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1. Introduction

It is well known that the effects of the investigation of properties of closed bounded intervals
of real numbers, spaces of continuous functions, and solutions to differential equations
are the possible motivations for the formation of the notion of compactness. Compactness
is now one of the most important, useful, and fundamental notions of not only general
topology but also other advanced branches of mathematics. Many researchers have pithily
studied the fundamental properties of compactness and now the results can be found in any
undergraduate textbook on analysis and general topology. The productivity and fruitfulness
of the notion of compactness motivated mathematicians to generalize this notion. In 1982,
Atia et al. [1] introduced a strong version of compactness defined in terms of preopen subsets
of a topological space which they called strongly compact. A topological space X is said
to be strongly compact if every preopen cover of X admits a finite subcover. Since then,
many mathematicians have obtained several results concerning its properties. The notion
of strongly compact relative to a topological space X was introduced by Mashhour et al.
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[2] in 1984. They established several characterizations of these spaces. In 1987, Ganster [3]
obtained an interesting result that answered the question: what type of a space do we get
when we take the one-point-compactification of a discrete space? He showed that this space
is strongly compact. He proved that a topological space is strongly compact if and only if it
is compact and every infinite subset of X has nonempty interior. In 1988, Janković et al. [4]
showed that a topological space (X, τ) is strongly compact if and only if it is compact and the
family of dense sets in (X, τ) is finite. Quite recently Jafari and Noiri [5, 6], by introducing
the class of firmly precontinuous functions, found some new characterizations of strongly
compact spaces. They also obtained properties of strongly compact spaces by using nets,
filterbases, precomplete accumulation points. The notion of preopen sets plays an important
role in the study of strongly compact spaces. In this paper, first we introduce and study the
notion of N-preopen sets as a generalization of preopen sets. Then, by using N-preopen
sets, we obtain new characterizations and further preservation theorems of strongly compact
spaces. We improve some of the results established by Mashhour et al. [2]. Throughout this
paper, (X, τ) and (Y, σ) stand for topological spaces on which no separation axiom is assumed
unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be
denoted by Cl(A) and Int(A), respectively. A subset A of a topological space X is said to be
preopen [7] if A ⊆ Int(Cl(A)). A subset A is said to be N-open [8] if for each x ∈ A there
exists an open set Ux containing x such that Ux − A is a finite set. The complement of an
N-open subset is said to beN-closed.

2.N-Preopen Sets

In this section, we introduce and study the notion ofN-preopen sets.

Definition 2.1. A subset A is said to beN-preopen if for each x ∈ A there exists a preopen set
Ux containing x such that Ux − A is a finite set. The complement of anN-preopen subset is
said to beN-preclosed.

The family of all N-preopen (resp., preopen, preclosed) subsets of a space (X, τ) is
denoted byNPO(X) (resp., PO(X), PC(X)).

Lemma 2.2. For a subset of a topological space (X, τ), bothN-openness and preopenness implyN-
preopenness.

For a subset of a topological space, the following implications hold:

open preopen

N-open N-preopen

(2.1)

Example 2.3. Let X = [0, 7] be the closed interval with a topology τ = {φ,X, {1}, {2}, {1, 2},
{1, 2, [3, 5]}. Then {2, [3, 5]} is anN-open set which is not preopen.

Example 2.4. Let R be the set of all real numbers with the usual topology. Then the set Q of all
rational numbers is a preopen set which is notN-open.
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Lemma 2.5. Let (X, τ) be a topological space. Then the union of any family of N-preopen sets is
N-preopen.

Proof. Let {Ui : i ∈ I} be a family ofN-preopen subsets of X and x ∈
⋃

i∈I Ui. Then x ∈ Uj for
some j ∈ I. This implies that there exists a preopen subset V of X containing x such that V \Uj

is finite. Since V \
⋃

i∈I Ui ⊆ V \Uj , then V \
⋃

i∈I Ui is finite. Thus
⋃

i∈I Ui ∈ NPO(X).

Recall that a space (X, τ) is called submaximal if every dense subset of X is open.

Lemma 2.6 (see [9]). For a topological space (X, τ), the followings are equivalent.

(1) X is submaximal.

(2) Every preopen set is open.

Definition 2.7 (see [10]). A subset A of a space X is said to be α-open if A ⊆ Int(Cl(Int(A))).

