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1. Introduction

The study of planar vector fields has been the subject of intense research, particularly in
connection to Hilbert’s 16th Problem. Significant progress has been made in the geometric
theory of these fields, as well as in bifurcation theory, normal forms, foliations, and the study
of Abelian integrals [1, 2].

The Poincaré first return maps have been studied in view of their relevance for
establishing the existence of closed orbits, and also due to their large number of applications
(see e.g., [3] and references therein), and also in connection to o-minimality [4].

The monodromy problem (determining when the singularity is a center or a focus)
was solved by Andreev [5].

A fundamental result concerns the asymptotic form of return maps states that if the
singular points of a C∞ vector field are algebraically isolated, there exists a semitransversal
arc such that the return map admits an asymptotic expansion is positive powers of x and
logs (with the first term linear), or has its principal part a finite composition of powers and
exponentials [6, 7].

In the case when the linear part of the vector field has nonzero eigenvalues there
are important results containing the return map [8–14]. Results are also available for
perturbations of Hamiltonians [15, 16] and for perturbations of integrable systems [17]. On
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the other hand, there are few results available in the general setting [18–20]. The recent papers
[21, 22] contain methods that can generate general return maps.

The present paper studies an example of a field with nilpotent linear part, near a focus.
The main goal is to establish techniques that allow to deduce the return map as a suitable
series which can be calculated algorithmically and can be used in numerical calculations.

2. Main Result

The paper studies the return map for the system

Ẋ = −Y, Ẏ = X3 − Y 3, (2.1)

which has a nilpotent linear part (both eigenvalues are zero). This is one of the simplest
examples of systems in this class [23], and for which there are (to the author’s knowledge)
no methods available to generate the return map.

The main result is the following.

Proposition 2.1. Let ε with 0 < ε < ε0 be small enough.
The solution of (2.1) satisfying X(0) = ε, Y (0) = 0 first returns to the positive X-axis at the

value ˜

˜X satisfying

˜

˜X = ε +
∞
∑

n=1

Xnε
3n+1, (2.2)

which is a convergent series.
The coefficients Xn can be calculated iteratively. In particular,

X1 = −23/2c1, X2 = 16c21, X3 = −23/2
(

20c2c1 + 8c3 + 49c31
)

, (2.3)

where cn = vn(1) with vn given by

v1(ξ) = ξ−2
∫ ξ

0
t4p(t)3/2 dt, v2(ξ) = −3

2
ξ−2

∫ ξ

0
t4p(t)1/2v1(t)dt, (2.4)

v3(ξ) = ξ−2
∫ ξ

0
t4

[

−3
2
p(t)1/2v2(t) +

3
8
v1

2(t)

p(t)1/2

]

dt, (2.5)

where

p(t) = 4 − 6t2 + 4t4 − t6. (2.6)

3. Proof of Proposition 2.1

The proof of Proposition 2.1 also provides an algorithm for calculating iteratively the
coefficients Xn.
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3.1. Normalization

It is convenient to normalize the variables X,Y, t so that the constant ε appears as a small
parameter in the equation with

X = εx, Y = 2−1/2ε2y, τ = 2−3/2εt, (3.1)

the system (2.1) becomes

dx

dτ
= −2y, dy

dτ
= 4x3 − αy3, (3.2)

where α is the small parameter

α = 21/2ε3. (3.3)

While the initial condition X(0) = ε becomes x(0) = 1, it is useful to study solutions of
(3.2) with the more general initial condition x(0) = η with η in a neighborhood of 1.

Remark 3.1. System (3.2) has the form dH + αω = 0 with H = y2 + x4, ω = y3dx and α a
small parameter. The recent result [15] gives a formalism for finding the return map for this
type of systems; see also [17]. The present construction is concrete, explicit, and suitable for
numerical calculations.

3.2. General Behavior of Solutions of (3.2)

Let α > 0.
Note the following Lyapunov function for (3.2)

L
(

x, y
)

= y2 + x4, with
d

dτ
L
(

x(τ), y(τ)
)

= −2αy(τ)4 ≤ 0. (3.4)

Since the set {y = 0} contains no trajectories besides the origin (which is the only
equilibrium point of (3.2)), then the origin is asymptotically stable by the Krasovskii-LaSalle
principle.

