
un−1 + n(n − 1)(16n + 1)un−2

(2.1)

with p0 = 0, p1 = 2, p2 = 31/2 and q0 = 1, q1 = 3, q2 = 25. Then, one has qn ∈ Z, D(n)pn ∈ Z, and

∣∣∣∣γ − pn
qn

∣∣∣∣ ∼ c0e−2
√
2n,

∣∣qn∣∣ ∼ c1
n1/4

(2n)!
n!

e
√
2n, (2.2)

with two positive constants c0, c1.
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It seems interesting to replace the fraction pn/qn by

An

Bn
:=

D(n)pn
D(n)qn

, (2.3)

and to estimate the remainder in terms of Bn.

Corollary 2.2. Let 0 < ε < 1. Then there are two positive constants c2, c3, such that for all sufficiently
large integers n one has

c2 exp
(
−2(1 + ε)

√
2
√
log Bn/ log log Bn

)

<

∣∣∣∣γ − An

Bn

∣∣∣∣ < c3 exp
(
−2(1 − ε)

√
2
√
log Bn/ log log Bn

)
.

(2.4)

Recently, Rivoal [7] presented a related approach to the theory of rational approxi-
mations to Euler’s constant γ , and, more generally, to rational approximations for values of
derivatives of the Gamma function. He studied simultaneous Padé approximants to Euler’s
functions, from which he constructed a third-order recurrence formula that can be applied to
construct a sequence in Q(z) that converges subexponentially to log(z) + γ for any complex
number z ∈ C \ (−∞, 0]. Here, log is defined by its principal branch. We cite a corollary from
[7].

Proposition 2.3 (see [7]). (i) The recurrence

(n + 3)2(8n + 11)(8n + 19)Un+3

=
(
24n2 + 145n + 215

)
(8n + 11)Un+2

−
(
24n3 + 105n2 + 124n + 25

)
(8n + 27)Un+1

+ (n + 2)2(8n + 19)(8n + 27)Un ,

(2.5)

provides two sequences of rational numbers (pn)n≥0 and (qn)n≥0 with p0 = −1, p1 = 4, p2 = 77/4 and
q0 = 1, q1 = 7, q2 = 65/2 such that (pn/qn)n≥0 converges to γ .

(ii) The recurrence

(n + 1)(n + 2)(n + 3)Un+3

=
(
3n2 + 19n + 29

)
(n + 1)Un+2

−
(
3n3 + 6n2 − 7n − 13

)
Un+1 + (n + 2)3Un,

(2.6)

provides two sequences of rational numbers (pn)n≥0 and (qn)n≥0 with p0 = −1, p1 = 11, p2 = 71 and
q0 = 0, q1 = 8, q2 = 56 such that (pn/qn)n≥0 converges to log(2) + γ .
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The goal of this paper is to construct rational approximations to γ + log(a/b) without
using recurrences by a new application of series transformations. The transformed sequences
of rationals are constructed as simple as possible, only with few concessions to the rate of
convergence (see Theorems 2.4 and 6.2 below).

In the following we denote by B2n the Bernoulli numbers, that is, B2 = 1/6, B4 = −1/30,
B6 = 1/42, and so on (In Sections 3–6 the Bernoulli numbers cannot be confused with the
integers Bn from Corollary 2.2.) In this paper we will prove the following result.

Theorem 2.4. Let a ≥ 1, b ≥ 1, d ≥ 42 andm ≥ 1 be positive integers, and

Sn :=
an−1∑
j=1

1
j
−
bn−1∑
j=1

1
j
+ 2

n−1∑
j=1

1
j
−
n2−1∑
j=1

1
j

− 1
2n2

+
dm∑
j=1

B2j

2j

(
1
n2j

(
1
a2j

− 1
b2j

+ 1
)
− 1
n4j

)
, (n ≥ 1).

(2.7)

Then,

∣∣∣∣∣
dm∑
k=0

(−1)dm+k

(
(2d − 1)m + k − 1

dm

)(
dm

k

)
Sk+dm − γ − log

a

b

∣∣∣∣∣ < c4 ·
(

(1 − 1/d )d

(d − 1)4d

)m

, (2.8)

where c4 is some positive constant depending only on d.

3. Proof of Theorem 2.4

Lemma 3.1. One has for positive integers d andm

g(k) :=

(
(2d − 1)m + k − 1

dm

)(
dm

k

)
< 16dm (0 ≤ k ≤ dm). (3.1)

Proof. Applying the well known inequality
( g
h

)
≤ 2g , we get

(
(2d − 1)m + k − 1

dm

)(
dm

k

)
≤ 2(2d−1)m+dm−12dm = 24dm−m−1 < 16dm. (3.2)

This proves the lemma.

g(k) takes its maximum value for k = k0 with

k0 =

√
5d2 − 4d + 1 − d + 1

2
m +O(1), (3.3)
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which leads to a better bound than 16dm in Lemma 3.1. But we are satisfied with Lemma 3.1.
A main tool in proving Theorem 2.4 is Euler’s summation formula in the form

n∑
i=1

f(i) =
∫n
1
f(x) dx +

f(1) + f(n)
2

+
r∑
j=1

B2j(
2j
)
!