Lemma 2.8 (see [11]). Let (X, τ) be a topological space. Then the intersection of an α-open set and a
preopen set is preopen.

Theorem 2.9. Let (X, τ) be a submaximal topological space. Then (X,NPO(X)) is a topological
space.

Proof. (1) We have φ,X ∈ NPO(X).
(2) Let U,V ∈ NPO(X) and x ∈ U ∩ V . Then there exist preopen sets G,H ∈ X

containing x such that G \ U and H \ V are finite. And (G ∩ H) \ (U ∩ V ) = (G ∩ H) ∩
((X \ U) ∪ (X \ V )) ⊆ (G ∩ (X \U)) ∪ (H ∩ (X \ V )). Thus (G ∩H) \ (U ∩ V ) is finite, and
since X is submaximal by Lemma 2.6, the intersection of two preopen sets is preopen. Hence
U ∩ V ∈ NPO(X).

(3) Let {Ui : i ∈ I} be any family ofN-preopen sets of X. Then, by Lemma 2.5,
⋃

i∈I Ui

isN-preopen.

The converse of above theorem is not true.

Example 2.10. Let X = {a, b, c}with τ = {φ,X, {a}, {a, b}}. Then (X,NPO(X)) is a topological
space and (X, τ) is not a submaximal topological space.

Lemma 2.11. Let (X, τ) be a topological space. Then the intersection of an α-open set and an N-
preopen set isN-preopen.

Proof. Let U be α-open and A N-preopen. Then for every x ∈ A, there exists a preopen set
Vx ⊆ X containing x such that Vx−A is finite, and also by Lemma 2.8, U∩Vx is preopen. Now
for each x ∈ U ∩A, there exists a preopen set U ∩ Vx ⊆ X containing x and

(U ∩ Vx) − (U ∩A) = (U ∩ Vx) ∩ [(X −U) ∪ (X −A)]

= [(U ∩ Vx) ∩ (X −U)] ∪ [(U ∩ Vx) ∩ (X −A)]

= (U ∩ Vx) −A

⊆ Vx −A.

(2.2)

Then (U ∩ Vx) − (U ∩A) is finite. Therefore U ∩A is anN-preopen set.
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The following lemma is well known and will be stated without the proof.

Lemma 2.12. A topological space is a T1-space if and only if every finite set is closed.

Proposition 2.13. If a topological spaceX is a T1-space, then every nonemptyN-preopen set contains
a nonempty preopen set.

Proof. Let A be a nonempty N-preopen set and x ∈ A, then there exists a preopen set Ux

containing x such that Ux −A is finite. Let C = Ux −A = Ux ∩ (X −A). Then x ∈ Ux − C ⊆ A
and by Lemmas 2.8 and 2.12, Ux − C = Ux ∩ (X − C) is preopen.

The following example shows that if X is not a T1-space, then there exists a nonempty
N-preopen set which does not contain a nonempty preopen set.

Example 2.14. Let X = {a, b, c} with τ = {φ,X, {a}, {b}, {a, b}}. Then {c} is anN-preopen set
which does not contain any a nonempty preopen set.

Lemma 2.15 (see [12]). Let A and X0 be subsets of a topological space X.

(1) If A ∈ PO(X) and X0 ∈ SO(X), then A ∩X0 ∈ PO(X0).

(2) If A ∈ PO(X0) and X0 ∈ PO(X), then A ∈ PO(X).

Lemma 2.16. Let A and X0 be subsets of a topological space X.

(1) If A ∈ NPO(X) and X0 ∈ αO(X), then A ∩X0 ∈ NPO(X0).

(2) If A ∈ NPO(X0) and X0 ∈ PO(X), then A ∈ NPO(X).

Proof. (1) Let x ∈ A ∩ X0. Since A is N-preopen in X, there exists a preopen set H of X
containing x such that H − A is finite. Since X0 is α-open, by Lemma 2.8 we have H ∩ X0 ∈
PO(X). Since X0 ∈ αO(X) ⊆ SO(X), by Lemma 2.15, H ∩ X0 ∈ PO(X0), x ∈ H ∩ X0, and
(H ∩X0) − (A ∩X0) is finite. This shows that A ∩X0 ∈ NPO(X0).