Consider the solution of (3.2) with the initial condition x(0) = η, y(0) = 0 for some
η ∈ [1/2, 3/2].

Since y′(0) > 0 and x′(0) = 0, x′′(0) < 0 then y increases and x decreases for small
τ > 0. This monotony must change due to (3.4), and this can happen only at some point
where y = 0 or where 4x3 = αy3, whichever comes first. Since y increases, then the first
occurrence is a point where 4x3 = αy3. At this point x′ < 0 so x continues to decrease, while
y′′ = −24x2y < 0 so y has a maximum, and will continue by decreasing. Again, the monotony
must change due to (3.4) and the path cannot cross again the line 41/3x = α1/3y before the
monotony of x changes, therefore the next change of monotony happens for y = 0, a point
where, therefore x < 0, denote this value of x by −η̃.
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Denote by x0(τ), y0(τ) the solution for α = 0: x′
0 = −2y, y′

0 = 4x3
0 and x0(0) =

η, y0(0) = 0. Therefore x4
0 + y2

0 = η4. We have x(τ) = x0(τ) + O(α), y(τ) = y0(τ) + O(α)
therefore η̃ = η +O(α).

Similar arguments show that the solution x(τ), y(τ) of (3.2) continues to turn around
the origin, crossing again the positive x-axis at a point ˜η̃ = η +O(α) (and, of course, ˜η̃ < η by
(3.4)).

Solutions (x(τ), y(τ)) of (3.2) provide smooth parametrizations for solutions y(x) of

d

dx

(

y2
)

= −4x3 + αy3. (3.5)

Note that following the path (x(τ), y(τ)) one full rotation around the origin
corresponds to considering a positive solution of (3.5), followed by a negative one.

3.3. Positive Solutions of (3.5) for x > 0

Lemma 3.2 shows that there exists a unique solution y ≥ 0 of (3.5) so that y(η) = 0; this
solution is defined for x ∈ [0, η] and establishes an iterative procedure for calculating this
solution.

Substituting y = u1/2 in (3.5) we obtain

du

dx
= −4x3 + αu3/2. (3.6)

Lemma 3.2. There exists δ0 > 0 independent of η and α so that the following holds.
Let η > 0. For any α with |α| < α0 ≤ δ0η

−3/2, (3.6) with the condition u(η) = 0 has a unique
solution u = u(x;α, η) for x ∈ [0, η]. One has u(x;α, η) > 0 for x ∈ [0, η), α > 0 and u(x;α, η) is
analytic in α and η for |α| < α0 and η > 0.

Remark 3.3. We will use the results of Lemma 3.2 only for η such that 1/2 ≤ η ≤ 3/2. In this
case (by lowering α0)we can take α0 of Lemma 3.2 independent of η by taking

α0 ≤ δ0
2min

η−3 =
43/273δ0

2
≡ c0δ0. (3.7)

Proof of Lemma 3.2. Local analysis shows that solutions of (3.6) satisfying u(η) = 0 have an
expansion in integer and half-integer powers of η − x and we have

u(x) = η4 − x4 − 16
5

αη9/2(η − x
)5/2(1 + o(1)),

(

x −→ η−), (3.8)

which inspires the following substitutions.
Denote

ξ =

√

1 − x

η
, (3.9)
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(with the usual branch of the square root for x/η < 1) and let

u(x) = η4 − x4 − η3(η − x
)

v(ξ). (3.10)

Note that if u(η) = 0 then necessarily v(0) = 0 by (3.8).
Equation (3.6) becomes

ξ
d

dξ
v(ξ) + 2v(ξ) = δξ3

[

p(ξ) − v(ξ)
]3/2

, (3.11)

where

δ = 2η3α, (3.12)

and the polynomial p is given by (2.6). (Note that p(ξ) ∈ [1, 4] for ξ ∈ [0, 1].)
Lemma 3.2 follows if we show the following.

