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1. Introduction

Let Mn,r(x;q) be the weighted power means: Mn,r(x;q) = (
∑n

i=1 qix
r
i )

1/r , where Mn,0(x;q)
denotes the limit of Mn,r(x;q) as r → 0+, x = (x1, . . . , xn), q = (q1, . . . , qn), and qi > 0 (1 ≤
i ≤ n) are positive real numbers with

∑n
i=1 qi = 1. In this paper, we let q = min qi and unless

otherwise specified, we assume 0 ≤ x1 < x2 < · · · < xn.
For k ∈ {0, 1, . . . , n}, the kth symmetric function En,k of x and its mean Pn,k are defined

by

En,r(x) =
∑

1≤i1<···<ir≤n

r∏

j=1

xij , P r
n,r(x) =

En,r(x)
(

n

r

) , 1 ≤ r ≤ n; En,0 = Pn,0 = 1. (1.1)

We define An(x;q) = Mn,1(x;q), Gn(x) = Mn,0(x;q), and Hn(x;q) = Mn,−1(x;q) and
we shall write Mn,r for Mn,r(x;q) and similarly for other means when there is no risk of
confusion.

For a real number α and mutually distinct numbers r, s, t, we define

Δr,s,t,α =

∣
∣
∣
∣
∣

Mα
n,r −Mα

n,t

Mα
n,r −Mα

n,s

∣
∣
∣
∣
∣
, (1.2)

where we interpret M0
n,r −M0

n,s as lnMn,r − lnMn,s. We also define Δr,s,t to be Δr,s,t,1.
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For r > s > t ≥ 0, α > 0, the author studied in [1–3] inequalities of the following two
types:

Cr,s,t

((
1 − q

)α) ≥ Δr,s,t,α, (1.3)

Δr,s,t,α ≥ Cr,s,t

(
qα
)
, (1.4)

where for 0 < x < 1,

Cr,s,t(x) =
1 − x1/t−1/r

1 − x1/s−1/r , t > 0; Cr,s,0(x) =
1

1 − x1/s−1/r .
(1.5)

For any set {a, b, c} with a, b, c mutually distinct and nonnegative, we let r =
max{a, b, c}, t = min{a, b, c}, s = {a, b, c} \ {r, t}. By saying that (1.3) (resp., (1.4)) holds
for the set {a, b, c}, α > 0, we mean that (1.3) (resp., (1.4)) holds for r > s > t ≥ 0, α > 0.

A result of Diananda [4, 5] (see also [6, 7]) shows that (1.3) and (1.4) hold for
{1, 1/2, 0}, α = 1. When α = 1, the sets {a, b, 1}’s for which (1.3) or (1.4) holds have been
completely determined by the author in [1–3]. Moreover, it is shown in [3] that (1.4) does not
hold in general unless 0 ∈ {a, b, c}.

For general α’s, the cases r > s > t ≥ 0 for which inequality (1.3) or (1.4) holds are open
(with t = 0 in (1.4)). It is our main goal in this paper to study these cases. We first restrict our
attention to the case {a, b, 0}. This is partially because of the following result in [2] (note that
there is a typo in the original statement though).

Theorem 1.1 (see [2, Theorem 3.2]). Let r > s > 0. If (1.3) holds for {r, s, 0}, α > 0, then it also
holds for {r, s, 0}, kα with 0 < k < 1. If (1.4) holds for {r, s, 0}, α > 0, then it also holds for {r, s, 0},
kα with k > 1.

Moreover, for the unweighted case q1 = q2 = · · · = qn = 1/n, the author [3,
Theorem 3.5] has shown that (1.3) holds for {1, 1/r, 0} with α = n/r when r ≥ 2 and (1.4)
holds for {1, 1/r, 0} with α = n/((n − 1)r) when 1 < r ≤ 2. The values of α’s are best possible
here; namely, no larger α’s can make (1.3) hold for {1, 1/r, 0} and similarly no smaller α’s can
make (1.4) hold for {1, 1/r, 0}.

More generally, for arbitrary weights {qi}’s, by using similar arguments as in [3], one
sees that the largest α that can make (1.3) hold for {1, 1/r, 0} is 1/(qr) and the smallest α that
can make (1.4) hold for {1, 1/r, 0} is 1/((1 − q)r).

In Section 2, we will extend Theorem 3.5 of [3] to the case of arbitrary weights.
Namely, we will prove the following.

Theorem 1.2. For r ≥ 2, 0 < p ≤ 1/q,

A
p
n ≤ (1 − q

)(r−1)p/r
M

p
n,r +

(
1 − (1 − q

)(r−1)p/r)
G

p
n. (1.6)

For 1 < r ≤ 2, p ≥ 1/(1 − q),

A
p
n ≥ q(r−1)p/rMp

n,r +
(
1 − q(r−1)p/r

)
G

p
n. (1.7)
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We note here that by a change of variables xi → x1/r
i , one can easily rewrite (1.6)

(resp., (1.7)) in the form of (1.3) (resp., (1.4)).
After studying (1.3) and (1.4) for the set {a, b, 0}, we move on in Section 3 to the case

{a, b, c}with min(a, b, c) > 0. Our remark earlier allows us to focus on (1.3) only. In this case,
we can recast (1.3), via a change of variables, as the following:

Aα
n ≤ λr,s

((
1 − q

)α)
Mα

n,r +
(
1 − λr,s

((
1 − q

)α))
Mα

n,s, (1.8)

where α > 0, r > 1 > s > 0 and

λr,s(x) = 1 − 1
Cr,1,s(x)

. (1.9)

We will show that (1.8) holds for all n if and only if it holds for the case n = 2. Based on this,
we will then be able to prove (1.8) for certain r, s, α’s satisfying a natural condition.

One certainly expects that analogues of (1.3) and (1.4) hold with weighted power
means replaced by the symmetric means; one such example is given by the following result
in [8].

Theorem 1.3. Let qi = 1/n, then for any integer 2 ≤ k ≤ n,

(
n∑

i=1

xi

)k

≤
(

nk − λ̃2,k(n)

(
n

k

))

Mk
n,2 + λ̃2,k(n)En,k, (1.10)

where for 2 ≤ r ≤ k ≤ n (with
(

n−1
n

)
= 0 here),

λ̃r,k(n) =
nk(1 − 1/n)k/r − (n − 1)k
(

n

k

)
(1 − 1/n)k/r −

(
n−1
k

) . (1.11)

As was pointed out in [3], the proof given in [8] for the above theorem is not quite
correct. In Section 4, we will study inequalities involving the symmetric means and our
results include a proof of Theorem 1.3.