(
f(2j−1)(n) − f(2j−1)(1)

)
+ Rr, (3.4)

where r ∈ N is a suitable chosen parameter, and the remainder Rr is defined by a periodic
Bernoulli polynomial P2r+1(x), namely

Rr =
1

(2r + 1)!

∫n
1
P2r+1(x)f (2r+1)(x)dx, (3.5)

with

P2r+1(x) = (−1)r−1(2r + 1)!
∞∑
j=1

2 sin
(
2πjx

)
(
2πj
)2r+1 . (3.6)

Applying the summation formula to the function f(x) = 1/x, we get (see [8, equation ( 5)] )

n−1∑
i=1

1
i
= log n +

1
2
− 1
2n

+
r∑
j=1

B2j

2j

(
1 − 1

n2j

)
−
∫n
1

P2r+1(x)
x2r+2

dx, (n, r ∈ N). (3.7)

It follows that

n2−1∑
i=n

1
i
− log n =

1
2n

− 1
2n2

+
r∑
j=1

B2j

2j

(
1
n2j

− 1
n4j

)
−
∫n2
n

P2r+1(x)
x2r+2

dx, (n, r ∈ N). (3.8)

We prove Theorem 2.4 for a ≥ b. The case a < b is treated similarly. So we have again by the
above summation formula that

an−1∑
i=bn

1
i
− log

a

b
=
(

1
b
− 1
a

)
1
2n

+
r∑
j=1

B2j

2jn2j

(
1
b2j

− 1
a2j

)

−
∫an
bn

P2r+1(x)
x2r+2

dx, (n, r ∈ N).

(3.9)
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First, we estimate the integral on the right-hand side of (3.8). We have

∣∣∣∣∣
∫n2
n

P2r+1(x)
x2r+2

dx

∣∣∣∣∣ ≤
∫n2
n

|P2r+1(x)|
x2r+2

dx ≤
∫∞

n

|P2r+1(x)|
x2r+2

dx

≤ 2(2r + 1)!
∫∞

n

1
x2r+2

∞∑
j=1

1(
2πj
)2r+1dx

=
2(2r + 1)!

(2π)2r+1

[
− 1
(2r + 1)x2r+1

]∞
x=n

∞∑
j=1

1
j2r+1

=
2(2r)!

(2π)2r+1n2r+1
ζ(2r + 1) <

3(2r)!

(2π)2r+1n2r+1
,

(3.10)

since 2ζ(2r + 1) ≤ 2ζ(3) < 3. Next, we assume that n ≥ a. Hence [bn, an] ⊆ [n, n2], and
therefore we estimate the integral on the right-hand side in (3.9) by

∣∣∣∣
∫an
bn

P2r+1(x)
x2r+2

dx

∣∣∣∣ ≤
∫an
bn

|P2r+1(x)|
x2r+2

dx

≤
∫n2
n

|P2r+1(x)|
x2r+2

dx ≤ 3(2r)!

(2π)2r+1n2r+1
.

(3.11)

In the sequel we put r = dm. Moreover, in the above formula we now replace n by dm + k
with 0 ≤ k ≤ dm. In order to estimate (2r)! we use Stirling’s formula

√
2πm

(
m

e

)m
< m! <

√
2π(m + 1)

(
m

e

)m
, (m > 0). (3.12)

Then, it follows that

∣∣∣∣∣
∫ (dm+k)2

dm+k

P2r+1(x)
x2r+2

dx

∣∣∣∣∣ ≤
3(2r)!

(2π)2r+1(dm + k)2r+1
≤ 3(2r)!

(2π)2r+1(dm)2r+1

=
3(2dm)!

(2π)2dm+1(dm)2dm+1

≤ 3
√
π(2dm + 1)

(2π dm)2dm+1
·
(

2dm
e

)2dm

≤ 3
√
3πdm

(2πdm)(πe)2dm
,

(3.13)
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and similarly we have

∣∣∣∣∣
∫a(dm+k)

b(dm+k)

P2r+1(x)
x2r+2

dx

∣∣∣∣∣ ≤ 3
√
3πdm

(2πdm)(πe)2dm
, (dm ≥ a). (3.14)

By using the definition of Sn in Theorem 2.4, the formula (1.1) for sn, and the identities (3.8),
(3.9), it follows that

Sn − γ − log
a

b

=
(
sn − γ

)
+
(
sn − s2n

)
+ (san − sbn) − 1

2n2
+

r∑
j=1

B2j

2j

(
1
n2j

(
1
a2j

− 1
b2j

+ 1
)
− 1
n4j

)

