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1. Introduction

The solitary wave solutions of (1 + 1) dimensional PDEs have been studied quite well and
widely applied in many fields of physics [1, 2]. In (2 + 1) dimensional, some significant
nonlinear physical models such as the Kadomtsev-Petviashvili (KP) equation [3], Davey-
Stewartson (DS) equation [4] and so forth. have been established. And some special types
of localized solutions, dromions and solitoffs, for example, are obtained for these higher-
dimensional models by means of different appropriates [5, 6]. Dromions are exact, localized
solutions of (2+1) dimensional evolution equations and decay exponentially in all directions.
Solitoffs constitute an intermediate state between dromions and plane solitons, since they
decay exponentially in all directions except a preferred one. Although some generalized
dromion and solitoff structures have been exposed [7, 8], the construction of localized
excitations in (2 + 1) dimensions is still a challenging and rewarding problem.

In this paper, we consider the construction of localized structures in a (2 + 1)-
dimensional Burgers equation [9]:

ut + uxy + uuy + ux∂−1
x uy = 0, (1.1)
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and a coupled higher-dimensional Burgers system of the form [10, 11]

ut = uxx + uyy + 2uux + 2vuy,

vt = vxx + vyy + 2uvx + 2vvy.
(1.2)

Equation (1.1) reduces to the well-known Burgers equation when y = x. Recently, Kaya
and Yokus [12] obtained some plane solitary wave solutions by a modified Adomian’s
decomposition method. However, localized structures of (1.1) and (1.2) have not yet been
reported, to our knowledge.

The organization of the paper is as follows. In Section 2, a general functional separation
solution containing two arbitrary functions is obtained for (1.1). Equation (1.2) is transformed
into a single heat equation by a function transformation in Section 3. Exact solutions
and localized structures are discussed in Section 4, and their interaction properties are
numerically studied. The conclusion and discussion are given in Section 5.

2. A General Solution to (1.1)

Under the transformation uy = vx, (1.1) is converted into a set of couple of nonlinear partial
differential equations:

ut + uxy + uuy + uxv = 0,

uy = vx.
(2.1)

According to the singular manifold method [13, 14], we truncate the Painlevé expansion of
(2.1) at the constant level term

u = ϕ−1u0 + u1,

v = ϕ−1v0 + v1,
(2.2)

where ϕ is the singular manifold, and {u1, v1} is an arbitrary seed solution of (2.1).
Substituting (2.2) into (2.1) and equating the coefficients of like powers of ϕ yield

u0 = ϕx, v0 = ϕy, (2.3)

where ϕ satisfies the equation

ϕt + ϕxy + u1ϕy + v1ϕx = 0, (2.4)

which is called the singular manifold equation. Equations (2.2), (2.3), and (2.4) constitute an
auto-Bäcklund transformation for (2.1) in terms of the singular manifold ϕ. If we take u1 = ϕ,
v1 = ∂−1

x ϕy, then

u =
ϕx
ϕ

+ ϕ, (2.5)
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where ϕ satisfies

ϕt + ϕxy + ϕϕy + ϕx∂−1
x ϕy = 0. (2.6)

Equations (2.5) and (2.6) are another auto-Bäcklund transformation for (1.1). If we take u1 =
0, v1 = 0, the Cole-Hopf type transformation or hetero-Bäcklund transformation

u =
ϕx
ϕ
, (2.7)

where ϕ satisfies

ϕt + ϕxy = 0, (2.8)

is obtained for (2 + 1)-dimensional Burgers equation (1.1). Now, we take the special seed
solution as

u1 = 0, v1 = v1
(
y, t

)
, (2.9)

where v1(y, t) is an arbitrary function of indicated variables. It can be directly checked that
(2.4) with (2.9) has the nonlinear separation solution

ϕ = exg
(
y, t

)
+ h

(
y
)
, (2.10)

with g(y, t) and h(y) being arbitrary functions of indicated variables if we take

v1 = −
gy + gt
g

. (2.11)

Thus, the direct calculation from (2.2), (2.3), (2.9), and (2.10) yields a general functional
separation solution of(1.1)

u =
exg

exg + h
, (2.12)

with g(y, t) and h(y) being arbitrary functions of indicated variables. The solution generated
this way involves two arbitrary functions of space and time variables without any restriction.
This implies that we can study a large diversity of solution structures for the (2 + 1)-
dimensional Burgers equation (1.1) by selecting appropriately these arbitrary functions in
(2.12). It is necessary to point out that the (2+1)-dimensional Burgers equation (1.1) possesses
some special types of localized coherent structures for the following potential field:

w ≡ uy =
gyh − ghy

(
ex/2g + e−x/2h

)2
, (2.13)

rather than the physical field u itself.
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3. The Linearization of (1.2)

