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1. Introduction and Motivations

The inhomogeneous cosmological models play a significant role in understanding some
essential features of the universe such as the formation of galaxies during the early stages
of evolution and process of homogenization. The early attempts at the construction of
such models have been done by Tolman [1] and Bondi [2] who considered spherically
symmetric models. Inhomogeneous plane-symmetric models were considered by Taub [3, 4]
and later by Tomimura [5], Szekeres [6], Collins and Szafron [7, 8], and Szafron and
Collins [9]. Senovilla [10] obtained a new class of exact solutions of Einstein’s equations
without big bang singularity, representing a cylindrically symmetric, inhomogeneous
cosmological model filled with perfect fluid which is smooth and regular everywhere
satisfying energy and causality conditions. Later, Ruiz and Senovilla [11] have examined
a fairly large class of singularity-free models through a comprehensive study of general
cylindrically symmetric metric with separable function of r and t as metric coefficients.
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Dadhich et al. [12] have established a link between the FRW model and the singularity-
free family by deducing the latter through a natural and simple in-homogenization and
anisotropization of the former. Recently, Patel et al. [13] have presented a general class
of inhomogeneous cosmological models filled with nonthermalized perfect fluid assuming
that the background space-time admits two space-like commuting Killing vectors and has
separable metric coefficients. Singh et al. [14] obtained inhomogeneous cosmological models
of perfect fluid distribution with electromagnetic field. Recently, Pradhan et al. [15–18]
have investigated cylindrically-symmetric inhomogeneous cosmological models in various
contexts.

The occurrence of magnetic field on galactic scale is a well-established fact today,
and its importance for a variety of astrophysical phenomena is generally acknowledged as
pointed out by Zeldovich et al. [19]. Also Harrison [20] suggests that magnetic field could
have a cosmological origin. As natural consequences, we should include magnetic fields in
the energy-momentum tensor of the early universe. The choice of anisotropic cosmological
models in Einstein system of field equations leads to the cosmological models more general
than Robertson-Walker model [21]. The presence of primordial magnetic field in the early
stages of the evolution of the universe is discussed by many [22–31]. Strong magnetic field
can be created due to adiabatic compression in clusters of galaxies. Large-scale magnetic field
gives rise to anisotropies in the universe. The anisotropic pressure created by the magnetic
fields dominates the evolution of the shear anisotropy and decays slowly as compared to the
case when the pressure is held isotropic [32, 33]. Such fields can be generated at the end of an
inflationary epoch [34–38]. Anisotropic magnetic field models have significant contribution
in the evolution of galaxies and stellar objects. Bali and Ali [39] obtained a magnetized
cylindrically symmetric universe with an electrically neutral perfect fluid as the source of
matter. Pradhan et al. [40–44] have investigated magnetized cosmological models in various
contexts.

In 1917 Einstein introduced the cosmological constant into his field equations of
general relativity in order to obtain a static cosmological model since, as is well known,
without the cosmological term his field equations admit only nonstatic solutions. After
the discovery of the red-shift of galaxies and explanation thereof Einstein regretted for the
introduction of the cosmological constant. Recently, there has been much interest in the
cosmological term in context of quantum field theories, quantum gravity, super-gravity
theories, Kaluza-Klein theories and the inflationary-universe scenario. Shortly after Einstein’s
general theory of relativity Weyl [45] suggested the first so-called unified field theory
based on a generalization of Riemannian geometry. With its backdrop, it would seem more
appropriate to call Weyl’s theory a geometrized theory of gravitation and electromagnetism
(just as the general theory was a geometrized theory of gravitation only), instead of a unified
field theory. It is not clear as to what extent the two fields have been unified, even though they
acquire (different) geometrical significance in the same geometry. The theorywas never taken
seriously inasmuchas it was based on the concept of nonintegrability of length transfer; and,
as pointed out by Einstein, this implies that spectral frequencies of atoms depend on their
past histories and therefore have no absolute significance. Nevertheless, Weyl’s geometry
provides an interesting example of nonRiemannian connections, and recently Folland [46]
has given a global formulation of Weyl manifolds clarifying considerably many of Weyl’s
basic ideas thereby.

