Research Article

On an Inequality of Diananda-Part IV

Peng Gao

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

Correspondence should be addressed to Peng Gao, penggao@ntu.edu.sg
Received 19 August 2009; Accepted 2 December 2009
Recommended by Feng Qi
We extend the results in parts I-III on certain inequalities involving the weighted power means as well as the symmetric means. These inequalities can be largely viewed as concerning the bounds for ratios of differences of means and can be traced back to the work of Diananda.

Copyright © 2009 Peng Gao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let $M_{n, r}(\mathbf{x} ; \mathbf{q})$ be the weighted power means: $M_{n, r}(\mathbf{x} ; \mathbf{q})=\left(\sum_{i=1}^{n} q_{i} x_{i}^{r}\right)^{1 / r}$, where $M_{n, 0}(\mathbf{x} ; \mathbf{q})$ denotes the limit of $M_{n, r}(\mathbf{x} ; \mathbf{q})$ as $r \rightarrow 0^{+}, \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$, and $q_{i}>0(1 \leq$ $i \leq n$) are positive real numbers with $\sum_{i=1}^{n} q_{i}=1$. In this paper, we let $q=\min q_{i}$ and unless otherwise specified, we assume $0 \leq x_{1}<x_{2}<\cdots<x_{n}$.

For $k \in\{0,1, \ldots, n\}$, the k th symmetric function $E_{n, k}$ of \mathbf{x} and its mean $P_{n, k}$ are defined by

$$
\begin{equation*}
E_{n, r}(\mathbf{x})=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq n} \prod_{j=1}^{r} x_{i_{j}}, \quad P_{n, r}^{r}(\mathbf{x})=\frac{E_{n, r}(\mathbf{x})}{\binom{n}{r}}, \quad 1 \leq r \leq n ; \quad E_{n, 0}=P_{n, 0}=1 . \tag{1.1}
\end{equation*}
$$

We define $A_{n}(\mathbf{x} ; \mathbf{q})=M_{n, 1}(\mathbf{x} ; \mathbf{q}), G_{n}(\mathbf{x})=M_{n, 0}(\mathbf{x} ; \mathbf{q})$, and $H_{n}(\mathbf{x} ; \mathbf{q})=M_{n,-1}(\mathbf{x} ; \mathbf{q})$ and we shall write $M_{n, r}$ for $M_{n, r}(\mathbf{x} ; \mathbf{q})$ and similarly for other means when there is no risk of confusion.

For a real number α and mutually distinct numbers r, s, t, we define

$$
\begin{equation*}
\Delta_{r, s, t, \alpha}=\left|\frac{M_{n, r}^{\alpha}-M_{n, t}^{\alpha}}{M_{n, r}^{\alpha}-M_{n, s}^{\alpha}}\right|, \tag{1.2}
\end{equation*}
$$

where we interpret $M_{n, r}^{0}-M_{n, s}^{0}$ as $\ln M_{n, r}-\ln M_{n, s}$. We also define $\Delta_{r, s, t}$ to be $\Delta_{r, s, t, 1}$.

For $r>s>t \geq 0, \alpha>0$, the author studied in [1-3] inequalities of the following two types:

$$
\begin{gather*}
C_{r, s, t}\left((1-q)^{\alpha}\right) \geq \Delta_{r, s, t, \alpha} \tag{1.3}\\
\Delta_{r, s, t, \alpha} \geq C_{r, s, t}\left(q^{\alpha}\right), \tag{1.4}
\end{gather*}
$$

where for $0<x<1$,

$$
\begin{equation*}
C_{r, s, t}(x)=\frac{1-x^{1 / t-1 / r}}{1-x^{1 / s-1 / r}}, \quad t>0 ; \quad C_{r, s, 0}(x)=\frac{1}{1-x^{1 / s-1 / r}} \tag{1.5}
\end{equation*}
$$

For any set $\{a, b, c\}$ with a, b, c mutually distinct and nonnegative, we let $r=$ $\max \{a, b, c\}, t=\min \{a, b, c\}, s=\{a, b, c\} \backslash\{r, t\}$. By saying that (1.3) (resp., (1.4)) holds for the set $\{a, b, c\}, \alpha>0$, we mean that (1.3) (resp., (1.4)) holds for $r>s>t \geq 0, \alpha>0$.

A result of Diananda $[4,5]$ (see also $[6,7]$) shows that (1.3) and (1.4) hold for $\{1,1 / 2,0\}, \alpha=1$. When $\alpha=1$, the sets $\{a, b, 1\}$'s for which (1.3) or (1.4) holds have been completely determined by the author in [1-3]. Moreover, it is shown in [3] that (1.4) does not hold in general unless $0 \in\{a, b, c\}$.

For general α 's, the cases $r>s>t \geq 0$ for which inequality (1.3) or (1.4) holds are open (with $t=0$ in (1.4)). It is our main goal in this paper to study these cases. We first restrict our attention to the case $\{a, b, 0\}$. This is partially because of the following result in [2] (note that there is a typo in the original statement though).