Through a similar analysis, we obtain the following auto-Bäcklund transformation of (1.2):

u =
ϕx
ϕ

+ u1,

v =
ϕy

ϕ
+ v1,

(3.1)

where {u1, v1} is the seed solution to (1.2) and ϕ satisfies the equation

ϕt = ϕxx + ϕyy + 2u1ϕx + 2v1ϕy, (3.2)

with the constraint u1y = v1x. Taking the seed solution u1 = ϕ, v1 = ∂−1
x ϕy, one obtains a new

Bäcklund transformation (2.5), along with v = ϕy/ϕ + ∂−1
x ϕy, for (1.2) with ϕ satisfying

ϕt = ϕxx + ϕyy + 2ϕϕx + 2ϕy∂−1
x ϕy. (3.3)

If taking the trivial seed solution u1 = v1 = 0, the Cole-Hopf type transformation

u =
ϕx
ϕ
,

v =
ϕy

ϕ
,

(3.4)

with ϕ satisfying

ϕt = ϕxx + ϕyy (3.5)

is obtained for (1.2). Thus, the nonlinear equation (1.2) is linearized into (3.5) by the
transformation (3.4). Through (3.5), one may obtain many interesting solution structures of
(1.2). However, the coupled higher-dimensional Burgers system (1.2) possesses special types
of localized coherent structures for the potential field w ≡ uy, rather than the physical field u
or v itself.

4. Special Exact Solutions and Localized Structures for (1.1) and (1.2)

By selecting appropriately these arbitrary functions in (2.12), we can study many interesting
solution structures for the (2 + 1)-dimensional Burgers equation (1.1). Two new cases are
considered as an illustrative example, and others can be obtained in a similar way to that in
[9, 13].

Case 1. We have g = exp[tanh(l1y −ω1t)] + exp[tanh(l2y −ω2t)] ≡ exp(tanhξ1) + exp(tanhξ2),
h = exp[tanh(ly)] +A ≡ exp(tanhξ) +A.
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Figure 1: The evolution of three dromions-like for (4.2).

From (2.12), one gets an exact solution of (1.1)

u =
{

ln
[
exp(x)

(
exp(tanhξ1) + exp(tanhξ2)

)
+ exp(tanhξ) +A

]}
x. (4.1)

It follows from (2.13) that

w =
{

ln
[
exp(x)

(
exp(tanhξ1) + exp(tanhξ2)

)
+ exp(tanhξ) +A

]}
xy, (4.2)

which is a three-dromion-like structure (two dromions-like and one anti-dromion-like), ant
its evolution with time is shown in Figure 1 with parameters l1 = 1, ω1 = 1, l2 = 2, ω2 =
−1, l = 1, A = 4, and t = −5, 0, 5, respectively. One can easily see that the interaction of three
dromions-like is inelastic.

Case 2. We have g = exp(sechξ1) + exp(sechξ2), h = exp(sechξ) +A.

Another exact solution of (1.1) reads

u =
{

ln
[
exp(x)

(
exp(sechξ1) + exp(sechξ2)

)
+ exp(sechξ) +A

]}
x. (4.3)

The corresponding localized structure is

w =
{

ln
[
exp(x)

(
exp(sechξ1) + exp(sechξ2)

)
+ exp(sechξ) +A

]}
xy, (4.4)
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which is a four dromions-like solution. Its evolution figures are very similar to those in Case 1
and thus omitted. In what follows, the stress is played on solution structures for the coupled
higher-dimensional Burgers system (1.2). For the exact solution (3.4) of (1.2), the function ϕ
must satisfies (3.5). Some meaningful cases are considered.

Case 3. We have ϕ = 1 + ekx+ly+(k
2+l2)t.

From (3.4), one obtain

u =
1
2
k

[
1 + tanh

1
2
(
kx + ly +

(
k2 + l2

)
t
)
]
,

v =
1
2
l

[
1 + tanh

1
2
(
kx + ly +

(
k2 + l2

)
t
)
]
,

(4.5)

a shock wave solution of (1.2).

Case 4. We have ϕ = 1 + ekx+k
2t + ely+l

2t.

It follows from (3.4) that

u =
kekx+k

2t

1 + ekx+k2t + ely+l2t
,

v =
lely+l

2t

1 + ekx+k2t + ely+l2t
,

(4.6)

a new exact solution for (1.2).