In 1951 Lyra [47] proposed a modification of Riemannian geometry by introducing
a gauge function into the structureless manifold, as a result of which the cosmological
constant arises naturally from the geometry. This bears a remarkable resemblance to Weyl’s
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geometry. But in Lyra’s geometry, unlike that of Weyl, the connection is metric preserving
as in Remannian; in other words, length transfers are integrable. Lyra also introduced the
notion of a gauge and in the “normal” gauge the curvature scalar in identical to that of Weyl.
In consecutive investigations Sen [48], Sen and Dunn [49] proposed a new scalar-tensor
theory of gravitation and constructed an analog of the Einstein field equations based on
Lyra’s geometry. It is, thus, possible [48] to construct a geometrized theory of gravitation and
electromagnetismmuch along the lines of Weyl’s “unified” field theory, however, without the
inconvenience of nonintegrability length transfer.

Halford [50] has pointed out that the constant vector displacement field φi in Lyra’s
geometry plays the role of cosmological constant Λ in the normal general relativistic
treatment. It is shown by Halford [51] that the scalar-tensor treatment based on Lyra’s
geometry predicts the same effects within observational limits as the Einstein’s theory.
Several authors Sen and Vanstone [52], Bhamra [53], Karade and Borikar [54], Kalyanshetti
and Waghmode [55], Reddy and Innaiah [56], Beesham [57], Reddy and Venkateswarlu
[58], Soleng [59], have studied cosmological models based on Lyra’s manifold with a
constant displacement field vector. However, this restriction of the displacement field
to be constant is merely one for convenience, and there is no a priori reason for it.
Beesham [60] considered FRW models with time-dependent displacement field. He has
shown that by assuming the energy density of the universe to be equal to its critical
value, the models have the k = −1 geometry. T. Singh and G. P. Singh [61–64],
Singh and Desikan [65] have studied Bianchi-type I, III, Kantowaski-Sachs and a new
class of cosmological models with time-dependent displacement field and have made
a comparative study of Robertson-Walker models with constant deceleration parameter
in Einstein’s theory with cosmological term and in the cosmological theory based on
Lyra’s geometry. Soleng [59] has pointed out that the cosmologies based on Lyra’s
manifold with constant gauge vector φ will either include a creation field and be equal
to Hoyle’s creation field cosmology [66–68] or contain a special vacuum field, which
together with the gauge vector term, may be considered as a cosmological term. In the
latter case the solutions are equal to the general relativistic cosmologies with a cosmological
term.

Recently, Pradhan et al. [69–73], Casana et al. [74], Rahaman et al. [75, 76], Bali and
Chandnani [77], Kumar and Singh [78], Singh [79], Rao, Vinutha et al. [80] and Pradhan [81]
have studied cosmological models based on Lyra’s geometry in various contexts. Rahaman
et al. [82, 83] have evaluated solutions for plane-symmetric thick domain wall in Lyra
geometry by using the separable form for the metric coefficients. Rahaman [84–87] has
also studied some topological defects within the framework of Lyra geometry. With these
motivations, in this paper, we have obtained exact solutions of Einstein’s modified field
equations in cylindrically symmetric inhomogeneous space-time within the frame work of
Lyra’s geometry in the presence and absence of magnetic field for time varying displacement
vector. This paper is organized as follows. In Section 1 the motivation for the present work
is discussed. The metric and the field equations are presented in Section 2. In Section 3
the solutions of field equations are derived for time varying displacement field β(t) in
presence of magnetic field. Section 4 contains the physical and geometric properties of the
model in presence of magnetic field. The solutions in absence of magnetic field are given
in Section 5. The physical and geometric properties of the model in absence of magnetic
field are discussed in Section 6. Finally, in Section 7 discussion and concluding remarks are
given.
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2. The Metric and Field Equations

We consider the cylindrically symmetric metric in the form

ds2 = A2
(
dx2 − dt2

)
+ B2dy2 + C2dz2, (2.1)

where A is the function of t, alone and B and C are functions of x and t. The energy
momentum tensor is taken as having the form