=
(
sn − γ

)
+

1
2n

(
1
b
− 1
a
− 1
)
+
∫n2
n

P2r+1(x)
x2r+2

dx −
∫an
bn

P2r+1(x)
x2r+2

dx,

(3.15)

where r is specified to r = dm and n to n = dm + k. Moreover, we know from [4, Lemma 2]
that

dm∑
k=0

(−1)dm+kg(k) = 1, (m ≥ 1). (3.16)

By setting n = dm + k, the above formula for the series transformation of Sdm+k simplifies to

∣∣∣∣∣
dm∑
k=0

(−1)dm+kg(k)Sdm+k − γ − log
a

b

∣∣∣∣∣

=

∣∣∣∣∣
dm∑
k=0

(−1)dm+kg(k)
(
sdm+k − γ

)
+
1
2

(
1
b
− 1
a
− 1
)dm∑
k=0

(−1)dm+kg(k)
dm + k

+
dm∑
k=0

(−1)dm+kg(k)
∫ (dm+k)2

dm+k

P2r+1(x)
x2r+2

dx

−
dm∑
k=0

(−1)dm+kg(k)
∫a(dm+k)

b(dm+k)

P2r+1(x)
x2r+2

dx

∣∣∣∣∣

≤
∣∣∣∣∣
dm∑
k=0

(−1)dm+kg(k)
(
sdm+k − γ

)∣∣∣∣∣ +
dm∑
k=0

g(k)

∣∣∣∣∣
∫ (dm+k)2

dm+k

P2r+1(x)
x2r+2

dx

∣∣∣∣∣

+
dm∑
k=0

g(k)

∣∣∣∣∣
∫a(dm+k)

b(dm+k)

P2r+1(x)
x2r+2

dx

∣∣∣∣∣

< Cd ·
(

( 1 − 1/d )d

(d − 1)4d

)m−2
+

dm∑
k=0

g(k)
3
√
3πdm

πdm(πe)2dm
,

(3.17)
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where dm ≥ a, m ≥ 2, and d ≥ 3. Here, we have used the results from Corollary 1.7, (3.13),
and (3.14). The sum

dm∑
k=0

(−1)dm+kg(k)
dm + k

(3.18)

vanishes, since for every real number x > −dmwe have

dm∑
k=0

(−1)dm+k
( (2d−1)m+k−1

dm

)(
dm

k

)

dm + k + x
=

(1 − (d − 1)m + x) · · · (m + x)
(dm + x)dm+1

, (3.19)

where on the right-hand side for an integer x with −m ≤ x ≤ (d − 1)m − 1 one term in the
numerator equals to zero.

The inequality

(
64

(πe)2

)d

<
( 1 − 1/d )d

2(d − 1)
(3.20)

holds for all integers d ≥ 42. Now, using Lemma 3.1, we estimate the right-hand side in (3.17)
for dm ≥ a and d ≥ 42 as follows:

∣∣∣∣∣
dm∑
k=0

(−1)dm+kg(k)Sdm+k − γ − log
a

b

∣∣∣∣∣

< Cd ·
(

( 1 − 1/d )d

(d − 1)4d

)m−2
+

dm∑
k=0

3
√
3πdm
πdm

16dm

(πe)2dm

= Cd ·
(

( 1 − 1/d )d

(d − 1)4d

)m−2
+
3(dm + 1)

√
3dm

dm
√
π

1
4dm

(
64

(πe)2

)dm

(3.20)
< Cd ·

(
( 1 − 1/d )d

(d − 1)4d

)m−2
+
3(dm + 1)

√
3dm

dm2m
√
π

(
( 1 − 1/d )d

(d − 1)4d

)m

≤ Cd ·
(

( 1 − 1/d )d

(d − 1)4d

)m−2
+
85
28

√
3d
π

(
( 1 − 1/d )d

(d − 1)4d

)m

≤ c4
(

( 1 − 1/d )d

(d − 1)4d

)m

.

(3.21)

The last but one estimate holds for all integersm ≥ 2, d ≥ 42, and c4 is a suitable positive real
constant depending on d. This completes the proof of Theorem 2.4.
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4. On the Denominators of Sn

In this section we will investigate the size of the denominators bm of our series
transformations

am
bm

=
dm∑
k=0

(−1)dm+kg(k)Sk+dm, (4.1)

form tending to infinity, where am ∈ Z and bm ∈ N are coprime integers.

Theorem 4.1. For everym ≥ 1 there is an integer Zm with Zm > 0, bm|Zm, and

log Zm ∼ 12d2m2, (m −→ ∞). (4.2)

Proof. We will need some basic facts on the arithmetical functions ϑ(x) and ψ(x). Let

ϑ(x) =
∑
p≤x

log p, (x > 1),

ψ(x) =
∑
p≤x

[
log x
log p

]
log p, (x > 1),

(4.3)

where p is restricted on primes. Moreover, let Dn := l.c.m (1, 2, . . . , n) for positive integers n.
Then,

ψ(n) = log Dn, (n ≥ 1), (4.4)