2. Proof of Theorem 1.2

In view of Theorem 1.1, one only needs to prove (1.6) for p = 1/q and similarly (1.7) for
p = 1/(1 − q). In this proof we assume that 0 < x1 ≤ · · · ≤ xn. The case x1 = 0 will follow by
taking the limit. We first prove (1.6) and we define

f(x) =
A

1/q
n − (1 − q

)(r−1)/qr
M

1/q
n,r

G
1/q
n

. (2.1)
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If x1 = · · · = xn, then f = 0; otherwise we may assume n ≥ 2 and 0 < x = x1 = · · · = xk < xk+1

for some 1 ≤ k < n, then

∂f

∂x
=

k∑

i=1

∂f

∂xi
. (2.2)

We want to show that the right-hand side above is nonnegative. It suffices to show that each
single term in the sum is nonnegative. Without loss of generality, we now show that

∂f

∂x1
≥ 0. (2.3)

We have

qx1G
1/q
n

q1

∂f

∂x1
= A

1/q−1
n (x1 −An) −

(
1 − q

)(r−1)/qr
M

1/q−r
n,r

(
xr
1 −Mr

n,r

)
. (2.4)

Now we set

y(r) =

(
(q1 − q)xr

1 +
∑n

i=2 qix
r
i

1 − q

)1/r

, (2.5)

so that

A
1/q−1
n (x1 −An) =

(
1 − q

)(
qx1 + (1 − q)y(1)

)1/q−1(
x1 − y(1)

)

≥ (1 − q
)(
qx1 + (1 − q)y(r)

)1/q−1(
x1 − y(r)

)
.

(2.6)

Hence

qG
1/q
n

q1
(
1 − q

)1/q
x
1/q−1
1

∂f

∂x1

≥
(

q

1 − q
+
y(r)
x1

)1/q−1(
1 − y(r)

x1

)

−
(

q

1 − q
+
yr(r)
xr
1

)1/qr−1(

1 − yr(r)
xr
1

)

.

(2.7)

We want to show that the right-hand side expression above is nonnegative, and by setting
z = y(r)/x1, this is equivalent to show that

g
(
z, q
)
=

(
q/
(
1 − q

)
+ z
)1/q−1(z − 1)

(
q/
(
1 − q

)
+ zr
)1/qr−1(zr − 1)

≤ 1 (2.8)
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for z ≥ 1, 0 ≤ q ≤ 1/2 and calculation yields that

((
q/
(
1 − q

)
+ zr
)1/qr−1(zr − 1)

)2

(
q/
(
1 − q

)
+ z
)1/q−2(

q/
(
1 − q

)
+ zr
)1/qr−2

∂g

∂z

=
1
q

((

z − 1 +
q

1 − q

)

(zr − 1)
(

zr +
q

1 − q

)

−
(

z +
q

1 − q

)(
zr − zr−1

)(

zr +
rq

1 − q
− 1
))

.

(2.9)

We now set s = q/(1 − q)with 0 ≤ s ≤ 1 and we consider

a(z, s) = (z − 1 + s)(zr − 1)(zr + s) − (z + s)
(
zr − zr−1

)
(zr + rs − 1). (2.10)

By Cauchy’s mean value theorem,

∂2a

∂s2
= 2
(
zr − 1 − rzr−1(z − 1)

)
≤ 0. (2.11)

It follows that for 0 ≤ s ≤ 1,

a(z, s) ≥ min{a(z, 0), a(z, 1)} = min{0, a(z, 1)}. (2.12)

It follows from the discussion in [3] (see the function a(y, 1) defined in the proof of Theorem
3.5 there and note that we have r ≥ 2 here) that a(z, 1) ≥ 0. This implies that a(z, s) ≥ 0 so
that g(z, q) is an increasing function of z and we then deduce that

g
(
z, q
) ≤ lim

z→+∞
g
(
z, q
)
= 1. (2.13)

This shows that ∂f/∂x1 ≥ 0 and hence ∂f/∂x ≥ 0 and by letting x → xk+1 and repeating
the above argument, we conclude that f(x) ≤ f(xn, xn, . . . , xn) = 1 − (1 − q)(r−1)/qr which
completes the proof for (1.6).

Now, to prove (1.7), we consider

h(x) =
A

1/(1−q)
n − q(r−1)/(1−q)rM1/(1−q)

n,r

G
1/(1−q)
n

. (2.14)

Similar to our discussion above, it suffices to show ∂h/∂xn ≥ 0. Now

xnG
1/(1−q)
n

(
1 − q

)

qn

∂h

∂xn
= A

1/(1−q)−1
n (xn −An) − q(r−1)/(1−q)rM1/(1−q)−r

n,r

(
xr
n −Mr

n,r

)
. (2.15)
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Now we set

w(r) =

(
(qn − q)xr

n +
∑n−1

i=1 qix
r
i

1 − q

)1/r

, (2.16)

so that

A
1/(1−q)−1
n (xn −An) =

(
1 − q

)(
qxn + (1 − q)w(1)

)1/(1−q)−1(xn −w(1))

≥ (1 − q
)(
qxn + (1 − q)w(r)

)1/(1−q)−1(xn −w(r)),
(2.17)

where the inequality follows from the observation that the function

z �−→ (qxn + (1 − q)z
)1/(1−q)−1(xn − z) (2.18)

is decreasing for 0 < z < xn.
We then deduce that

xnG
1/(1−q)
n

qnq1/(1−q)−1w1/(1−q)(r)
∂h

∂xn

≥
(

xn

w(r)
+
1 − q

q

)1/(1−q)−1( xn

w(r)
− 1
)

−
(

xr
n

wr(r)
+
1 − q

q

)1/(1−q)r−1( xr
n

wr(r)
− 1
)

.

(2.19)

By proceeding similarly as in the proof of (1.6) above, one is then able to establish (1.7) and
we shall omit all the details here.

3. A General Discussion on (1.8)

Theorem 3.1. For fixed α > 0, r > 1 > s > 0, (1.8) holds for all n if and only if it holds for n = 2.

Proof. We consider the function

fn
(
x;q, q

)
:= λr,s

((
1 − q

)α)
Mα

n,r +
(
1 − λr,s

((
1 − q

)α))
Mα

n,s −Aα
n. (3.1)

The theorem asserts that in order to show fn ≥ 0, it suffices to check the case n = 2. To see
this, we may assume by homogeneity that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn = 1 and we let
a = (a1, . . . , an) ∈ [0, 1]n−1 be the point in which the absolute minimum of fn is reached. We
may assume that 0 ≤ a1 < a2 < · · · < an−1 < an = 1 for otherwise if ai = ai+1 for some
1 ≤ i ≤ n − 1, by combining ai with ai+1 and qi with qi+1, and noticing that λr,s(x) is an
increasing function of x by [2, Lemma 2.1], we have

fn
(
a;q, q

) ≥ fn−1
(
a′;q′, q′

)
, (3.2)
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where a′ = (a1, . . . , ai−1, ai + ai+1, ai+2, . . . , an), q′ = (q1, . . . , qi−1, qi + qi+1, qi+2, . . . , qn), and q′ =
min(q1, . . . , qi−1, qi + qi+1, qi+2, . . . , qn). We can then reduce the determination of the absolute
minimum of fn to that of fn−1 with different weights.