(2) If A ∈ NPO(X0), for each x ∈ A there exists Vx ∈ PO(X0) containing x such that
Vx −A is finite. Since X0 ∈ PO(X), by Lemma 2.15, Vx ∈ PO(X) and Vx −A is finite and hence
A ∈ NPO(X).

Lemma 2.17. A subset A of a space X is N-preopen if and only if for every x ∈ A, there exist a
preopen subsetUx containing x and a finite subset C such that Ux − C ⊆ A.

Proof. Let A be N-preopen and x ∈ A, then there exists a preopen subset Ux containing x
such that Ux − A is finite. Let C = Ux − A = Ux ∩ (X − A). Then Ux − C ⊆ A. Conversely,
let x ∈ A. Then there exist a preopen subset Ux containing x and a finite subset C such that
Ux − C ⊆ A. Thus Ux −A ⊆ C and Ux −A is a finite set.

Theorem 2.18. Let X be a space and F ⊆ X. If F isN-preclosed, then F ⊆ K ∪ C for some preclosed
subset K and a finite subset C.

Proof. If F is N-preclosed, then X − F is N-preopen, and hence for every x ∈ X − F, there
exists a preopen set U containing x and a finite set C such that U − C ⊆ X − F. Thus F ⊆
X − (U −C) = X − (U ∩ (X −C)) = (X −U)∪C. Let K = X −U. Then K is a preclosed set such
that F ⊆ K ∪ C.
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3. Strongly Compact Spaces

Definition 3.1. (1) A topological space X is said to be strongly compact [1] if every cover of X
by preopen sets admits a finite subcover.

(2) A subset A of a space X is said to be strongly compact relative to X [2] if every
cover of A by preopen sets of X admits a finite subcover.

Theorem 3.2. If X is a space such that every preopen subset of X is strongly compact relative to X,
then every subset of X is strongly compact relative to X.

Proof. Let B be an arbitrary subset of X and let {Ui : i ∈ I} be a cover of B by preopen sets of
X. Then the family {Ui : i ∈ I} is a preopen cover of the preopen set ∪{Ui : i ∈ I}. Hence by
hypothesis there is a finite subfamily {Uij : j ∈ N0} which covers ∪{Ui : i ∈ I} where N0 is a
finite subset of the naturals N. This subfamily is also a cover of the set B.

Theorem 3.3. A subset A of a space X is strongly compact relative to X if and only if for any cover
{Vα : α ∈ Λ} of A byN-preopen sets of X, there exists a finite subset Λ0 of Λ such that A ⊆ ∪{Vα :
α ∈ Λ0}.

Proof. Let {Vα : α ∈ Λ} be a cover of A and Vα ∈ NPO(X). For each x ∈ A, there exists
α(x) ∈ Λ such that x ∈ Vα(x). Since Vα(x) isN-preopen, there exists a preopen set Uα(x) such
that x ∈ Uα(x) and Uα(x) \ Vα(x) is finite. The family {Uα(x) : x ∈ A} is a preopen cover of A.
Since A is strongly compact relative to X, there exists a finite subset, says, x1, x2, . . . , xn such
that A ⊆ ∪{Uα(xi) : i ∈ F}, where F = {1, 2, . . . , n}. Now, we have

A ⊆
⋃

i∈F

((
Uα(xi) \ Vα(xi)

)
∪ Vα(xi)

)

=

(
⋃

i∈F

(
Uα(xi) \ Vα(xi)

)
)

∪
(
⋃

i∈F
Vα(xi)

)

.

(3.1)

For each xi, Uα(xi) \ Vα(xi) is a finite set and there exists a finite subset Λ(xi) of Λ such that
(Uα(xi) \ Vα(xi)) ∩A ⊆ ∪{Vα : α ∈ Λ(xi)}. Therefore, we have A ⊆ (

⋃
i∈F(∪{Vα : α ∈ Λ(xi)})) ∪

(
⋃

i∈F Vα(xi)). Hence A is strongly compact relative to X.
Since every preopen set isN-preopen, the proof of the converse is obvious.

Corollary 3.4. For any space X, the following properties are equivalent:

(1) X is strongly compact;

(2) everyN-preopen cover of X admits a finite subcover.

Theorem 3.5. For any space X, the following properties are equivalent:

(1) X is strongly compact;

(2) every properN-preclosed set is strongly compact with respect to X.