ψ(x) ∼ ϑ(x) ∼ π(x) log x ∼ x, (x −→ ∞), (4.5)

where (4.5) follows from [5, Theorem 420] and the prime number theorem. By [5, Theorem
118] (von Staudt’s theorem) we know how to obtain the prime divisors of the denominators
of Bernoulli numbers B2k: The denominators of B2k are squarefree, and they are divisible
exactly by those primes p with (p − 1) | 2k. Hence,

B2k

∏
p≤2k+1

p ∈ Z, (k = 1, 2, . . .). (4.6)

Next, let max{a, b} ≤ dm ≤ n ≤ 2dm (n = k + dm are the subscripts of Sk+dm in Theorem 2.4).
First, we consider the following terms from the series transformation in Sm:

an−1∑
j=1

1
j
−
bn−1∑
j=1

1
j
+ 2

n−1∑
j=1

1
j
−
n2−1∑
j=1

1
j
=:

n2−1∑
j=1

ej

j
, (4.7)
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with

ej :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if 1 ≤ j ≤ n − 1

−1, if n ≤ j ≤ bn − 1

0, if bn ≤ j ≤ an − 1

−1, if an ≤ j ≤ n2 − 1

(a ≥ b),

ej :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if 1 ≤ j ≤ n − 1

−1, if n ≤ j ≤ an − 1

−2, if an ≤ j ≤ bn − 1

−1, if bn ≤ j ≤ n2 − 1.

(a < b).

(4.8)

For everym ≥ 1 there is a rational xm/ym defined by

xm
ym

=
dm∑
k=0

(−1)dm+kg(k)
(k+dm)2−1∑

j=1

ej

j
, (4.9)

where xm ∈ Z, ym ∈ N, (xm, ym) = 1, and

ym | Ym := D4d2m2 , (dm ≥ max{a, b}). (4.10)

Similarly, we define rationals um/vm by

um
vm

=
dm∑
k=0

(−1)dm+kg(k)

×
⎛
⎝− 1

2(k + dm)2
+

dm∑
j=1

B2j

2j

(
1

(k + dm)2j

(
1
a2j

− 1
b2j

+ 1
)
− 1

(k + dm)4j

)⎞
⎠,

(4.11)

where um ∈ Z, vm ∈ N and (um, vm) = 1. We have

(k + dm)2j | (k + dm)4dm,
(
0 ≤ k ≤ dm, 1 ≤ j ≤ dm). (4.12)

Therefore, using the conclusion (4.6) from von Staudt’s theorem, we get

vm | Vm := 2(ab)2dmDdm

⎛
⎝ ∏

p≤2dm+1

p

⎞
⎠ (D2dm)4dm, (dm ≥ max{a, b}). (4.13)

Note that D2dm = l.c.m. (dm, . . . , 2dm), since every integer n1 with 1 ≤ n1 < dm divides at
least one integer n2 with dm ≤ n2 ≤ 2dm.
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From (4.10) and (4.13) we conclude on

bm | Zm := 2(ab)2dmDdmD4d2m2(D2dm)4dm
⎛
⎝ ∏

p≤2dm+1

p

⎞
⎠. (4.14)

Hence we have from (4.4) and (4.5) that

log Zm = log 2 + 2dm log (ab) + ψ(dm) + ψ
(
4d2m2

)
+ 4dmψ(2dm) + ϑ(2dm + 1)

∼ log 2 + 2dm log (ab) + dm + 4d2m2 + 8d2m2 + (2dm + 1)

= 1 + log 2 +
(
3 + 2 log (ab)

)
dm + 12d2m2

∼ 12d2m2 (m −→ ∞).

(4.15)

The theorem is proved.

Remark 4.2. On the one side we have shown that log Ym ∼ 4d2m2 and logVm ∼ 8d2m2. On the
other side, every prime p dividing Vm satisfies p ≤ max{a, b, dm, 2dm+1, 2dm} = 2dm+1 and
therefore p divides Ym = D4d2m2 . Conversely, all primes p with 2dm + 1 < p < 4d2m2 divide
Ym, but not Vm. That means: Vm is much bigger than Ym, but Vm is formed by powers of small
primes, whereas Ym is divisible by many big primes.

5. Simplification of the Transformed Series
Let

Rn := − 1
2n2

+
dm∑
j=1

B2j

2j

(
1
n2j

(
1
a2j

− 1
b2j

+ 1
)
− 1
n4j

)
, (5.1)

such that

Sn =
an−1∑
j=1

1
j
−
bn−1∑
j=1

1
j
+ 2

n−1∑
j=1

1
j
−
n2−1∑
j=1

1
j
+ Rn. (5.2)

In Theorem 2.4 the sequence Sn is transformed. In view of a simplified process we now
investigate the transformation of the series Sn − Rn. Therefore we have to estimate the
contribution of Rk+dm to the series transformation in Theorem 2.4. For this purpose, we define

Em :=
dm∑
k=0

(−1)dm+k

(
(2d − 1)m + k − 1

dm

)(
dm

k

)
Rk+dm = −1

2

dm∑
k=0

(−1)dm+kg(k)

(dm + k)2

+
dm∑
j=1

B2j

2j

((
1
a2j

− 1
b2j

+ 1
) dm∑

k=0

(−1)dm+kg(k)

(dm + k)2j
−

dm∑
k=0

(−1)dm+kg(k)

(dm + k)4j

)
.