If a is a boundary point of [0, 1]n−1, then a1 = 0, and in this case we show
that fn(a;qn, q) ≥ 0 follows from fn−1(a′′;q′′, q) ≥ 0, where a′′ = (a2, . . . , an) and q′′ =
(q2, . . . , qn)/(1 − q1). On writing fn−1(a′′;q′′, q) ≥ 0 explicitly, we get

(
n∑

i=2

qiai

)α

≤ λr,s
((
1 − q

)α)(1 − q1
)α
Mα

n−1,r
(
a′′;q′′)

+
(
1 − λr,s

((
1 − q

)α))(1 − q1
)α
Mα

n−1,s
(
a′′;q′′).

(3.3)

Meanwhile, fn(a;qn, q) ≥ 0 is equivalent to

(
n∑

i=2

qiai

)α

≤ λr,s
((
1 − q

)α)(1 − q1
)α/r

Mα
n−1,r
(
a′′;q′′)

+
(
1 − λr,s

((
1 − q

)α))(1 − q1
)α/s

Mα
n−1,s
(
a′′;q′′).

(3.4)

Thus, it amounts to show that

λr,s
((
1 − q

)α)(1 − q1
)α
Mα

n−1,r
(
a′′;q′′) +

(
1 − λr,s

((
1 − q

)α))(1 − q1
)α
Mα

n−1,s
(
a′′;q′′)

≤ λr,s
((
1 − q

)α)(1 − q1
)α/r

Mα
n−1,r
(
a′′;q′′) +

(
1 − λr,s

((
1 − q

)α))(1 − q1
)α/s

Mα
n−1,s
(
a′′;q′′),

(3.5)

which is equivalent to

(
1 − λr,s

((
1 − q

)α))
λr,s
((
1 − q1

)α)

(
1 − λr,s

((
1 − q1

)α))
λr,s
((
1 − q

)α)M
α
n−1,s ≤ Mα

n−1,r . (3.6)

Now the above inequality follows from Mn−1,s ≤ Mn−1,r and

(
1 − λr,s

((
1 − q

)α))
λr,s
((
1 − q1

)α) ≤ (1 − λr,s
((
1 − q1

)α))
λr,s
((
1 − q

)α)
, (3.7)

since λr,s(x) is an increasing function of x.
Thus fn(a;qn, q) ≥ 0 follows from fn−1(a′′;q′′, q) ≥ 0. Moreover, on writing q′′ =

min(q2/(1 − q1), . . . , qn/(1 − q1)) and noticing that q′′ > q, we deduce that fn−1(a′′;q′′, q) ≥
fn−1(a′′;q′′, q′′). Hence the determination of fn ≥ 0 can be reduced to the determination of
fn−1 ≥ 0 with different weights.

It remains to show the case a1 > 0, so that a is an interior point of [0, 1]n−1. In this case
we have

∇fn
(
a;q, q

)
= 0. (3.8)
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Thus a1, . . . , an−1 solve the equation

g(x) = λr,s
((
1 − q

)α)
Mα−r

n,r x
r−1 +

(
1 − λr,s

((
1 − q

)α))
Mα−s

n,s x
s−1 −Aα−1

n = 0. (3.9)

Note that

fn
(
a;q, q

)
=

n∑

i=1

qiaig(ai) = qnang(an). (3.10)

Thus if g(an) ≥ 0, then fn ≥ 0. If g(an) < 0, we note that g(x) = 0 can have at most two
roots in (0, an] since it is easy to see that g ′(x) = 0 can have at most one positive root. As
limx→ 0+g(x) = +∞, this implies that g(x) = 0 has only one root in (0, an]. As a1, . . . , an−1 are
the distinct roots of g(x) = 0, this implies that we must have n − 1 = 1 so that we only need to
show fn ≥ 0 for the case n = 2 and this completes the proof.

In what follows, we will apply Theorem 3.1 to establish (1.8) for certain r, s, α’s. Before
we proceed, we note that there is a natural condition to be satisfied by r, s, α in order for (1.8)
to hold, namely, if we take n = 2 and rewrite it as

Mα
2,r −Mα

2,s

Mα
2,r −Aα

2
≤ 1

1 − λr,s
((
1 − q

)α) . (3.11)

On taking x1 → x2, we conclude that

r − s

r − 1
≤ 1

1 − λr,s
((
1 − q

)α) . (3.12)

Before we prove our next result, we need two lemmas.

Lemma 3.2. Fixing u < 0, the function

f(t) =
1 − t

1 − tu
, 0 < t /= 1 (3.13)

is concave for u < −1 and is convex for −1 < u < 0.

Proof. Calculation yields that

f ′′(t) =
utu−2

(1 − tu)3
g(t), (3.14)

where

g(t) = −(u − 1)tu+1 + (1 + u)tu − (1 + u)t + u − 1. (3.15)
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Now

g ′′(t) = u(u + 1)(u − 1)tu−2(1 − t). (3.16)

Thus if −1 < u < 0, then g ′′(t) > 0 for 0 < t < 1 and g ′′(t) < 0 for t > 1. Since g ′(1) = 0, this
implies that g ′(t) < 0 for 0 < t /= 1. As g(1) = 0, we then conclude that g(t) > 0 for 0 < t < 1
and g(t) < 0 for t > 1. It follows from this that f(t) is convex for −1 < u < 0 and the other
assertion can be shown similarly, which completes the proof.

Lemma 3.3. For r > 1, 0 < q1, q2 < 1, q1 + q2 = 1, the function

f(t) =
(
q1t

1/(r−1) + q2
)α−1(

q1t
r/(r−1) + q2

)1−α/r
(3.17)

is convex for t > 0 when r ≥ 2, 1 > α > 0, or α = 1, r > 1.

Proof. Direct calculation shows that

f ′′(t) =
q1

r − 1

(
q1t

1/(r−1) + q2
)α−3(

q1t
r/(r−1) + q2

)−α/r−1
t1/(r−1)−2g(t), (3.18)

where

g(t) =
(1 − α)(r − 2)

r − 1
q21q2t

2+2/(r−1) +
(1 − α)(r − α)

r − 1
q1q

2
2t

2+1/(r−1) +
r − α

r − 1
q21q2t

1+2/(r−1)

+2

(

1 − (1 − α)2

r − 1

)

q1q
2
2t

1+1/(r−1)+
r − α

r − 1
q32t +

(1 − α)(r − α)
r − 1

q1q
2
2t

1/(r−1)+
(1 − α)(r − 2)

r − 1
q32.

(3.19)

One then easily deduce the assertion of the lemma from the above expression of g(t) and this
completes the proof.