Case 5. We have ϕ = 1 + ekx+k
2t + ely+l

2t +Aekx+ly+(k
2+l2)t.

From (3.4), one gets another new exact solution for (1.2)

u =
kekx+k

2t + kAekx+ly+(k
2+l2)t

1 + ekx+k2t + ely+l2t +Aekx+ly+(k2+l2)t
,

v =
lely+l

2t + lAekx+ly+(k
2+l2)t

1 + ekx+k2t + ely+l2t +Aekx+ly+(k2+l2)t
.

(4.7)

Note that k, l, A are arbitrary constants, where A guarantees that the expression (4.7) has no
singularity. For exact solution (4.7), the corresponding localized structure is

w =
{

ln
[
1 + ekx+k

2t + ely+l
2t +Aekx+ly+(k

2+l2)t
]}

xy
. (4.8)

When A/= 0, (4.8) is a one dromion structure. Its typical spatial structure is depicted in
Figure 2 with the parameters k = 1, l = 1, t = 0 and A = 2. When A = 0, (4.8) is a
one solitoff structure. Its typical spatial structure is shown in Figure 3 with the parameters
k = 1, l = −1, t = 0 and A = 0. Now, we study two kinds of interesting nonlinear interaction
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Figure 2: A typical spatial structure for (4.8) with A = 2.
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Figure 3: A typical spatial structure for (4.8) with A = 0.

phenomena for localized structures of (1.2), which are not reported yet in literature to our
knowledge.

Case 6. We have ϕ = 1 + ekx+k
2t + el1y+l

2
1t + el2y+l

2
2t + A1ekx+l1y+(k

2+l21)t + A2ekx+l2y+(k
2+l22)t +

A3e(l1+l2)y+(l1+l2)
2t.

In this case, the localized structure of (1.2) reads

w =
{

ln
[
1 + ekx+k

2t + el1y+l
2
1t + el2y+l

2
2t +A1ekx+l1y+(k

2+l21)t

+A2ekx+l2y+(k
2+l22)t +A3e(l1+l2)y+(l1+l2)

2t
]}

xy
,

(4.9)

which is a two-dromion-like (a dromion-like and an anti-dromion-like) structure. And its
evolution is illustrated in Figure 4 with the parameters k = 1, l1 = −1, l2 = 2, A1 = 1, A2 =
2, A3 = 3 and t = −5, 0, 5, respectively. From the figures, we see that two dromions-like are
fused into a dromion-like after their interaction.

Case 7. We have ϕ = 1 + ekx+k
2t + el1y+l

2
1t +A1ekx+l1y+(k

2+l21)t +A2ekx+l2y+(k
2+l22)t +A3e(l1+l2)y+(l1+l2)

2t.
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Figure 4: The fussion phenomenon of two dromions-like for (4.9).

This case is obtained from the above one through dropping the third exponential term.
Thus, the localized structure is

w =
{

ln
[
1 + ekx+k

2t + el1y+l
2
1t +A1ekx+l1y+(k

2+l21)t

+A2ekx+l2y+(k
2+l22)t +A3e(l1+l2)y+(l1+l2)

2t
]}

xy
,

(4.10)

which is a combination structure of one dromion-like and one solitoff-like. And its evolution
is shown in Figure 5 with the same parameter values as those in Figure 4. One can easily see
from the figures that a dromions-like and a solitoff-like are fused into a solitoff-like after their
interaction.

5. Conclusion and Discussion

We have obtained auto-Bäcklund transformations, Cole-Hopf ones, and a general functional
separation solution containing two arbitrary functions for the (2 + 1)-dimensional Burgers
equation by means of choosing different seed solutions in the singular manifold method, and
a coupled higher-dimensional Burgers system (1.2) has been linearized. It is pointed out that
the equations of interest possess some special types of localized coherent structures for the
potential field w ≡ uy rather than the physical field u or v itself. For (1.1), we find that the
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Figure 5: The fussion phenomenon of a dromion-like and a solitoff-like for (4.10).

interaction of three dromions-like is inelastic. As far as (1.2) is concerned, it is found that two
dromions-like can be fused into one while a dromion-like and a solitoff-like can be fused into
a solitoff-like, which are not reported previously in the literature.

The singular manifold method is a powerful tool for obtaining exact solutions of
nonlinear PDEs. Usually, the seed solution is taken as the trivial one in order to get the
solution of the singular manifold equation. Due to the introduction of two arbitrary functions
in our singular manifold function, one can study a variety of solution structures by choosing
appropriately these arbitrary functions. Even more, the equation of interest may be linearized.
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