(5.3)

A major step in estimating Em is to express the sums on the right-hand side by integrals.



14 International Journal of Mathematics and Mathematical Sciences

Lemma 5.1. For positive integers d, j andm one has

dm∑
k=0

(−1)dm+kg(k)

(dm + k)2j
= − (−1)dm

(dm)!
(
2j − 1

)
!

∫1

0
um
(
log u

)2j−1 ∂dm
∂udm

(
u(2d−1)m−1(1 − u)dm

)
du. (5.4)

Proof. For integers k, r and a real number ρ with k + ρ > 0 the identity

1(
k + ρ

)r =
1

(r − 1)!

∫∞

0
e−(k+ρ)ttr−1 dt (5.5)

holds, which we apply with r = 2j and ρ = dm to substitute the fraction 1/(dm + k)2j .
Introducing the new variable u := e−t, we then get

2m∑
k=0

(−1)dm+kg(k)

(k + dm)2j
= − (−1)dm(

2j − 1
)
!

dm∑
k=0

(−1)kg(k)
∫1

0
uk+dm−1(log u)2j−1 du

= − (−1)dm(
2j − 1

)
!

∫1

0

(
dm∑
k=0

(−1)kg(k)uk+(d−1)m−1
)
um(log u)2j−1 du.

(5.6)

The sum inside the brackets of the integrand can be expressed by using the equation

n∑
k=0

(−1)k
(
n + τ + k

n

)(
n

k

)
uτ+k =

∂n

∂un

(
un+τ(1 − u)n

n!

)
, (n, τ ∈ N ∪ {0}), (5.7)

in which we put n = dm and τ = (d− 1)m− 1. This gives the identity stated in the lemma.

The following result deals with the case j = 1, in which we express the finite sum by a double
integral on a rational function.

Corollary 5.2. For every positive integerm one has

dm∑
k=0

(−1)dm+kg(k)

(dm + k)2
= (−1)(d−1)m

∫1

0

∫1

0

(1 − u)dm(1 −w)mu(2d−1)m−1w(d−1)m−1

(1 − (1 − u)w)dm+1
du dw. (5.8)

Proof. Set j = 1 in Lemma 5.1, and note that

log u = −(1 − u)
∫1

0

dw

1 − (1 − u)w. (5.9)
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Hence,

dm∑
k=0

(−1)dm+kg(k)

(dm + k)2
= − (−1)

dm

(dm)!

∫1

0
um log u

∂dm

∂udm

(
u(2d−1)m−1(1 − u)dm

)
du

=
(−1)dm
(dm)!

∫1

0

∫1

0

(1 − u)um
1 − (1 − u)w

∂dm

∂udm

(
u(2d−1)m−1(1 − u)dm

)
du dw.

(5.10)

Let s be any positive integer. Then we have the following decomposition of a rational
function, in which u is considered as variable and w as parameter:

us

1 − (1 − u)w =
s−1∑
ν=0

(w − 1)ν

wν+1
us−ν−1 +

(
w − 1
w

)s 1
1 − (1 − u)w. (5.11)

We additionally assume that s − 1 < dm. Then, differentiating this identity dm-times with
respect to u, the polynomial in u on the right-hand side vanishes identically:

∂dm

∂udm

(
us

1 − (1 − u)w
)

=
(
w − 1
w

)s (−1)dm(dm)! wdm

(1 − (1 − u)w)dm+1
. (5.12)

Therefore, we get from (5.10) by iterated integrations by parts:

dm∑
k=0

(−1)dm+kg(k)

(dm + k)2
=

1
(dm)!

∫1

0

∫1

0
u(2d−1)m−1(1 − u)dm ∂dm

∂udm

(
um − um+1

1 − (1 − u)w

)
du dw

=
1

(dm)!

∫1

0

∫1

0
u(2d−1)m−1(1 − u)dm

((
w − 1
w

)m
−
(
w − 1
w

)m+1
)

× (−1)dm(dm)! wdm du dw

(1 − (1 − u)w)dm+1
.

(5.13)

The corollary is proved by noting that

(
w − 1
w

)m
−
(
w − 1
w

)m+1

= (−1)m (1 −w)m

wm+1
. (5.14)
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6. Estimating Em

In this section we estimate Em defined in (5.3). Substituting 1 − u for u into the integral in
Lemma 5.1 and applying iterated integration by parts, we get

dm∑
k=0

(−1)dm+kg(k)

(dm + k)2j

= − (−1)dm
(dm)!

(
2j − 1

)
!

∫1

0

∂dm

∂udm

(
(1 − u)m(log(1 − u))2j−1 )((1 − u)(2d−1)m−1udm

)
du.