Theorem 3.4. Inequality (1.8) holds for the cases r ≥ 2, 1 > α > 0 or α = 1, r > 1, r +s ≥ 2, provided
that (3.12) holds with strict inequality.

Proof. By Theorem 3.1, it suffices to prove the theorem for the case n = 2. We write λ =
λr,s((1 − q)α) for short in this proof. What we need to prove is the following:

(
q1x1 + q2x2

)α ≤ λ
(
q1x

r
1 + q2x

r
2

)α/r + (1 − λ)
(
q1x

s
1 + q2x

s
2

)α/s
. (3.20)

Without loss of generality, we may assume that q1 = q, q2 = 1 − q and define

f(t) =
(
q1t

s + q2
)−α/s((

q1t + q2
)α − λ

(
q1t

r + q2
)α/r
)
, (3.21)
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so that we need to show that f(t) ≤ f(1) for t ≥ 0. We have

f ′(t) = αq1q2
(
q1t

s + q2
)−α/s−1((

q1t + q2
)α−1(1 − ts−1

)
+ λ
(
q1t

r + q2
)α/r−1(

ts−1 − tr−1
))

= αq1q2
(
q1t

s + q2
)−α/s−1(

q1t
r + q2

)α/r−1(1 − ts−1
)
g
(
tr−1
)
,

(3.22)

where

g(t) =
(
q1t

1/(r−1) + q2
)α−1(

q1t
r/(r−1) + q2

)1−α/r
+ λ

1 − t

1 − t(s−1)/(r−1)
− λ. (3.23)

By Lemmas 3.2 and 3.3, we see that g(t) is a strictly convex function for r ≥ 2, 1 > α > 0 or
α = 1, r > 1, r + s ≥ 2. Note that by our assumption (3.12)with strict inequality,

lim
t→ 1

g(t) = 1 + λ
r − s

s − 1
< 0. (3.24)

On the other hand, note that λ satisfies

(
1 − q

)α = λ
(
1 − q

)α/r + (1 − λ)
(
1 − q

)α/s
, (3.25)

so that

lim
t→ 0+

g(t) =
(
1 − q

)α−α/r − λ = (1 − λ)
(
1 − q

)α/s−α/r
> 0. (3.26)

As g(t) is strictly convex, this implies that there are exactly two roots t1, t2 of g(t) = 0
satisfying that t1 ∈ (0, 1) and t2 > 1. Note further that f(0) = f(1) and limt→ 0+f

′(t) < 0,
which implies that f(t) ≤ f(1) for 0 ≤ t ≤ 1. Similarly, we note that f ′(t) < 0 for t ∈ (1, 1 + ε)
with ε > 0 being small enough. This combined with the observation that limt→+∞f(t) ≤ f(1)
as λr,s(x) is an increasing function of x implies that f(t) ≤ f(1) for t ≥ 1 which completes the
proof.

We remark here that if condition (3.12) is satisfied for some r, s, α, then it is also
satisfied for r, s, α′ with 0 < α′ < α. Thus it is not surprising to expect a result like Theorem 3.4
to hold.

To end this section, we prove a variant of (1.3) which is motivated by the following
inequality due to Mesihović [9] (with qi = 1/n here):

(

1 − 1
n

)

An +
1
n
Gn ≥

(
1
n

n∑

i=1

x1−1/n
i

)(
1
n

n∑

i=1

x1/n
i

)

. (3.27)

We now generalize the above inequality to the arbitrary weight case.
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Theorem 3.5. For 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn,

(
1 − q

)
An + qGn ≥

(
n∑

i=1

qix
1−q
i

)(
n∑

i=1

qix
q

i

)

(3.28)

with equality holding if and only if x1 = · · · = xn or x1 = 0, q1 = q, x2 = · · · = xn, or n = 2, q = 1/2.

Proof. Define

Dn(x) =
(
1 − q

)
An + qGn −

(
n∑

i=1

qix
1−q
i

)(
n∑

i=1

qix
q

i

)

. (3.29)

We need to show Dn ≥ 0 and we have

1
qn

∂Dn

∂xn
= 1 − q + q

Gn

xn
− (1 − q

)
(

x
−q
n

n∑

i=1

qix
q

i

)

− q

(

x
q−1
n

n∑

i=1

qix
1−q
i

)

. (3.30)

By a change of variables: xi/xn → xi, 1 ≤ i ≤ n, we may assume 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn = 1 in
(3.30) and rewrite it as

gn(x1, . . . , xn−1) := 1 − q + qGn −
(
1 − q

)
(

n∑

i=1

qix
q

i

)

− q

(
n∑

i=1

qix
1−q
i

)

. (3.31)

We want to show gn ≥ 0. Let a = (a1, . . . , an−1) ∈ [0, 1]n−1 be the point in which the absolute
minimum of gn is reached. Wemay assume a1 ≤ a2 ≤ · · · ≤ an−1. If a1 = 0, then a is a boundary
point of [0, 1]n−1, and in this case we have

gn(a1 = 0, . . . , an−1) = 1 − q − (1 − q
)
(

n∑

i=2

qia
q

i

)

− q

(
n∑

i=2

qia
1−q
i

)

≥ 1 − q − (1 − q
)(
1 − q1

) − q
(
1 − q1

)
= q1 − q ≥ 0

(3.32)

with equality holding if and only if q1 = q, a2 = · · · = an = 1. Now suppose a1 > 0 and
am−1 < am = · · · = an = 1 for some 1 ≤ m ≤ n, then a1, . . . , am−1 solve the equation

∇gn(a1, . . . , an−1) = 0. (3.33)

Equivalently, a1, . . . , am−1 solve the equation

Gn =
(
1 − q

)(
xq + x1−q

)
. (3.34)

As the right-hand side expression above is an increasing function of x, the above equation
has at most one root (regarding Gn as constant). So we only need to show gn ≥ 0 for the case
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a1 = · · · = am−1 = x < am = · · · = an = 1 in (3.31) for some 1 ≤ m ≤ n. In this case we regard gn
as a function of x and we recast it as

h(ω, x) = 1 − q + qxω − (1 − q
)
(ωxq + 1 −ω) − q

(
ωx1−q + 1 −ω

)

= ω − q + qxω − (1 − q
)
ωxq − qωx1−q.