T
j

i =
(
ρ + p

)
uiu

j + pgji + E
j

i , (2.2)

where ρ and p are, respectively, the energy density and pressure of the cosmic fluid, and ui is
the fluid four-velocity vector satisfying the condition

uiui = −1, uixi = 0. (2.3)

In (2.2), Eji is the electromagnetic field given by Lichnerowicz [88]

E
j

i = μ
[
hlh

l

(
uiu

j +
1
2
g
j

i

)
− hihj

]
, (2.4)

where μ is the magnetic permeability and hi the magnetic flux vector defined by

hi =
1
μ

∗Fjiuj , (2.5)

where the dual electromagnetic field tensor ∗Fij is defined by Synge [89]

∗Fij =
√−g
2

εijklF
kl. (2.6)

Here Fij is the electromagnetic field tensor and εijkl is the Levi-Civita tensor density.
The coordinates are considered to be comoving so that u1 = 0 = u2 = u3 and u4 =

1/A. If we consider that the current flows along the z-axis, then F12 is the only nonvanishing
component of Fij . The Maxwell’s equations

F
[
ij; k

]
= 0,

[
1
μ
Fij

]

;j
= 0,

(2.7)

require that F12 is the function of x-alone. We assume that the magnetic permeability is the
functions of x and t both. Here the semicolon represents a covariant differentiation.
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The field equations (in gravitational units c = 1, G = 1), in normal gauge for Lyra’s
manifold, were obtained by Sen [48] as

Rij − 1
2
gijR +

3
2
φiφj − 3

4
gijφkφ

k = −8πTij , (2.8)

where φi is the displacement field vector defined as

φi =
(
0, 0, 0, β(t)

)
, (2.9)

where other symbols have their usual meaning as in Riemannian geometry.
For the line-element (2.1), the field (2.8) with (2.2) and (2.9) leads to the following

system of equations:

1
A2

[
− B̈
B

− C̈

C
+
Ȧ

A

(
Ḃ

B
+
Ċ

C

)
− ḂĊ

BC
+
B′C′

BC

]
− 3
4
β2 = 8π

(
p +

F2
12

2μA2B2

)
, (2.10)

1
A2

(
Ȧ2

A2
− Ä

A
− C̈

C
+
C′′

C

)
− 3
4
β2 = 8π

(
p +

F2
12

2μA2B2

)
, (2.11)

1
A2

(
Ȧ2

A2
− Ä

A
− B̈

B
+
B′′

B

)
− 3
4
β2 = 8π

(
p − F2

12

2μA2B2

)
, (2.12)

1
A2

[
−B

′′

B
− C′′

C
+
Ȧ

A

(
Ḃ

B
+
Ċ

C

)
− B′C′

BC
+
ḂĊ

BC

]
+
3
4
β2 = 8π

(
ρ +

F2
12

2μA2B2

)
, (2.13)

Ḃ′

B
+
Ċ′

C
− Ȧ

A

(
B′

B
+
C′

C

)
= 0. (2.14)

Here, and also in the following expressions, a dot and a dash indicate ordinary differentiation
with, respect to t and x respectively.

The energy conservation equation Tii;j = 0 leads to

ρ̇ +
(
ρ + p

)(2Ȧ
A

+
Ḃ

B
+
Ċ

C

)
= 0, (2.15)

(
R
j

i −
1
2
g
j

i R

)

;j
+
3
2

(
φiφ

j
)
;j
− 3
4

(
g
j

i φkφ
k
)
;j
= 0. (2.16)

Equation (2.16) leads to

3
2
φi

[
∂φj

∂xj
+ φlΓjlj

]
+
3
2
φj
[
∂φi

∂xj
− φlΓlij

]
− 3
4
g
j

i φk

[
∂φk

∂xj
+ φlΓklj

]
− 3
4
g
j

i φ
k

[
∂φk

∂xj
+ φlΓlkj

]
= 0.