Proof. (1)⇒(2) Let A be a properN-preclosed subset of X. Let {Uα : α ∈ Λ} be a cover of A by
preopen sets of X. Now for each x ∈ X −A, there is a preopen set Vx such that Vx ∩A is finite.
Then {Uα : α ∈ Λ}∪{Vx : x ∈ X−A} is a preopen cover of X. Since X is strongly compact, there
exist a finite subset Λ1 of Λ and a finite number of points, says, x1, x2, . . . , xn in X − A such
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that X = (∪{Uα : α ∈ Λ1}) ∪ (∪{Vxi : 1 ≤ i ≤ n}); hence A ⊂ (∪{Uα : α ∈ Λ1}) ∪ (∪{A ∩ Vxi :
1 ≤ i ≤ n}). Since A ∩ Vxi is finite for each i, there exists a finite subset Λ2 of Λ such that
∪{A ∩ Vxi : 1 ≤ i ≤ n} ⊂ ∪{Uα : α ∈ Λ2}. Therefore, we obtain A ⊂ ∪{Uα : α ∈ Λ1 ∪ Λ2}. This
shows that A is strongly compact relative to X.

(2)⇒(1) Let {Vα : α ∈ Λ} be any preopen cover of X. We choose and fix one α0 ∈ Λ.
Then ∪{Vα : α ∈ Λ−{α0}} is a preopen cover of aN-preclosed set X−Vα0 . There exists a finite
subset Λ0 of Λ−{α0} such that X−Vα0 ⊂ ∪{Vα : α ∈ Λ0}. Therefore, X = ∪{Vα : α ∈ Λ0 ∪{α0}}.
This shows that X is strongly compact.

Corollary 3.6 (see [2]). If a space X is strongly compact and A is preclosed, then A is strongly
compact relative to X.

Theorem 3.7. Let (X, τ) be a submaximal topological space. Then (X, τ) is strongly compact if and
only if (X,NPO(X)) is compact.

Proof. Let {Vα : α ∈ Λ} be an open cover of (X,NPO(X)). For each x ∈ X, there exists
α(x) ∈ Λ such that x ∈ Vα(x). Since Vα(x) isN-preopen, there exists a preopen set Uα(x) of X
such that x ∈ Uα(x) and Uα(x) \ Vα(x) is finite. The family {Uα(x) : x ∈ X} is a preopen cover
of (X, τ). Since (X, τ) is strongly compact, there exists a finite subset, says, x1, x2, . . . , xn such
that X = ∪{Uα(xi) : i ∈ F}, where F = {1, 2, . . . , n}. Now, we have

X =
⋃

i∈F

((
Uα(xi) \ Vα(xi)

)
∪ Vα(xi)

)

=

(
⋃

i∈F

(
Uα(xi) \ Vα(xi)

)
)

∪
(
⋃

i∈F
Vα(xi)

)

.

(3.2)

For each xi, Uα(xi) \ Vα(xi) is a finite set and there exists a finite subset Λ(xi) of Λ such that
(Uα(xi) \ Vα(xi)) ⊆ ∪{Vα : α ∈ Λ(xi)}. Therefore, we have X = (

⋃
i∈F(∪(Vα : α ∈ Λ(xi)))) ∪

(
⋃

i∈F Vα(xi)). HenceNPO(X) is compact.
Conversely, letU be a preopen cover of (X, τ). ThenU ⊆ NPO(X). Since (X,NPO(X))

is compact, there exists a finite subcover of U for X. Hence (X, τ) is strongly compact.

4. Preservation Theorems

Definition 4.1. A function f : X → Y is said to beN-precontinuous if f−1(V ) isN-preopen in
X for each open set V in Y .

Theorem 4.2. A function f : X → Y is N-precontinuous if and only if for each point x ∈ X
and each open set V in Y with f(x) ∈ V , there is an N-preopen set U in X such that x ∈ U and
f(U) ⊆ V .

Proof. Sufficiency. Let V be open in Y and x ∈ f−1(V ). Then f(x) ∈ V and thus there exists a
Ux ∈ NPO(X) such that x ∈ Ux and f(Ux) ⊆ V . Then x ∈ Ux ⊆ f−1(V ) and f−1(V ) = ∪{Ux :
x ∈ f−1(V )}. Then by Lemma 2.5, f−1(V ) isN-preopen.