(6.1)

Set

f(u) := (1 − u)m(log(1 − u))2j−1, (6.2)

wherem and j are kept fixed. We have f(0) = 0. For an integer k > 0 we use Cauchy’s formula

f (k)(a) =
k!
2πi

∫
C

f(z)

(z − a)k+1
dz (6.3)

to estimate |f (k)(0)|. Let C denote the circle in the complex plane centered around 0 with
radius R := 1−1/2k. With a = 0 and f(z) defined above, Cauchy’s formula yields the identity

f (k)(0) =
k!

2πRk

∫π
−π
e−ikφ

(
1 − Reiφ

)m
log2j−1

(
1 − Reiφ

)
dφ. (6.4)

For the complex logarithm function occurring in (6.4) we cut the complex plane along the
negative real axis and exclude the origin by a small circle. All arguments φ of a complex
number z/∈ (−∞, 0] are taken from the interval (−π,π). Therefore, using 1−Reiφ = 1−R cosφ−
iR sinφ, we get

∣∣∣1 − Reiφ
∣∣∣ =

√
1 + R2 − 2R cosφ =:

√
A
(
R, φ
)
,

arg
(
1 − Reiφ

)
= − arctan

(
R sinφ

1 − R cosφ

)
.

(6.5)

Hence,

log
(
1 − Reiφ

)
= ln

√
1 + R2 − 2R cosφ − i arctan

(
R sinφ

1 − R cosφ

)

=
1
2
ln
(
A
(
R, φ
)) − i arctan

(
R sinφ

1 − R cosφ

)
.

(6.6)
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Thus, it follows from (6.4) that

∣∣∣f (k)(0)
∣∣∣ ≤ k!

2πRk

∫π
−π

∣∣∣1 − Reiφ
∣∣∣m ·
∣∣∣log(1 − Reiφ)

∣∣∣2j−1 dφ

=
k!

2πRk

∫π
−π

(
A
(
R, φ
))m/2(1

4
ln2(A(R, φ)

)
+ arctan2

(
R sinφ

1 − R cosφ

) )(2j−1)/2
dφ

=
k!
πRk

∫π
0

(
A
(
R, φ
))m/2(1

4
ln2(A(R, φ)

)
+ arctan2

(
R sinφ

1 − R cosφ

) )(2j−1)/2
dφ.

(6.7)

From 0 < R < 1 we conclude on

0 < (1 − R)2 = 1 + R2 − 2R ≤ 1 + R2 − 2R cosφ = A
(
R, φ
)
< 4,

(
0 ≤ φ ≤ π),

0 ≤ R sinφ
1 − R cosφ

≤ sinφ
1 − cosφ

,
(
0 < φ ≤ π). (6.8)

Since arctan is a strictly increasing function, we get

arctan
(

R sinφ
1 − R cosφ

)
≤ arctan

(
sinφ

1 − cosφ

)
= arctan cot

(
φ

2

)

= arctan
(
tan
(
π − φ
2

))

=
π − φ
2

,
(
0 < φ ≤ π).

(6.9)

For 0 < R < 1, this upper bound also holds for φ = 0. Finally, we note that Rk = (1 − 1/2k)k ≥
1/2. Altogether, we conclude from (6.7) on

∣∣∣f (k)(0)
∣∣∣ ≤ k!

πRk

∫π
0
4m/2

(
ln24
4

+ arctan2
(

sinφ
1 − cosφ

) )(2j−1)/2
dφ

≤ 2m+1k!
π

∫π
0

(
ln22 +

(
π − φ
2

)2
)(2j−1)/2

dφ

≤ 2m+1k!
π

∫π
0

(
ln22 +

π2

4

)j−1/2
dφ

≤ 2m+1k!
π

∫π
0
3j−1/2 dφ ≤ 2m+13jk!.

(6.10)
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It follows that the Taylor series expansion of f(u),

f(u) =
∞∑
k=0

f (k)(0)
k!

uk, (6.11)

converges at least for −1 < u < 1. Then,

f (dm)(u) =
∞∑

k=dm

f (k)(0)
(k − dm)!

uk−dm =
∞∑
k=0

f (k+dm)(0)
k!

uk, (6.12)

and the estimate given by (6.10) implies for 0 < u < 1 that

∣∣∣f (dm)(u)
∣∣∣ ≤

∞∑
k=0

∣∣f (k+dm)(0)
∣∣

k!
uk ≤ 2m+13j

∞∑
k=0

(k + dm)!
k!

uk

= 2m+13j(dm)!
∞∑
k=0

(
k + dm

k

)
uk =

2m+13j(dm)!

(1 − u)dm+1
.

(6.13)

Combining (6.13) with the result from (6.1), we get form > 1

∣∣∣∣∣
dm∑
k=0

(−1)dm+kg(k)

(dm + k)2j

∣∣∣∣∣ ≤
2m+13j(
2j − 1

)
!