(2.17)
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Equation (2.17) is identically satisfied for i = 1, 2, 3. For i = 4, (2.17) reduces to

3
2
ββ̇ +

3
2
β2
(
2Ȧ
A

+
Ḃ

B
+
Ċ

C

)
= 0. (2.18)

3. Solution of Field Equations in Presence of Magnetic Field

Equations (2.10)–(2.14) are five independent equations in seven unknowns A, B, C, ρ, p, β,
and F12. For the complete determinacy of the system, we need two extra conditions which are
narrated hereinafter. The research on exact solutions is based on some physically reasonable
restrictions used to simplify the field equations.

To get determinate solution, we assume that the expansion θ in the model is
proportional to the shear σ. This condition leads to

A =
(
B

C

)n

, (3.1)

where n is a constant. The motive behind assuming this condition is explained with reference
to Thorne [90]; the observations of the velocity-red-shift relation for extragalactic sources
suggest that Hubble expansion of the universe is isotropic today within ≈ 30 percent [91, 92].
To put more precisely, red-shift studies place the limit

σ

H
≤ 0.3 (3.2)

on the ratio of shear, σ, to Hubble constant, H, in the neighbourhood of our Galaxy today.
Collins et al. [93] have pointed out that for spatially homogeneous metric, the normal
congruence to the homogeneous expansion satisfies that the condition σ/θ is constant.

From (2.15)–(2.17), we have

A44

A
− A2

4

A2
+
A4B4

AB
+
A4C4

AC
− B44

B
− B4C4

BC
=
C11

C
− B1C1

BC
= K (constant), (3.3)

8πF2
12

μB2
= −C44

C
+
C11

C
+
B44

B
− B11

B
. (3.4)

We also assume that

B = f(x)g(t),

C = f(x)k(t).
(3.5)
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Using (3.1) and (3.5) in (2.14) and (3.3) leads to

k4
k

=
(2n − 1)
(2n + 1)

g4
g
, (3.6)

(n − 1)
g44
g

− nk44
k

− g4
g

k4
k

= K, (3.7)

ff11 − f2
1 = Kf2. (3.8)

Equation (3.6) leads to

k = c0gα, (3.9)

where α = (2n − 1)/(2n + 1) and c0 is the constant of integration. From (3.7) and (3.9), we
have

g44
g

+ �
g2
4

g2
=N, (3.10)

where

� =
nα(α − 1) + α
n(α − 1) + 1

, N =
K

n(1 − α) − 1
. (3.11)

Equation (3.8) leads to

f = exp
(
1
2
K(x + x0)2

)
, (3.12)

where x0 is an integrating constant. Equation (3.10) leads to

g =
(
c1e

bt + c2e−bt
)1/(�+1)

, (3.13)

where b =
√
(� + 1)N and c1, c2 are integrating constants. Hence from (3.9) and (3.13), we

have

k = c0
(
c1e

bt + c2e−bt
)α/(�+1)

. (3.14)
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Therefore, we obtain

B = exp
(
1
2
K(x + x0)2

)(
c1e

bt + c2e−bt
)1/(�+1)

,

C = exp
(
1
2
K(x + x0)2

)
c0
(
c1e

bt + c2e−bt
)α/(�+1)

,

A = a
(
c1e

bt + c2e−bt
)n(1−α)/(�+1)

,

(3.15)

where a = c3/c0, c3 being a constant of integration.
After using suitable transformation of the coordinates, the model (2.1) reduces to the

form

ds2 = a2
(
c1e

bT + c2e−bT
)2n(1−α)/(�+1)(

dX2 − dT2
)

+ eKX
2
(
c1e

bT + c2e−bT
)2/(�+1)

dY 2 + eKX
2
(
c1e

bT + c2e−bT
)2α/(�+1)

dZ2,

(3.16)

where x + x0 = X, t = T , y = Y , and c0z = Z.