Necessity. Let x ∈ X and let V be an open set of Y containing f(x). Then x ∈ f−1(V ) ∈
NPO(X) since f isN-precontinuous. Let U = f−1(V ). Then x ∈ U and f(U) ⊆ V .
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Proposition 4.3. If f : X → Y isN-precontinuous andX0 is an α-open set inX, then the restriction
f|X0 : X0 → Y isN-precontinuous.

Proof. Since f isN-precontinuous, for any open set V in Y , f−1(V ) isN-preopen in X. Hence
by Lemma 2.11, f−1(V ) ∩ X0 is N-preopen in X. Therefore, by Lemma 2.16, (f|X0)

−1(V ) =
f−1(V ) ∩X0 isN-preopen in X0. This implies that f|X0 isN-precontinuous.

Proposition 4.4. Let f : X → Y be a function and let {Aα : α ∈ Λ} be an α-open cover of X. If the
restriction f|Aα : Aα :→ Y isN-precontinuous for each α ∈ Λ, then f isN-precontinuous.

Proof. Suppose that V is an arbitrary open set in Y . Then for each α ∈ Λ, we have (f|Aα)
−1(V ) =

f−1(V ) ∩ Aα ∈ NPO(Aα) because f|Aα isN-precontinuous. Hence by Lemma 2.16, f−1(V ) ∩
Aα ∈ NPO(X) for each α ∈ Λ. By Lemma 2.5, we obtain ∪{f−1(V ) ∩Aα : α ∈ Λ} = f−1(V ) ∈
NPO(X). This implies that f isN-precontinuous.

Theorem 4.5. Let f be anN-precontinuous function from a space X onto a space Y . If X is strongly
compact, then Y is compact.

Proof. Let {Vα : α ∈ Λ} be an open cover of Y . Then {f−1(Vα) : α ∈ Λ} is anN-preopen cover
of X. Since X is strongly compact, by Corollary 3.4, there exists a finite subset Λ0 of Λ such
that X = ∪{f−1(Vα) : α ∈ Λ0}; hence Y = ∪{Vα : α ∈ Λ0}. Therefore Y is compact.

Definition 4.6 (see [12]). A function f : X → Y is said to be precontinuous if f−1(V ) is preopen
in X for each open set V in Y .

It is clear that every precontinuous function isN-precontinuous but not conversely.

Example 4.7. Let X = {a, b, c, d}, τ = {φ,X, {a}, {b}, {a, b}, {a, b, c}}, and σ = {φ,X, {a, d},
{b, c}}. Let f : (X, τ) → (X, σ) be the identity function. Then f is an N-
precontinuous function which is not precontinuous; because there exists {b, c} ∈ σ such that
f−1({b, c})/∈PO(X, τ).

Corollary 4.8 (see [2]). Let f be a precontinuous function from a space X onto a space Y . If X is
strongly compact, then Y is compact.

Definition 4.9 (see [13]). A function f : X → Y is said to be M-preopen if the image of each
preopen set U of X is preopen in Y .

Proposition 4.10. If f : X → Y is M-preopen, then the image of an N-preopen set of X is N-
preopen in Y .

Proof. Let f : X → Y be M-preopen and W anN-preopen subset of X. For any y ∈ f(W),
there exists x ∈ W such that f(x) = y. Since W is N-preopen, there exists a preopen set U
such that x ∈ U and U −W = C is finite. Since f is M-preopen, f(U) is preopen in Y such
that y = f(x) ∈ f(U) and f(U) − f(W) ⊆ f(U −W) = f(C) is finite. Therefore, f(W) is
N-preopen in Y .

Definition 4.11 (see [14]). A function f : X → Y is said to be preirresolute if f−1(V ) is preopen
in X for each preopen set V in Y .

Proposition 4.12. If f : X → Y is a preirresolute injection and A isN-preopen in Y , then f−1(A)
isN-preopen in X.
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Proof. Assume that A is anN-preopen subset of Y . Let x ∈ f−1(A). Then f(x) ∈ A and there
exists a preopen set V containing f(x) such that V −A is finite. Since f is preirresolute, f−1(V )
is a preopen set containing x. Thus f−1(V ) − f−1(A) = f−1(V − A) and it is finite. It follows
that f−1(A) isN-preopen in X.

Definition 4.13. A function f : X → Y is said to beN-preclosed if f(A) isN-preclosed in Y for
each preclosed set A of X.