Lemma 3.4. These exists δ0 > 0 so that for any δ with |δ| < δ0, (3.11) has a unique solution
v = v(ξ; δ) for ξ ∈ [0, 1] so that v(0) = 0.

Moreover, v(ξ; ·) is analytic for δ ∈ C with |δ| < δ0 and the terms of its power series

v(ξ; δ) =
∑

n≥1
δnvn(ξ) (3.13)

can be calculated recursively; in particular, the first terms are (2.4), (2.5).

To prove Lemma 3.4 multiply (3.11) by ξ and integrate; we obtain that v is a fixed point
(v = J[v]) for the operator

Jv(ξ) = δξ−2
∫ ξ

0
t4
[

p(t) − v(t)
]3/2

dt = δξ3
∫1

0
s4
[

p(ξs) − v(ξs)
]3/2

ds. (3.14)

Let B be the Banach space of functions f(ξ; δ) continuous for ξ ∈ [0, 1] and analytic on the
(complex) disk |δ| < δ0, continuous on |δ| ≤ δ0, with the norm

∥

∥f
∥

∥ = sup
ξ∈[0,1]

sup
|δ|≤δ0

∣

∣f(ξ; δ)
∣

∣. (3.15)

Letm be a number with 0 < m < 1. Let δ0 > 0 be small enough, so that δ0 < m/
√
5 and

δ0 < 10/3/
√
5.

Let Bm be the ball Bm = {f ∈ Bm; ‖f‖ ≤ m}.
We have J : Bm → Bm. Indeed, note that for f ∈ Bm we have

∣

∣p(t) − f(t; δ)
∣

∣ ≥ ∣

∣p(t)
∣

∣ − ∣

∣f(t; δ)
∣

∣ ≥ 1 −m > 0, (3.16)
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therefore, since f is analytic in δ, then so is [p(t) − f(t; δ)]3/2, and therefore so is Jf . Also, if
f ∈ Bm then also Jf ∈ Bm because

∣

∣Jf(ξ; δ)
∣

∣ ≤ |δ|
∫1

0
s4
[|p(ξs)| + |f(ξs; δ)|]3/2ds ≤ δ0(4 +m)3/2

5
< δ0

√
5 < m. (3.17)

Moreover, the operator J is a contraction on Bm. Indeed, using the estimate

∣

∣

∣

(

p − f1
)3/2 − (

p − f2
)3/2

∣

∣

∣ ≤
∣

∣f1 − f2
∣

∣

3
2

sup
|f |≤m

∣

∣p − f
∣

∣

1/2 ≤ ∣

∣f1 − f2
∣

∣

3(4 +m)1/2

2
(3.18)

we obtain

∣

∣Jf1 − Jf2
∣

∣ ≤ c
∥

∥f1 − f2
∥

∥ with c = δ0
3
√
5

10
< 1. (3.19)

Therefore the operator J has a unique fixed point, which is the solution v(ξ; δ).
To obtain the power series (3.13) substitute an expansion v(ξ; δ) = v0(ξ)+

∑

n≥1 δ
nvn(ξ)

in (3.11). It follows that ξv′
0 + 2v0 = 0 with v0(0) = 0, therefore v0(ξ) ≡ 0.

Substitution of (3.13) in (p − v)3/2 followed by expansion in power series in δ gives

(p − v)3/2 = p3/2
(

1 −
∑

n≥1
δn vn

p

)3/2

≡ p3/2
(

1 +
∑

n≥1
δnRn

)

, (3.20)

where Rn = Rn[v1, . . . , vn, p]. In particular,

R1 = −3
2

v1

p
, R2 =

(

−3
2

v2

p
+
3
8

v1
2

p2

)

. (3.21)

From (3.11)we obtain the recursive system

ξ
d

dξ
vn + 2vn = ξ3p3/2Rn−1, (3.22)

(for n ≥ 1 and with R0 = 1), with the only solution with vn(0) = 0 given recursively by

vn(ξ) = ξ−2
∫ ξ

0
t4p(t)3/2Rn−1(t)dt. (3.23)

In particular, we have (2.4), (2.5).
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The following gathers the conclusions of the present section.