4. Some Physical and Geometric Properties of the Model in
Presence of Magnetic Field

Equation (2.18) gives

β̇

β
= −

(
2Ȧ
A

+
Ḃ

B
+
Ċ

C

)
, as β /= 0, (4.1)

which leads to

β̇

β
= −b{2n(1 − α) + 1 + α}

(� + 1)

[
c1e

bT − c2e−bT
c1ebT + c2e−bT

]
. (4.2)

Equation (4.2) on integration gives

β = K0

(
c1e

bT + c2e−bT
)κ
, (4.3)

where K0 is a constant of integration and

κ =
b{2n(α − 1) − (α + 1)}

(� + 1)
. (4.4)
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Using (3.15) and (4.3) in (2.10) and (2.13), the expressions for pressure p and density ρ for
the model (3.16) are given by

8πp =
1

a2ψ
2n(1−α)/(�+1)
2

[
K2X2 − 2(3 + α)b2c1c2

(� + 1)ψ2
2

−
(
2nα2 + α2 + 2α − 2n + 3

)
b2

2(� + 1)2
ψ2
1

ψ2
2

]
− 3
4
K2

0ψ
2κ
2 ,

8πρ =
1

a2ψ
2n(1−α)/(�+1)
2

[
−3K2X2 − 2K +

2b2(α − 1)c1c2
(� + 1)ψ2

2

−
(
2nα2 − α2 − 2α − 2n + 1

)
b2

2(� + 1)2
ψ2
1

ψ2
2

]

+
3
4
K2

0ψ
2κ
2 ,

(4.5)

where

ψ1 = c1ebT − c2e−bT ,

ψ2 = c1ebT + c2e−bT .
(4.6)

From (3.4) the nonvanishing component F12 of the electromagnetic field tensor is obtained as

F2
12 =

μ

8π
b2(1 − α)
(� + 1)2

eKX
2
ψ
2/(�+1)
2

[
4(� + 1)c1c2 + (1 + α)ψ2

1

ψ2
2

]
. (4.7)

From the above, equation it is observed that the electromagnetic field tensor increases with
time.

The reality conditions (Ellis [94])

(i) ρ + p > 0,

(ii) ρ + 3p > 0,
(4.8)

lead to

b2
(
n − nα2 − 1

)

(� + 1)2
ψ2
1

ψ2
2

− 4b2c1c2
(� + 1)ψ2

2

> K
(
KX2 + 1

)
, (4.9)

b2
(
4n − 4nα2 − α2 − 2α − 5

)

(� + 1)2
ψ2
1

ψ2
2

− 4b2(α + 5)c1c2
(� + 1)ψ2

2

> 2K +
3
2
β2a2ψ

2n(1−α)/(�+1)
2 , (4.10)

respectively.
The dominant energy conditions (Hawking and Ellis [95])

(i) ρ − p ≥ 0,

(ii) ρ + p ≥ 0,
(4.11)
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lead to

b2(α + 1)2

(� + 1)2
ψ2
1

ψ2
2

+
4b2(α + 1)c1c2

(� + 1)ψ2
2

+
3
2
β2a2ψ

2n(1−α)/(�+1)
2 ≥ 2K

(
2KX2 + 1

)
, (4.12)

b2
(
n − nα2 − 1

)

(� + 1)2
ψ2
1

ψ2
2

− 4b2c1c2
(� + 1)ψ2

2

≥ K
(
KX2 + 1

)
, (4.13)

respectively. The conditions (4.10) and (4.12) impose a restriction on displacement vector
β(t).

The expressions for the expansion θ, Hubble parameter H, shear scalar σ2,
deceleration parameter q, and proper volume V 3 for the model (3.16) are given by

H = 3θ =
3b{n(1 − α) + (1 + α)}
(� + 1)aψn(1−α)/(�+1)2

ψ1

ψ2
, (4.14)

σ2 =
b2
[
{n(1 − α) + (1 + α)}2 − 3n(1 − α)(1 + α) − 3α

]

3(� + 1)2a2ψ2n(1−α)/(�+1)
2

ψ2
1

ψ2
2

, (4.15)

q = −1 − 6c1c2(� + 1)
n(1 − α2)ψ2

1

, (4.16)

V 3 =
√−g = a2ψ2n(1+α)(1−α)/(�+1)

2 eKX
2
. (4.17)

From (4.14) and (4.15), we obtain

σ2

θ2
=

{n(1 − α) + (1 + α)}2 − 3n
(
1 − α2) − 3α

3{n(1 − α) + (1 + α)}2
= constant. (4.18)

The rotation ω is identically zero.
The rate of expansionHi in the direction of x, y, and z is given by

Hx =
A4

A
=
nb(1 − α)
(� + 1)

ψ1

ψ2
,

Hy =
B4

B
=

b

(� + 1)
ψ1

ψ2
,

Hz =
C4

C
=

bα

(� + 1)
ψ1

ψ2
.