(3.35)

Here 0 < x ≤ 1 and q ≤ ω ≤ 1 − q. Note first that when q = 1/2, h(ω, x) = 0 so that we may
now assume 0 < q < 1/2. We have

∂h

∂ω

∣
∣
∣
∣
ω=q

= 1 + qxq lnx − (1 − q
)
xq − qx1−q := d(x). (3.36)

Now

d′(x) = qxq−1e(x), (3.37)

where

e(x) = 1 + q lnx − (1 − q
) − (1 − q

)
x1−2q. (3.38)

Note that e′(x) = 0 has one root (1 − q)(1 − 2q)x1−2q
0 = q so that if 0 < x0 < 1, then at this point

e(x0) = q lnx0 + q − q

1 − 2q
< 0. (3.39)

Note also that limx→ 0+e(x) < 0, e(1) = 2q − 1 < 0. This implies that e(x) < 0 for 0 < x ≤ 1.
Hence d(x) ≥ d(1) = 0 for 0 < x ≤ 1. As it is easy to see that h(ω, x) is a convex function of
ω for fixed x, we conclude that h(ω, x) is an increasing function of q ≤ ω ≤ 1 − q for fixed x.
Thus for 0 < x ≤ x, q ≤ ω ≤ 1 − q,

h(ω, x) ≥ h
(
q, x
)
= q2
(
xq − x1−q

)
≥ 0 (3.40)

with equality holding if and only if x = 1.
Thus we have shown gn ≥ 0; hence ∂Dn/∂xn ≥ 0 with equality holding if and only if

x1 = · · · = xn or x1 = 0, q1 = q, x2 = · · · = xn or n = 2, q1 = 1/2. By letting xn tend to xn−1,
we have Dn ≥ Dn−1 (with weights q1, . . . , qn−2, qn−1 + qn) with equality holding if and only if
xn = xn−1 or n = 2 and either q = 1/2 or x1 = 0, q1 = q. It follows by induction thatDn ≥ 0 with
equality holding if and only if x1 = · · · = xn or x1 = 0, q1 = q, x2 = · · · = xn or n = 2, q = 1/2
and this completes the proof.

We remark here that if we define

S
(
β
)
=

(
n∑

i=1

qix
1−β
i

)(
n∑

i=1

qix
β

i

)

, (3.41)
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then for 1 ≤ β ≤ 1/2,

dS

dβ
=
∑

1≤i≤j≤n
qiqjx

β

i x
β

j

(
x
1−2β
j − x

1−2β
i

)
ln

(
xi

xj

)

≤ 0. (3.42)

Hence Theorem 3.5 improves (1.3) for the case {1, 1/2, 0}, α = 1.

4. Inequalities Involving the Symmetric Means

In this section, we set qi = 1/n, 1 ≤ i ≤ n. As an analogue of (1.8) (or (1.3)), we first consider

Aα
n ≤ λα,r,k(n)Mα

n,r + (1 − λα,r,k(n))Pα
n,k, (4.1)

where α > 0, r > 1, n ≥ k ≥ 2, and

λα,r,k(n) =
(1 − 1/n)α − ((n − k)/n)α/k

(1 − 1/n)α/r − ((n − k)/n)α/k
. (4.2)

The case r = 2, α = k in (4.1) is just Theorem 1.3. In what follows, we will give a proof of
Theorem 1.3 by combining the methods in [8, 10]. Before we prove our result, we would like
to first recast (4.1) for the case α = k as

(
n∑

i=1

xi

)k

≤
(

nk − λ̃r,k(n)

(
n

k

))

Mk
n,r + λ̃r,k(n)En,k, (4.3)

where λ̃r,k(n) is defined as in the statement of Theorem 1.3. Now we need two lemmas.

Lemma 4.1. For 2 ≤ r ≤ k ≤ n − 1,

λ̃r,k(n) ≤ λ̃r,k(n − 1). (4.4)

Proof. We follow the method in the proof of Lemma 2 in [8]. We write λ̃r,k(n) as

λ̃r,k(n) =
k!
(
nk(1 − 1/n)k/r − (n − 1)k

)

(∏k−1
i=1 (n − i)

)(
n(1 − 1/n)k/r − n + k

) . (4.5)

From the above we see that in order for (4.4) to hold, it suffices to show that

f(t) =
k!
(
(1 − t)k/r − (1 − t)k

)

(∏k−1
i=1 (1 − it)

)(
(1 − t)k/r − 1 + kt

) (4.6)
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is increasing on (0, 1/k). The logarithmic derivative of f(t) is

f ′(t)
f(t)

=
k

r(1 − t)

(

1 − r +
r − 1

1 − (1 − t)k(1−1/r)
− r − 1 + (k − r)t

(1 − t)k/r − 1 + kt

)

+
k−1∑

i=1

i

1 − it
. (4.7)

Note that for 0 < t < 1, we have

(1 − t)k/r − 1 + kt ≥ 1 − (1 − t)k(1−1/r) > 0 (4.8)

by considering the Taylor expansions to the order of t2. It follows from this that

f ′(t)
f(t)

≥ k

r(1 − t)

(

1 − r +
r − 1

1 − (1 − t)k(1−1/r)
− r − 1 + (k − r)t

1 − (1 − t)k(1−1/r)

)

+
k−1∑

i=1

i

1 − t

=
k

1 − t

(
1 − r

r
− (k − r)t/r

1 − (1 − t)k(1−1/r)
+
k − 1
2

)

.

(4.9)

It is easy to see that the function

t �−→ t

1 − (1 − t)k(1−1/r)
(4.10)

is an increasing function for 0 < t ≤ 1. Hence

1 − r

r
− (k − r)t/r

1 − (1 − t)k(1−1/r)
+
k − 1
2

≥ 1 − r

r
− k − r

r
+
k − 1
2

= (k − 1)
(
1
2
− 1
r

)

≥ 0. (4.11)

Lemma 4.2. Inequality (4.1) holds for all x in the case n ≥ k ≥ r ≥ 2, α = k if it holds for x =
(a, b, . . . , b) with 0 < a ≤ b.

Proof. In this proof we assume that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn. We prove the lemma by induction
on n. When n = k, the assertion holds as a special case of (1.6). Now assume that the assertion
holds for n − 1, and we proceed to show it also holds for n. If x1 = 0, we use the equivalent
form (4.3) of (4.1) for the case α = k to see that what we need to prove is

(
n−1∑

i=2

xi

)k

≤
(

nk − λ̃r,k(n)

(
n

k

))(
n − 1
n

)k/r

Mk
n−1,r(x2, . . . , xn) + λ̃r,k(n)En−1,k(x2, . . . , xn).

(4.12)
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By the induction case n − 1, we have

(
n−1∑

i=2

xi

)k

≤
(

(n − 1)k − λ̃r,k(n − 1)

(
n − 1

k

))

Mk
n−1,r(x2, . . . , xn)

+ λ̃r,k(n − 1)En−1,k(x2, . . . , xn).