∫1

0
(1 − u)(d−1)m−2udm du

=
2m+13j(
2j − 1

)
!
Γ(dm + 1)Γ((d − 1)m − 1)

Γ((2d − 1)m)

=
2d − 1
d − 1

· 2m+13j(
2j − 1

)
!((d − 1)m − 1)

· 1( (2d−1)m
dm

) .

(6.14)

We estimate the binomial coefficient by Stirling’s formula (3.12). For this purpose we
additionally assume thatm ≥ 2d − 1:

(
(2d − 1)m

dm

)
≥
√

(2d − 1)m
2π(dm + 1)((d − 1)m + 1)

(
(2d − 1)2d−1

dd(d − 1)d−1

)m

≥
√

2d − 1
2πd2m

(
(2d − 1)2d−1

dd(d − 1)d−1

)m

.

(6.15)

We now assumem ≥ 2d − 1 and substitute the above inequality into (6.14):

∣∣∣∣∣
dm∑
k=0

(−1)dm+kg(k)

(dm + k)2j

∣∣∣∣∣ ≤ d(2d − 1)2m+13j
√
2πm(

2j − 1
)
!(d − 1)((d − 1)m − 1)

√
2d − 1

(
dd(d − 1)d−1

(2d − 1)2d−1

)m

. (6.16)
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For all integersm ≥ 1 and d ≥ 1 we have

(2d − 1)
√
2πm√

2d − 1
< 2
√
πdm, (d − 1)((d − 1)m − 1) ≥ (d − 1)(d − 2)m. (6.17)

Thus we have proven the following result.

Lemma 6.1. For all integers d,m with d ≥ 3 andm ≥ 2d − 1 one has

∣∣∣∣∣
dm∑
k=0

(−1)dm+kg(k)

(dm + k)2j

∣∣∣∣∣ <
2m+23j

√
πd3(

2j − 1
)
!(d − 1)(d − 2)

√
m

(
dd(d − 1)d−1

(2d − 1)2d−1

)m

. (6.18)

Next, we need an upper bound for the Bernoulli numbers B2j (cf. [9, 23.1.15]):

∣∣B2j
∣∣ ≤ 2

(
2j
)
!

(2π)2j
(
1 − 21−2j

) ≤ 4
(
2j
)
!

(2π)2j
,
(
j ≥ 1

)
. (6.19)

Let d ≥ 3 andm ≥ max{2d − 1, a/2}. Using this and Lemma 6.1, we estimate Em in (5.3):

|Em| < 3
2

√
πd3 2m+2

(d − 1)(d − 2)
√
m

(
dd(d − 1)d−1

(2d − 1)2d−1

)m

+

√
πd3 2m+2

(d − 1)(d − 2)
√
m

(
dd(d − 1)d−1

(2d − 1)2d−1

)m

×
dm∑
j=1

B2j

2j

(∣∣∣∣ 1
a2j

− 1
b2j

+ 1
∣∣∣∣ 3j(
2j − 1

)
!
+

32j(
4j − 1

)
!

)

≤
√
πd3 2m+2

(d − 1)(d − 2)
√
m

(
dd(d − 1)d−1

(2d − 1)2d−1

)m

×
⎛
⎝3

2
+

dm∑
j=1

4
(
2j − 1

)
!

(2π)2j

(
2 · 3j(
2j − 1

)
!
+

32j(
4j − 1

)
!

)⎞
⎠

<
4
√
πd3

(d − 1)(d − 2)
√
m

(
2dd(d − 1)d−1

(2d − 1)2d−1

)m
⎛
⎝3

2
+ 8

∞∑
j=1

⎛
⎝
(√

3
2π

)2j

+
(

3
2π

)2j
⎞
⎠
⎞
⎠

<
19
√
πd3

(d − 1)(d − 2)
√
m

(
2dd(d − 1)d−1

(2d − 1)2d−1

)m

.

(6.20)
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Now, let

Tn :=
an−1∑
j=1

1
j
−
bn−1∑
j=1

1
j
+ 2

n−1∑
j=1

1
j
−
n2−1∑
j=1

1
j
=

n2−1∑
j=1

ej

j
, (n > 1), (6.21)

with the numbers ej introduced in the proof of Theorem 4.1. By definition of Rn and Sn we
then have Tn = Sn − Rn, and therefore we can estimate the series transformation of Tn by
applying the results from Theorem 2.4 and (6.20). Again, letm ≥ max{2d−1, a/2} and d ≥ 42.

∣∣∣∣∣∣
dm∑
k=0

(−1)dm+k

⎛
⎝(2d − 1)m + k − 1

dm

⎞
⎠
⎛
⎝dm

k

⎞
⎠Tk+dm − γ − log

a

b

∣∣∣∣∣∣

≤
∣∣∣∣∣
dm∑
k=0

(−1)dm+kg(k)Sk+dm − γ − log
a

b

∣∣∣∣∣ +
∣∣∣∣∣
dm∑
k=0

(−1)dm+kg(k)Rk+dm

∣∣∣∣∣

=

∣∣∣∣∣
dm∑
k=0

(−1)dm+kg(k)Sk+dm − γ − log
a

b

∣∣∣∣∣ + |Em|

< c4 ·
(

( 1 − 1/d )d

(d − 1)4d

)m

+
19
√
πd3

(d − 1)(d − 2)
√
m

(
2dd(d − 1)d−1

(2d − 1)2d−1

)m

.