(4.19)

Generally the model (3.16) represents an expanding, shearing, and nonrotating universe in
which the flow vector is geodetic. The model (3.16) starts expanding at T > 0 and goes on
expanding indefinitely when n(1 − α)/(� + 1) < 0. Since σ/θ = constant, the model does not
approach isotropy. As T increases the proper volume also increases. The physical quantities
p and ρ decrease as F12 increases. However, if n(1 − α)/(β + 1) > 0, the process of contraction
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starts at T > 0, and at T = ∞ the expansion stops. The electromagnetic field tensor does not
vanish when b /= 0, and α/= 1. It is observed from (4.16) that q < 0 when c1 > 0 and c2 > 0 which
implies an accelerating model of the universe. Recent observations of type Ia supernovae
[96–100] reveal that the present universe is in accelerating phase and deceleration parameter
lies somewhere in the range −1 < q ≤ 0. It follows that our models of the universe are
consistent with recent observations. Either when c1 = 0 or c2 = 0, the deceleration parameter
q approaches the value (−1) as in the case of de-Sitter universe.

5. Field Equations and Their Solution in Absence of Magnetic Field

In absence of magnetic field, the field (2.8) with (2.2) and (2.9) for metric (2.1) reads as

1
A2

[
−B44

B
− C44

C
+
A4

A

(
B4

B
+
C4

C

)
− B4C4

BC
+
B1C1

BC

]
= 8πp +

3
4
β2, (5.1)

1
A2

(
A2

4

A2
− A44

A
− C44

C
+
C11

C

)
= 8πp +

3
4
β2, (5.2)

1
A2

(
A2

4

A2
− A44

A
− B44

B
+
B11

B

)
= 8πp +

3
4
β2, (5.3)

1
A2

[
−B11

B
− C11

C
+
A4

A

(
B4

B
+
C4

C

)
− B1C1

BC
+
B4C4

BC

]
= 8πρ − 3

4
β2, (5.4)

B14

B
+
C14

C
− A4

A

(
B1

B
+
C1

C

)
= 0. (5.5)

Equations (5.2) and (5.3) lead to

B44

B
− B11

B
− C44

C
+
C11

C
= 0. (5.6)

Equations (3.5) and (5.6) lead to

g44
g

− k44
k

= 0. (5.7)

Equations (3.9) and (5.7) lead to

g44
g

+ α
g2
4

g2
= 0, (5.8)

which on integration gives

g = (c4t + c5)1/(α+1), (5.9)
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where c4 and c5 are constants of integration. Hence from (3.9) and (5.9), we have

k = c0(c4t + c5)α/(α+1). (5.10)

In this case (3.8) also leads to the same as (3.12).
Therefore, in absence of magnetic field, we have

B = exp
(
1
2
K(x + x0)2

)
(c4t + c5)1/(α+1),

C = exp
(
1
2
K(x + x0)2

)
c(c4t + c5)α/(α+1),

A = a(c4t + c5)n(1−α)/(1+α),

(5.11)

where a is already defined in previous section.
After using suitable transformation of the coordinates, the metric (2.1) reduces to the

form

ds2 = a2(c4T)2n(1−α)/(1+α)
(
dX2 − dT2) + eKX2

(c4T)2/(α+1)dY 2 + eKX
2
(c4T)2α/(α+1)dZ2, (5.12)

where x + x0 = X, y = Y , c0z = Z, and t + c5/c4 = T .