(4.13)

Note that

(

nk − λ̃r,k(n)

(
n

k

))(
n − 1
n

)k/r

= (n − 1)k − λ̃r,k(n)

(
n − 1

k

)

. (4.14)

Using this with Lemma 4.1 together with the observation that

En−1,k
(

n−1
k

) = Pk
n−1,k ≤ Mk

n−1,r , (4.15)

we see that inequality (4.12) follows from (4.13).
Thus from now on we may focus on the case x1 > 0. Since both sides of (4.1) are

homogeneous functions, it suffices to show that

min
x∈Δ

{
λk,r,k(n)Mk

n,r + (1 − λk,r,k(n))Pk
n,k

}
≥ 1, (4.16)

where

Δ =

{

x = (x1, . . . , xn) : xi ≥ 0, 1 ≤ i ≤ n,
n∑

i=1

xi = n

}

. (4.17)

Assume that λk,r,k(n)Mk
n,r + (1 − λk,r,k(n))Pk

n,k attains its minimum at some point (a1, . . . , an)
with ai > 0, 1 ≤ i ≤ n. If a1 = a2 = · · · = an, then (4.16) holds. Furthermore, if n = 2, then
(4.16) also holds, being a special case of (1.6). Thus without loss of generality, wemay assume
n ≥ 3 and an > an−1 ≥ an−2 here. We may also assume that when r = 2, k > 2 since otherwise
inequality (4.1) becomes an identity. Consider the function

f
(
x, y
)
:= λk,r,k(n)Mk

n,r

(
a1, . . . , an−2, x, y

)
+ (1 − λk,r,k(n))Pk

n,k

(
a1, . . . , an−2, x, y

)
(4.18)

on the set

{
(
x, y
)
: x ≥ 0, y ≥ 0, x + y = n −

n−2∑

i=1

ai

}

. (4.19)
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It is minimized at (an−1, an). It is easy to see that f has the form

λk,r,k(n)
(
1
n
(xr + yr) + B

)k/r

+ C(a1, . . . , an−2)xy +D, (4.20)

where B, C, and D are nonnegative constants with C depends on a1, . . . , an−2. We now set
x+y = c and xy = zwith 0 ≤ z = xy ≤ (x+y)2/4 = c2/4. Note here that equality holds if and
only if xy = 0 or x = y. We regard the above function as a function of z = xy and recast it as

h(z) = λk,r,k(n)

(
1
n

((
c +

√
c2 − 4z
2

)r

+

(
c −

√
c2 − 4z
2

)r)

+ B

)k/r

+ C(a1, . . . , an−2)z +D.

(4.21)

For y > x > 0, calculation yields

h′(xy
)
= −λk,r,k(n)k

n

(
1
n

(
xr + yr) + B

)k/r−1(yr−1 − xr−1

y − x

)

+ C(a1, . . . , an−2). (4.22)

Since an > an−1 > 0, we must have h′(an−1an) = 0 and we can further recast this as

C(a1, . . . , an−2) =
λk,r,k(n)k

n
Mk−r

n,r (a1, . . . , an)

(
ar−1
n − ar−1

n−1
an − an−1

)

. (4.23)

Now if an−2 > 0, we can repeat the same argument for the pair (an−1, an−2). By a slightly abuse
of notation, we obtain

h′(an−2an−1) = C(a1, . . . , an−3, an) −
λk,r,k(n)k

n
Mk−r

n,r (a1, . . . , an)

(
ar−1
n−1 − ar−1

n−2
an−1 − an−2

)

. (4.24)

It is easy to see that (since we assume ai > 0 and k ≥ 3 when r = 2)

C(a1, . . . , an−3, an) > C(a1, . . . , an−2). (4.25)

Moreover, one checks easily that the function

(
x, y
) �−→ yr−1 − xr−1

y − x
(4.26)

is increasing with respect to each variable x, y > 0 when r ≥ 2. It follows that when r ≥ 2,

h′(an−2an−1) > h′(an−1an) = 0, (4.27)
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which implies that by decreasing the value of an−2an−1 while keeping an−2 + an−1 fixed, one is
able to get a smaller value for λk,r,k(n)Mk

n,r + (1 − λk,r,k(n))Pk
n,k

, contradicting the assumption
that it attains its minimum at (a1, . . . , an).

Hence we conclude that λk,r,k(n)Mk
n,r + (1 − λk,r,k(n))Pk

n,k is minimized at (a, b, . . . , b)
with 0 < a ≤ b satisfying a + (n − 1)b = n. In this case (4.16) holds by our assumption which
completes the proof.

Now we are ready to prove a slightly generalization of Theorem 1.3.

Corollary 4.3. Inequality (4.1) holds in the cases n ≥ k ≥ r = 2, α = k and n ≥ α = r = k ≥ 2.

Proof. The first case is just Theorem 1.3 and by Lemma 4.2, it suffices to show that inequality
(4.1) holds for the case x = (a, b, . . . , b)with 0 < a ≤ b and this has been already treated in the
proof of Theorem 2 in [8]. For the case n ≥ α = r = k ≥ 2, by Lemma 4.2 again, we only need
to check the case x = (a, b, . . . , b)with 0 < a ≤ b. In this case we define

f(a, b)= λk,k,k(n)

(
ak

n
+
(n − 1)bk

n

)

+ (1 − λk,k,k(n))
(
n − k

n
bk +

k

n
abk−1

)

−
(
a

n
+
(n − 1)b

n

)k

.

(4.28)

As in the proof of Theorem 1.2, it suffices to show that

n

k(n − 1)bk−1
∂f

∂b
= λk,k,k(n) + (1 − λk,k,k(n))

(
n − k

n − 1
+
k − 1
n − 1

a

b

)

−
(

a

nb
+
n − 1
n

)k−1
≥ 0.

(4.29)

By a change of variables a/b → a, we can recast inequality (4.29) as

g(a) = λk,k,k(n) + (1 − λk,k,k(n))
(
n − k

n − 1
+
k − 1
n − 1

a

)

−
(
n − 1
n

+
a

n

)k−1
. (4.30)

As g(1) = 0 and g(0) = 0, we conclude that g(a) ≥ 0 for 0 ≤ a ≤ 1 as g(a) is a concave function
for 0 ≤ a ≤ 1 and this completes the proof.

We recall a result of Kuczma [10].

Theorem 4.4. For n ≥ 3, 1 ≤ k ≤ n − 1, Pn,k ≤ Mn,η(k) with

η(k) =
k(lnn − ln(n − 1))
lnn − ln(n − k)

, (4.31)

and the result is best possible.

The above theorem combined with Corollary 4.3 immediately yields the following.
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Corollary 4.5. Let qi = 1/n with n ≥ 1 being an integer. Then for any integer n − 1 ≥ k ≥ r = 2 or
n − 1 ≥ k = r ≥ 2,

Ak
n ≤ λk,r,k(n)Mk

n,r + (1 − λk,r,k(n))Mk
n,η(k), (4.32)

where λk,r,k(n) is defined as in (4.2) and η(k) is defined as in Theorem 4.4.