Corollary 3.5. There exists α0 > 0 so that for any η ∈ [1/2, 3/2] and α with |α| < α0, (3.5) has a
unique solution y(x) on [0, η] satisfying y(η) = 0 and y > 0 on [0, η) for α > 0.

Moreover, this solution has the form

y = φ
(

x;α, η
)

=

[

η4 − x4 − η3(η − x
)

v

(√

1 − x

η
; 2η3α

)]1/2

, (3.24)

with v = v(ξ, δ) a solution of (3.11). The map α �→ v(ξ; 2 η3α) is analytic for |α| < α0.

3.4. Solutions of (3.5) in Other Quadrants and Matching

3.4.1. Solutions in Other Quadrants

We found an expression for the solution y(x) of (3.5) for x > 0 and y > 0. In a similar way,
expressions in the other quadrants can be found. However, taking advantage of the discrete
symmetries of (3.5), these solutions can be immediately written down as follows.

Let η ∈ [1/2, 3/2], α with |α| < α0.

(i) Let y1 = φ(x;α, η) be the solution of (3.24), defined for x ∈ [0, η], with y1(η) = 0
and y1 > 0 for α > 0,

Then:

(ii) the function y2 = φ(−x;−α, η) is also a solution of (3.5), defined for x ∈ [−η, 0]; we
have y2(−η) = 0 and y2 ≥ 0 for α > 0,

(iii) The function y3 = −φ(−x;α, η) is a solution of (3.5), defined for x ∈ [−η, 0]. We have
y3(−η) = 0 and y3 ≤ 0 for α > 0,

(iv) The function y4 = −φ(x;−α, η) is a solution of (3.5), defined for x ∈ [0, η] and we
have y4(η) = 0 and y4 ≤ 0 for α > 0,

3.4.2. Matching at the Positive y-Axis

Let η, η̃ ∈ [1/2, 3/4] and let y1(x) = φ(x;α, η) be the solution of (3.5) as in (i), for x ∈ [0, η]
and ỹ2(x) = φ(−x;−α, η̃) solution as in (ii), for x ∈ [−η̃, 0].

The following lemma finds η̃ so that y1(0) = ỹ2(0), therefore so that y1 is the
continuation of ỹ2

Lemma 3.6. Let |α| < α0 with α0 satisfying (3.7). Let η so that |η − 1| < c1|α| with α0 small enough
so that c1α0 ≤ 1/2.

There exists a unique η̃ = η +O(α) so that

φ
(

0;α, η
)

= φ
(

0;−α, η̃), (3.25)
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and η̃ depends analytically on η and α for |α| < α1 for α1 being small enough. One has |η̃ − 1| ≤ c2|α|
for some c2 > 0 and

η̃ = η − η4c1α + 2α2η7c21 − α3η10
(

4c3 +
21
2
c31 + 10c2c1

)

+O
(

α4
)

, (3.26)

where cn = vn(1) with vn(ξ) given by (2.4), (2.5).

Proof. Let

F
(

η̃, η, α
)

= φ
(

0;−α, η̃) − φ
(

0;α, η
)

, (3.27)

which is a function analytic in (η̃, η, α) by Lemma 3.2 and relation (3.12).
We have F(η, η, 0) = 0 and

∂F

∂η̃

(

η, η, 0
)

= −4η3[1 − v(1; 0)] = −4η3
/= 0, (3.28)

therefore the implicit equation F(η̃, η, α) = 0 determines η̃ = η̃(η, α) as an analytic function of
α, η for α small.

We have

∣

∣η̃ − η
∣

∣ ≤ |α| sup
|α|<α1,|η|<c1α1

∣

∣

∣

∣

∂η̃

∂α

∣

∣

∣

∣

= c′1|α|, (3.29)

therefore

∣

∣η̃ − 1
∣

∣ ≤ ∣

∣η̃ − η
∣

∣ +
∣

∣η − 1
∣

∣ ≤ (

c1 + c′1
)|α| ≡ c2|α|. (3.30)

The expansion of η̃ in power series of α is found as follows. By using (3.24), (3.25)
becomes

η̃4 − η̃4v
(

1;−2 η̃3α
)

= η4 − η4v
(

1; 2η3α
)

, (3.31)

where by substituting (3.13) and η̃ =
∑

n≥0 δ
nη̃n followed by power series expansion in α we

obtain (3.26).