6. Some Physical and Geometric Properties of the Model in
Absence of Magnetic Field

With the use of (5.11), equation (2.18) leads to

β̇

β
=

1
T

[
2n(α − 1) − (α + 1)

(α + 1)

]
, as β /= 0, (6.1)

which upon integration leads to

β = RT ((2n(α−1)−(α+1))/(α+1)), (6.2)

where R is an integrating constant.
Using (5.11) and (6.2) in (5.1) and (5.4), the expressions for pressure p and density ρ

for the model (5.12) are given by

8πp =
1

a2(c4T)2n(1−α)/(1+α)

[{
n
(
1 − α2) + α
(α + 1)2

}
1
T2

+K2X2

]
− 3
4
R2T2((2n(α−1)−(α+1))/(α+1)),

8πρ =
1

a2(c4T)2n(1−α)/(1+α)

[{
n
(
1 − α2) + α
(α + 1)2

}
1
T2

−K
(
2 + 3KX2

)]
+
3
4
R2T2((2n(α−1)−(α+1))/(α+1)).

(6.3)
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The dominant energy conditions (Hawking and Ellis [95])

(i) ρ − p ≥ 0,

(ii) ρ + p ≥ 0,
(6.4)

lead to

3
4
β2a2(c4T)2n(1−α)/(1+α) ≥ K

(
1 + 2KX2

)
, (6.5)

{
n
(
1 − α2) + α
(1 + α)2

}
1
T2

≥ K
(
1 +KX2

)
, (6.6)

respectively.
The reality conditions (Ellis [94])

(i) ρ + p > 0,

(ii) ρ + 3p > 0,
(6.7)

lead to

{
n
(
1 − α2) + α
(1 + α)2

}
1
T2

> K
(
1 +KX2

)
, (6.8)

2
[
n
(
1 − α2) + α]

(1 + α)2
1
T2

> K +
3
4
β2(c4T)2n(1−α)/(1+α). (6.9)

The conditions (6.5) and (6.9) impose a restriction on β(t).
The expressions for the expansion θ, Hubble parameter H, shear scalar σ2,

deceleration parameter q, and proper volume V 3 for the model (5.12) in absence of magnetic
field are given by

H = 3θ =
n(1 − α) + (1 + α)

a(1 + α)cn(1−α)/(1+α)4

1
T (n(1−α)+(1+α))/(1+α) , (6.10)

σ2 =
{n(1 − α) + (1 + α)}2 − 3n

(
1 − α2) − 3α

3a2(1 + α)2cn(1−α)/(1+α)4

1
T (2n(1−α)+2(1+α))/(1+α) , (6.11)

q = −1 + 3(α + 1)
2n(1 − α) + 2(1 + α)

, (6.12)

V 3 =
√−g = a2eKX

2
(c4T)(2n(1−α)+(1+α))/(1+α). (6.13)
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From (6.10) and (6.11), we obtain

σ2

θ2
=

{n(1 − α) + (1 + α)}2 − 3n
(
1 − α2) − 3α

3{n(1 − α) + (1 + α)}2
= constant. (6.14)

The rotation ω is identically zero.
The rate of expansionHi in the direction of x, y, and z are given by

Hx =
A4

A
=
n(1 − α)
(1 + α)

1
T
,

Hy =
B4

B
=

1
(1 + α)

1
T
,

Hz =
C4

C
=

α

(1 + α)
1
T
.

(6.15)

The model (5.12) starts expanding with a big bang at T = 0 and it stops expanding at T = ∞.
It should be noted that the universe exhibits initial singularity of the Point-type at T = 0. The
space-time is well behaved in the range 0 < T < T0. In absence of magnetic field, the model
represents a shearing and nonrotating universe in which the flow vector is geodetic. At the
initial moment T = 0, the parameters ρ, p, β, θ, σ2 and H tend to infinity. So the universe
starts from initial singularity with infinite energy density, infinite internal pressure, infinitely
large gauge function, infinite rate of shear and expansion. Moreover, ρ, p, β, θ, σ2 andH are
monotonically decreasing toward a nonzero finite quantity for T in the range 0 < T < T0
in absence of magnetic field. Since σ/θ = constant, the model does not approach isotropy.
As T increases the proper volume also increases. It is observed that for the derived model,
the displacement vector β(t) is a decreasing function of time and therefore it behaves like
cosmological term Λ. It is observed from (6.12) that q < 0 when α < (2n − 1)/(2n + 1) which
implies an accelerating model of the universe. When α = −1, the deceleration parameter
q approaches the value (−1) as in the case of de-Sitter universe. Thus, also in absence of
magnetic field, our models of the universe are consistent with recent observations.