Next, we consider the following inequality:

Pα
n,l ≤ μα,k,l(n)Aα

n +
(
1 − μα,k,l(n)

)
Pα
n,k, (4.33)

where α > 0, n ≥ k > l ≥ 2 and

μα,k,l(n) =
((n − l)/n)α/l − ((n − k)/n)α/k

((n − 1)/n)α − ((n − k)/n)α/k
. (4.34)

We note here that it is easy to check that the function

x �−→
(
n − x

n

)1/x
(4.35)

is a decreasing function for 1 ≤ x < n so that we have 0 < μα,k,l(n) < 1.
As an analogue of Theorem 1.1, one can show similarly the following.

Proposition 4.6. Let n = k > l ≥ 2; if (4.33) holds for α0 > 0, then it also holds for any 0 < α < α0.

The case n = k, α = 1 of (4.33) was established in [11]. In the case of n = k, one
possible way of establishing (4.33) is to combine Theorems 4.4 and 1.2 together. However,
this is not always applicable as one checks via certain change of variables that one needs to
have 1/η(k) ≥ 2 in order to apply Theorem 1.2, a condition which is not always satisfied. We
now proceed directly to show the following.

Theorem 4.7. Inequality (4.33) holds for n = k > l ≥ 2 and 0 < α ≤ n.

Proof. In view of Proposition 4.6, it suffices to prove the theorem for the case α = n. We
write μ(n) = μn,n,l(n) in this proof and note that since both sides of (4.33) are homogeneous
functions, it suffices to show that

max
x∈Δ

{
Pn
n,l −

(
1 − μ(n)

)
Gn

n

}
≤ μ(n), (4.36)

where

Δ =

{

x = (x1, . . . , xn) : xi ≥ 0, 1 ≤ i ≤ n,
n∑

i=1

xi = n

}

. (4.37)
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Assume that Pn
n,l − (1 − μ(n))Gn

n attains its maximum at some point (a1, . . . , an) with ai ≥ 0,
1 ≤ i ≤ n. Consider the function

f
(
x, y
)
:= Pn

n,l

(
x, y, a3, . . . , an

) − xy
(
1 − μ(n)

) n∏

i=3

ai (4.38)

on the set

{
(
x, y
)
: x ≥ 0, y ≥ 0, x + y = n −

n∑

i=3

ai

}

. (4.39)

It is maximized at (a1, a2). It is easy to see that f has the form

(
Axy + B

)n/l − Cxy, (4.40)

where A, B, and C are nonnegative constants. The above function is certainly convex with
respect to xy. As 0 ≤ xy ≤ (x + y)2/4 with equality holding if and only if xy = 0 or x = y,
f is maximized at xy = 0 or x = y. Repeating the same argument for other pairs (ai, aj), we
conclude that in order to show (4.33) for α = n = k, it suffices to check that it holds for x being
of the following form (0, . . . , 0, a . . . , a) or (a, . . . , a) for some positive constant a. It is easy to
see that (4.33) holds when x is of the second form and when x is of the first form, letm denote
the number of a’s in x; ifm < l, then it is easy to see that (4.33) holds. So we may now assume
that l ≤ m ≤ n = k and we need to show that

⎛

⎜
⎝

(
m

l

)

m

1/l⎞

⎟
⎠

k

≤ μk,k,l(n)

⎛

⎜
⎝

(
n

l

)1/l

n

⎞

⎟
⎠

k

. (4.41)

Certainly the left-hand side above increases withm; hence one only needs to verify the above
inequality for the casem = n−1, which becomes an identity and this completes the proof.

We note here that Alzer [12] has shown that for n ≥ 3,

Pn−1
n,n−1 ≤

n

n + 1
An−1

n +
1

n + 1
Gn−1

n . (4.42)

The case α = l = n − 1 of Theorem 4.7 now improves the above result, namely, for n ≥ 3,

Pn−1
n,n−1 ≤

nn−2

(n − 1)n−1
An−1

n +

(

1 − nn−2

(n − 1)n−1

)

Gn−1
n , (4.43)

as one checks easily that for n ≥ 3,

nn−2

(n − 1)n−1
≤ n

n + 1
. (4.44)
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Similar to Theorem 4.7, we have the following.

Theorem 4.8. For 1 ≤ k ≤ n, qi = 1/n,

Pk
n,k ≤ n − k

n − 1
Mk

n,k +
k − 1
n − 1

Gk
n. (4.45)

Proof. We define

f(x) =
n − k

n − 1
Mk

n,k +
k − 1
n − 1

Gk
n − Pk

n,k. (4.46)

We now set

P̃n−1,k−1 = Pn−1,k−1(x1, . . . , xn−1), G̃n−1 = Gn−1(x1, . . . , xn−1), (4.47)

so that

∂f

∂xn
=

k

n

n − k

n − 1
xk−1
n +

k

n

k − 1
n − 1

Gk
n

xn
− k

n
P̃k−1
n−1,k−1, (4.48)

where we have also used the following relation:

Pk
n,k =

k

n
xnP

k−1
n−1,k−1(x1, . . . , xn−1) +

n − k

n
Pk
n−1,k(x1, . . . , xn−1). (4.49)

Similar to the proof of Theorem 1.2, it suffices to show that ∂f/∂xn ≥ 0. By a change of
variables xi → xi/xn, it suffices to show that for all 0 ≤ xi ≤ 1,

P̃ k−1
n−1,k−1 ≤

n − k

n − 1
+
k − 1
n − 1

G̃
(n−1)k/n
n−1 . (4.50)

As a consequence of Lemma 3.2 in [3], one checks easily that

P̃ k−1
n−1,k−1 ≤

n − k

n − 1
+
k − 1
n − 1

G̃n−1
n−1. (4.51)

The above inequality then implies (4.50) and we then conclude that ∂f/∂xn ≥ 0 which
completes the proof.

We remark here that once again one may hope to establish the above theorem by
combining Theorems 4.4 and 1.2 together. However, (1.6) is not applicable in this case since
one checks readily that k/η(k) ≤ n is not satisfied in general.

We now want to establish some inequalities involving the symmetric means in the
forms similar to (1.4). Before we state our result, let us first recall that for two real finite
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decreasing sequences x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), x is said to be majorized by
y (which we denote by x≤majy) if

x1 + x2 + · · · + xj ≤ y1 + y2 + · · · + yj

(
1 ≤ j ≤ n − 1

)
,

x1 + x2 + · · · + xn = y1 + y2 + · · · + yn.
(4.52)

For a fixed positive sequence x = (x1, x2, . . . , xn) and a nonnegative sequence α =
(α1, α2, . . . , αn), we define

F(α) =
1
n!

∑

σ

xα1
σ(1)x

α2
σ(2) · · ·x

αn

σ(n), (4.53)

where the sum is over all the permutations of x. A well-known result of Muirhead states the
follwing.

Theorem 4.9 (see [13, Theorem 45]). Let α and α′ be two nonnegative decreasing sequences. Then
F(α) ≤ F(α′) for any positive sequence if and only if α≤majα′.