3.4.3. Matching at the Negative y-Axis

Let η, ˜η̃ ∈ [1/2, 3/4] and η̃ given by Lemma 3.6. Consider the solution ỹ3 = −φ(−x;α, η̃) as in
(iii), for x ∈ [−η̃, 0], with ỹ3(−η̃) = 0. Therefore ỹ3 is the continuation of ỹ2.

Let ˜ỹ4(x) = −φ(−x;−α, ˜η̃) be a solution of (3.5) as in (iv), for x ∈ [0, ˜η̃].
The following lemma finds ˜η̃ so that ỹ3(0) = ˜ỹ4(0) therefore so that ˜ỹ4 is the

continuation of ỹ3.
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Lemma 3.7. Let |α| < α1 and |η̃ − 1| ≤ c2|α| with α1 small enough so that η̃ ∈ [1/2, 3/2].
There exists a unique ˜η̃ > 0 so that φ(0;−α, ˜η̃) = φ(0;α, η̃) and ˜η̃ depends analytically on η̃

and α for |α| < α2 for α2 small enough. One has |˜η̃ − 1| ≤ c3|α| for some c3 > 0 and

˜η̃ = η̃ − η̃4c1α + 2α2η̃7c21 − α3η̃10
(

4c3 +
21
2
c31 + 10c2c1

)

+O
(

α4
)

, (3.32)

where cn = vn(1) with vn(ξ) given by (2.4), (2.5).

Proof. We need to find ˜η̃ = ˜η̃(η̃, α) so that

F
(

˜η̃, η̃, α
)

= φ
(

0;−α, ˜η̃
)

− φ
(

0;α, η̃
)

= 0. (3.33)

Note that the function F above is the same as (3.27). By Lemma 3.6 the present lemma
follows.

3.5. The First Return Map

Let η ∈ [1/2, 3/2] and α2 as in Lemma 3.7. Then ˜η̃ given by Lemma 3.7 is the first return to the
positive x-axis of the solution with x(0) = η, y(0) = 0 and it is analytic in α and η, therefore,
by (3.12), it is analytic in ε for fixed η.

Combining (3.26) and (3.32) we obtain ˜η̃ as a convergent power series in η, with
coefficients dependent on η, whose first terms are

˜η̃ = η − 2η4c1α + 8η7c21α
2 − η10

(

20c2c1 + 8c3 + 49c31
)

α3 +O
(

α4
)

. (3.34)

To obtain the point ˜

˜X where the solution of (2.1) with X(0) = ε > 0 and Y (0) = 0 first
returns to the positive X-axis let α = 21/2ε3 and multiply (3.34) by ε (since we have X = εx)

and, finally, let η = 1. We obtain that ˜˜X is analytic in ε for small ε and

˜

˜X = ε − 23/2 c1ε
4 + 16c21ε

7 − 23/2
(

20c2c1 + 8c3 + 49c31
)

ε10 +O
(

ε13
)

, (3.35)

where cn = vn(1) with vn given by (2.4), (2.5).

Remark 3.8. The first coefficient of the return map (3.34) is, up to a sign, the Melnikov integral
of the system (3.2), see[15]; of course, the present results are in agreement with this fact (see
the appendix for details).

Appendix

With the notation H = y2 + x4 and ω = y3dx the Melnikov integral of (3.2) is the quantity
M(T) =

∫

H=Tωwhere T > 0. If T is the parametrization for the restriction ofH to the half-line
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x > 0 (which means, in the notations used in the present paper, that T = η4) then the return
map of (3.2) has the form T �→ T − αM(T) +O(α2) [15].

For the present system we have

M(T) =
∫

y2+x4=T
y3dx = 4

∫T1/4

0

(

T − x4
)3/2

dx = 4T
7
4
∫1

0

(

1 − s4
)3/2

ds = 8T7/4c1. (A.1)

Taking the fourth root in the return map of T we obtain (3.34).
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