7. Discussion and Concluding Remarks

In this paper, we have obtained a new class of exact solutions of Einstein’s modified field
equations for cylindrically symmetric space-time with perfect fluid distribution within the
framework of Lyra’s geometry both in presence and absence of magnetic field. The solutions
are obtained using the functional separability of the metric coefficients. The source of the
magnetic field is due to an electric current produced along the z-axis. F12 is the only
nonvanishing component of electromagnetic field tensor. The electromagnetic field tensor
is given by (4.7), μ remains undetermined as function of both x and t. The electromagnetic
field tensor does not vanish if b /= 0 and α/= 1. It is observed that in presence of magnetic field,
the rate of expansion of the universe is faster than that in absence of magnetic field. The idea
of primordial magnetism is appealing because it can potentially explain all the large-scale
fields seen in the universe today, specially those found in remote proto-galaxies. As a result,
the literature contains many studies examining the role and the implications of magnetic
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fields for cosmology. In presence of magnetic field, the model (3.16) represents an expanding,
shearing and nonrotating universe in which the flow vector is geodetic. But in the absence
of magnetic field, the model (5.12) found that in the universe all the matter and radiation
are concentrated at the big bang epoch and the cosmic expansion is driven by the big bang
impulse. The universe has singular origin and it exhibits power-law expansion after the big
bang impulse. The rate of expansion slows down and finally stops at T → ∞. In absence of
magnetic field, the pressure, energy density and displacement field become zero whereas the
spatial volume becomes infinitely large as T → ∞.

It is possible to discuss entropy in our universe. In thermodynamics the expression for
entropy is given by

TdS = d
(
ρV 3

)
+ p

(
dV 3

)
, (7.1)

where V 3 = A2BC is the proper volume in our case. To solve the entropy problem of the
standard model, it is necessary to treat dS > 0 for at least a part of evolution of the universe.
Hence (7.1) reduces to

TdS = ρ4 +
(
ρ + p

)(
2
A4

A
+
B4

B
+
C4

C

)
> 0. (7.2)

The conservation equation Tji:j = 0 for (2.1) leads to

ρ4 +
(
ρ + p

)(A4

A
+
B4

B
+
C4

C

)
+
3
2
ββ4 +

3
2
β2
(
2
A4

A
+
B4

B
+
C4

C

)
= 0. (7.3)

Therefore, (7.1) and (7.2) lead to

3
2
ββ4 +

3
2
β2
(
2
A4

A
+
B4

B
+
C4

C

)
< 0, (7.4)

which gives to β < 0. Thus, the displacement vector β(t) affects entropy because for entropy
dS > 0 leads to β(t) < 0.

In spite of homogeneity at large scale, our universe is inhomogeneous at small scale,
so physical quantities being position-dependent are more natural in our observable universe
if we do not go to super high scale. This result shows this kind of physical importance. It
is observed that the displacement vector β(t) coincides with the nature of the cosmological
constant Λ which has been supported by the work of several authors as discussed in the
physical behaviour of the model in Sections 4 and 6. In the recent time Λ-term has attracted
theoreticians and observers for many a reason. The nontrivial role of the vacuum in the
early universe generates a Λ-term that leads to inflationary phase. Observationally, this
term provides an additional parameter to accommodate conflicting data on the values of
the Hubble constant, the deceleration parameter, the density parameter and the age of the
universe (see, e.g., [101, 102]). In recent past there is an upsurge of interest in scalar fields
in general relativity and alternative theories of gravitation in the context of inflationary
cosmology [103–105]. Therefore the study of cosmological models in Lyra’s geometry may be
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relevant for inflationarymodels. There seems a good possibility of Lyra’s geometry to provide
a theoretical foundation for relativistic gravitation, astrophysics, and cosmology. However,
the importance of Lyra’s geometry for astrophysical bodies is still an open question. In fact,
it needs a fair trial for experiment.
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