We now use the above result to show the following.

Theorem 4.10. For 1 ≤ k ≤ n, qi = 1/n,

Ak
n ≥ 1

nk−1M
k
n,k +

(

1 − 1
nk−1

)

Pk
n,k. (4.54)

Proof. On expanding Ak
n out, we can write it as

Ak
n ≥ 1

nk−1M
k
n,k + linear combinations of various terms of the form F(α), (4.55)

where F(α) is defined as in (4.53)with αi ≥ 1,
∑n

i=1 αi = n. It is then easy to see via Theorem 4.9
that for any such α appearing in (4.55), we have Pk

n,k ≤ F(α). Hence one deduces that

Ak
n ≥ 1

nk−1M
k
n,k + cPk

n,k
(4.56)

for some constant c, which can be easily identified to be 1 − 1/nk−1 by taking x = (1, . . . , 1)
and noticing that we get identities in all the steps above.

Our next result gives a generalization of the above one andwe shall need the following
two lemmas in our next proof.

Lemma 4.11 (Hadamard’s inequality). Let f(x) be a convex function on [a, b], then

f

(
a + b

2

)

≤ 1
b − a

∫b

a

f(x)dx ≤ f(a) + f(b)
2

. (4.57)
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The next lemma is similar to that in [10].

Lemma 4.12. LetA,B,C,D > 0 be arbitrary constants and let k ≥ r = 2 or k ≥ r ≥ 3. The maximum
value of f(x, y) = A(xr + yr + B)k/r + Cxy on the set {(x, y) : x ≥ 0, y ≥ 0, x + y = 2D} is
attained either when x = y or when xy = 0.

Proof. We set z = xy and note that 0 ≤ z ≤ D2 with equality holding if and only if x = y or
xy = 0. Moreover,

x, y = D ±
√
D2 − z. (4.58)

This allows us to rewrite f(x, y) = Ag(z) + CZ where

g(z) =
((

D +
√
D2 − z

)r
+
(
D −

√
D2 − z

)r
+ B
)k/r

. (4.59)

It suffices to show that g(z) is convex for 0 ≤ z ≤ D2. Note that 2g ′(z) = k · h(
√
D2 − z)where

h(w) = p(w)q(w)with

p(w) =
(
(D +w)r + (D −w)r + B

)k/r−1
, q(w) =

(
(D −w)r−1 − (D +w)r−1

)
w−1. (4.60)

As the derivative of
√
D2 − z is negative for 0 ≤ z < D2, it suffices to show h′(w) ≤ 0 for

0 < w < D. Note that p(w) ≥ 0, q(w) ≤ 0 and it is easy to check that p′(w) ≥ 0 for 0 < w < D.
Hence it suffices to show that q′(w) ≤ 0 for 0 < w < D. Calculation shows that

w2q′(w) = −(r − 1)
(
(D +w)r−2 + (D −w)r−2

)
w − (D −w)r−1 + (D +w)r−1

= (r − 1)

(∫D+w

D−w
ur−2du −w

(
(D +w)r−2 + (D −w)r−2

)
)

≤ 0
(4.61)

by Lemma 4.11. This completes the proof.

Now we are ready to prove the following.

Theorem 4.13. Let qi = 1/n and let r be a real number, r = 2 or r ≥ 3. Then for integers n, k,
n ≥ k ≥ r,

Ak
n ≥ 1

nk−k/r M
k
n,r +

(

1 − 1
nk−k/r

)

Pk
n,k. (4.62)

Proof. Since both sides of (4.62) are homogeneous functions, it suffices to show that

max
x∈Δ

{
1

nk−k/r M
k
n,r +

(

1 − 1
nk−k/r

)

Pk
n,k

}

≤ 1, (4.63)
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where

Δ =

{

x = (x1, . . . , xn) : xi ≥ 0, 1 ≤ i ≤ n,
n∑

i=1

xi = n

}

. (4.64)

Assume that (1/nk−k/r)Mk
n,r+(1−1/nk−k/r)Pk

n,k
attains its maximum at some point (a1, . . . , an)

with ai ≥ 0, 1 ≤ i ≤ n. Consider the function

f
(
x, y
)
:=

1
nk−k/r M

k
n,r

(
x, y, a3, . . . , an

)
+
(

1 − 1
nk−k/r

)

Pk
n,k

(
x, y, a3, . . . , an

)
(4.65)

on the set

{
(
x, y
)
: x ≥ 0, y ≥ 0, x + y = n −

n∑

i=3

ai

}

. (4.66)

It is maximized at (a1, a2). Clearly, f has the form

A
(
xr + yr + B

)k/r + Cxy + (constant), (4.67)

where A, B, and C are nonnegative constants. By Lemma 4.12, f attains its maximum value
at either x = 0 or y = 0 or x = y. Repeating the same argument for other pairs (ai, aj),
we conclude that in order to show (4.62), it suffices to check that it holds for x being of the
following form (0, . . . , 0, a . . . , a) or (a, . . . , a) for some positive constant a. It is easy to see
that (4.62) holds when x is of the second form and when x is of the first form, letm denote the
number of a’s in x; if m < k, then it is easy to see that (4.62) holds. So we may now assume
that k ≤ m ≤ n and we need to show that

(
m

n

)k

≥ 1
nk−k/r

(
m

n

)k/r

+
(

1 − 1
nk−k/r

)
(

m

k

)

(
n

k

) . (4.68)

Equivalently, we need to show

1
nk

≥ 1
nk

mk/r−k +
(

1 − 1
nk−k/r

)
(

m

k

)
m−k

(
n

k

) . (4.69)

Note that

(
m

k

)

m−k =
1
k!

k−1∏

i=1

(

1 − i

m

)

. (4.70)
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If we define for 1/n ≤ u ≤ 1/(k − 1),

g(u) =
1
nk

uk−k/r +
(

1 − 1
nk−k/r

)
1
(

n

k

)
1
k!

k−1∏

i=1

(1 − iu), (4.71)

then it is easy to check that g ′′(u) ≥ 0 for r ≥ k/(k − 1). Further note that

g

(
1
n

)

=
1
nk

, g

(
1

k − 1

)

=
1
nk

(
1

k − 1

)k−k/r
≤ 1

nk
. (4.72)

This implies that g(u) ≤ 1/nk for 1/n ≤ u ≤ 1/(k − 1), and hence it follows that (4.69) holds
for k ≤ m ≤ n and this completes the proof.

Acknowledgments

This work was partially carried out while the author was visiting the Centre de Recherches
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[6] P. S. Bullen, D. S. Mitrinović, and P. M. Vasić, Means and Their Inequalities, vol. 31 of Mathematics and
Its Applications, D. Reidel, Dordrecht, The Netherlands, 1988.
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[9] B. Mesihović, “On an inequality involving symmetric functions,” Univerzitet u Beogradu. Publikacije
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