(6.22)

By similar arguments we get the same bound when b > a. For d ≥ 3 it can easily be seen that

2dd(d − 1)d−1

(2d − 1)2d−1
=

2(2d − 1)
d − 1

· ( 1 − 1/d )d

( 1 − 1/2d )2d
· 1
4d

<
18
4d+1

. (6.23)

Thus, we finally have proven the following theorem.

Theorem 6.2. Let

Tn :=
an−1∑
j=1

1
j
−
bn−1∑
j=1

1
j
+ 2

n−1∑
j=1

1
j
−
n2−1∑
j=1

1
j
, (n > 1), (6.24)

where a, b are positive integers. Let d ≥ 42 be an integer. Then, there is a positive constant c5
depending at most on a, b and d such that

∣∣∣∣∣
dm∑
k=0

(−1)k
(
(2d − 1)m + k − 1

dm

)(
dm

k

)
Tk+dm − γ − log

a

b

∣∣∣∣∣ <
c5√
m

(
18
4d+1

)m
, (m ≥ 1).

(6.25)



International Journal of Mathematics and Mathematical Sciences 21

7. Concluding Remarks

It seems that in Theorem 6.2 a smaller bound holds.

Conjecture 7.1. Let a, b be positive integers. Let d ≥ 2 be an integer. Then there is a positive constant
c6 depending at most on a, b and d such that for all integersm ≥ 1 one has

∣∣∣∣∣
dm∑
k=0

(−1)dm+k

(
(2d − 1)m + k − 1

dm

)(
dm

k

)
Tk+dm − γ − log

a

b

∣∣∣∣∣

< c6 ·
(

( 1 − 1/d )d

(d − 1)4d

)m

.

(7.1)

A proof of this conjecture would be implied by suitable bounds for the integral stated
in Lemma 5.1. For j = 1 such a bound follows from the double integral given in Corollary 5.2:

∣∣∣∣∣
dm∑
k=0

(−1)dm+kg(k)

(dm + k)2

∣∣∣∣∣ =
∫1

0

∫1

0

(1 − u)dm(1 −w)mu(2d−1)m−1w(d−1)m−1

(1 − (1 − u)w)dm+1
dudw

=
∫1

0

∫1

0

(1 − u)2(1 −w)u2

1 − (1 − u)w3

(
(1 − u)u2w
1 − (1 − u)w

)d−2

×
(

(1 − u)d(1 −w)u2d−1wd−1

(1 − (1 − u)w)d

)m−1
dudw

≤ 1
4d−2

(
( 1 − 1/d )d

(d − 1)4d

)m−1∫1

0

∫1

0

(1 − u)2(1 −w)u2

1 − (1 − u)w3
dudw

=
2(d − 1)

3( 1 − 1/d )d
·
(

( 1 − 1/d )d

(d − 1)4d

)m

, (m ≥ 1),

(7.2)

where the double integral in the last but one line equals to 1/24.
Note that the rational functions

(1 − u)u2w
1 − (1 − u)w,

(1 − u)d(1 −w)u2d−1wd−1

(1 − (1 − u)w)d
, (7.3)

take their maximum values 42−d and (1 − 1/d)d/((d−1)4d) inside the unit square [0, 1]×[0, 1]
at (u,w) = (1/2, 1) and (u,w) = (1/2, (2d − 2)/(2d − 1)), respectively. Finally, we compare
the bound for the series transformation given by Theorem 2.4 with the bound proven for
Theorem 6.2. In Theorem 2.4 the bound is

T1(d,m) := c4 ·
(

( 1 − 1/d)d

(d − 1)4d

)m

, (d ≥ 42, m ≥ 1), (7.4)
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whereas we have in Theorem 6.2 that

T2(d,m) :=
c5√
m

(
18
4d+1

)m
, (d ≥ 42, m ≥ 1). (7.5)

For fixed d ≥ 42 and sufficiently large m it is clear on the one hand that T1(d,m) < T2(d,m),
but on the other hand we have

lim
m→∞

lim
d→∞

log T1(d,m)
log T2(d,m)

= 1 = lim
d→∞

lim
m→∞

log T1(d,m)
log T2(d,m)

. (7.6)

Conversely, for d tending to infinity, one gets

−log|T1(d,m)| � dm log 4 , − log|T2(d,m)| � dm log 4 , (7.7)

with implicit constants depending at most onm. For the denominators bm of the transformed
series Sk+dm in Theorem 2.4 we have the bound log bm � d2m2 from Theorem 4.1, and a
similar inequality holds for the denominators of the transformed series Tk+dm in Theorem 6.2.
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