Theorem 4.14. If f : X → Y is an N-preclosed surjection such that f−1(y) is strongly compact
relative to X for each y ∈ Y , and Y is strongly compact, then X is strongly compact.

Proof. Let {Uα : α ∈ Λ} be any preopen cover of X. For each y ∈ Y , f−1(y) is strongly compact
relative to X and there exists a finite subset Λ(y) of Λ such that f−1(y) ⊂ ∪{Uα : α ∈ Λ(y)}.
Now we put U(y) = ∪{Uα : α ∈ Λ(y)} and V (y) = Y − f(X − U(y)). Then, since f is N-
preclosed, V (y) is an N-preopen set in Y containing y such that f−1(V (y)) ⊂ U(y). Since
{V (y) : y ∈ Y} is an N-preopen cover of Y , by Corollary 3.4 there exists a finite subset
{yk : 1 ≤ k ≤ n} ⊆ Y such that Y =

⋃n
k=1 V (yk). Therefore, X = f−1(Y ) =

⋃n
k=1 f

−1(V (yk)) ⊆⋃n
k=1 U(yk) =

⋃n
k=1{Uα : α ∈ Λ(yk)}. This shows that X is strongly compact.

Definition 4.15 (see [2]). A function f : X → Y is said to be M-preclosed if f(A) is preclosed
in Y for each preclosed set A of X.

It is clear that every M-preclosed function isN-preclosed but not conversely.

Example 4.16. Let X = {a, b, c, d} with topology τ = {φ,X, {a}, {b}, {a, b}, {a, b, c}}. Let f :
(X, τ) → (X, τ) be the function defined by setting f(a) = c, f(b) = d, f(c) = a, and f(d) = b.
Then f is an N-preclosed function which is not M-preclosed; because there exists {c} ∈
PC(X) such that f({c}) = {a}/∈PC(X).

Corollary 4.17 (see [2]). If f : X → Y is an M-preclosed surjection such that f−1(y) is strongly
compact relative to X for each y ∈ Y , and Y is strongly compact, then X is strongly compact.

Definition 4.18. A function f : X → Y is said to be δN-continuous if for each x ∈ X and each
preopen set V of Y containing f(x), there exists anN-preopen set U of X containing x such
that f(U) ⊆ V .

It is clear that every preirresolute function is δN-continuous but the converse is not
true.

Example 4.19. Let X = {a, b, c, d} and τ = {φ,X, {a}, {b}, {a, b}, {a, b, c}}. Then the function
f : (X, τ) → (X, τ), defined as f(a) = c, f(b) = d, f(c) = a, and f(d) = b, is δN-continuous
but it is not preirresolute.

Theorem 4.20. Let f : X → Y be a δN-continuous surjection from X onto Y . If X is strongly
compact, then Y is strongly compact.

Proof. Let {Vα : α ∈ Λ} be a preopen cover of Y . For each x ∈ X, there exists α(x) ∈ Λ such that
f(x) ∈ Vα(x). Since f is δN-continuous, there exists anN-preopen set Uα(x) of X containing x
such that f(Uα(x)) ⊆ Vα(x). So {Uα(x) : x ∈ X} is anN-preopen cover of the strongly compact
space X, and by Corollary 3.4 there exists a finite subset {xk : 1 ≤ k ≤ n} ⊆ X such that
X =

⋃n
k=1 Uα(xk). Therefore Y = f(X) = f(

⋃n
k=1 Uα(xk)) =

⋃n
k=1 f(Uα(xk)) ⊆

⋃n
k=1 Vα(xk). This

shows that Y is strongly compact.
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Corollary 4.21 (see [2]). Let f : X → Y be a preirresolute surjection from X onto Y . If X is
strongly compact, then Y is strongly compact.
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[10] O. Njåstad,, “On some classes of nearly open sets,” Pacific Journal of Mathematics, vol. 15, pp. 961–970,

1965.
[11] V. Popa and T. Noiri, “Almost weakly continuous functions,” Demonstratio Mathematica, vol. 25, no.

1-2, pp. 241–251, 1992.
[12] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, “A note on semicontinuity and precontinuity,”

Indian Journal of Pure and Applied Mathematics, vol. 13, no. 10, pp. 1119–1123, 1982.
[13] A. S. Mashhour, M. E. Abd El-Monsef, and I. A. Hasanein, “On pretopological spaces,” Bulletin
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