Theorem 1.1 (see [2, Theorem 3.2]). Let $r>s>0$. If (1.3) holds for $\{r, s, 0\}, \alpha>0$, then it also holds for $\{r, s, 0\}, k \alpha$ with $0<k<1$. If (1.4) holds for $\{r, s, 0\}, \alpha>0$, then it also holds for $\{r, s, 0\}$, $k \alpha$ with $k>1$.

Moreover, for the unweighted case $q_{1}=q_{2}=\cdots=q_{n}=1 / n$, the author [3, Theorem 3.5] has shown that (1.3) holds for $\{1,1 / r, 0\}$ with $\alpha=n / r$ when $r \geq 2$ and (1.4) holds for $\{1,1 / r, 0\}$ with $\alpha=n /((n-1) r)$ when $1<r \leq 2$. The values of α 's are best possible here; namely, no larger α 's can make (1.3) hold for $\{1,1 / r, 0\}$ and similarly no smaller α 's can make (1.4) hold for $\{1,1 / r, 0\}$.

More generally, for arbitrary weights $\left\{q_{i}\right\}$'s, by using similar arguments as in [3], one sees that the largest α that can make (1.3) hold for $\{1,1 / r, 0\}$ is $1 /(q r)$ and the smallest α that can make (1.4) hold for $\{1,1 / r, 0\}$ is $1 /((1-q) r)$.

In Section 2, we will extend Theorem 3.5 of [3] to the case of arbitrary weights. Namely, we will prove the following.

Theorem 1.2. For $r \geq 2,0<p \leq 1 / q$,

$$
\begin{equation*}
A_{n}^{p} \leq(1-q)^{(r-1) p / r} M_{n, r}^{p}+\left(1-(1-q)^{(r-1) p / r}\right) G_{n}^{p} \tag{1.6}
\end{equation*}
$$

For $1<r \leq 2, p \geq 1 /(1-q)$,

$$
\begin{equation*}
A_{n}^{p} \geq q^{(r-1) p / r} M_{n, r}^{p}+\left(1-q^{(r-1) p / r}\right) G_{n}^{p} \tag{1.7}
\end{equation*}
$$

We note here that by a change of variables $x_{i} \rightarrow x_{i}^{1 / r}$, one can easily rewrite (1.6) (resp., (1.7)) in the form of (1.3) (resp., (1.4)).

After studying (1.3) and (1.4) for the set $\{a, b, 0\}$, we move on in Section 3 to the case $\{a, b, c\}$ with $\min (a, b, c)>0$. Our remark earlier allows us to focus on (1.3) only. In this case, we can recast (1.3), via a change of variables, as the following:

$$
\begin{equation*}
A_{n}^{\alpha} \leq \lambda_{r, s}\left((1-q)^{\alpha}\right) M_{n, r}^{\alpha}+\left(1-\lambda_{r, s}\left((1-q)^{\alpha}\right)\right) M_{n, s^{\prime}}^{\alpha} \tag{1.8}
\end{equation*}
$$

where $\alpha>0, r>1>s>0$ and

$$
\begin{equation*}
\lambda_{r, s}(x)=1-\frac{1}{C_{r, 1, s}(x)} . \tag{1.9}
\end{equation*}
$$

We will show that (1.8) holds for all n if and only if it holds for the case $n=2$. Based on this, we will then be able to prove (1.8) for certain r, s, α^{\prime} s satisfying a natural condition.

One certainly expects that analogues of (1.3) and (1.4) hold with weighted power means replaced by the symmetric means; one such example is given by the following result in [8].

Theorem 1.3. Let $q_{i}=1 / n$, then for any integer $2 \leq k \leq n$,

$$
\begin{equation*}
\left(\sum_{i=1}^{n} x_{i}\right)^{k} \leq\left(n^{k}-\tilde{\lambda}_{2, k}(n)\binom{n}{k}\right) M_{n, 2}^{k}+\tilde{\lambda}_{2, k}(n) E_{n, k} \tag{1.10}
\end{equation*}
$$

where for $2 \leq r \leq k \leq n$ (with $\binom{n-1}{n}=0$ here),

$$
\begin{equation*}
\tilde{\lambda}_{r, k}(n)=\frac{n^{k}(1-1 / n)^{k / r}-(n-1)^{k}}{\binom{n}{k}(1-1 / n)^{k / r}-\binom{n-1}{k}} . \tag{1.11}
\end{equation*}
$$

As was pointed out in [3], the proof given in [8] for the above theorem is not quite correct. In Section 4, we will study inequalities involving the symmetric means and our results include a proof of Theorem 1.3.

2. Proof of Theorem 1.2

In view of Theorem 1.1, one only needs to prove (1.6) for $p=1 / q$ and similarly (1.7) for $p=1 /(1-q)$. In this proof we assume that $0<x_{1} \leq \cdots \leq x_{n}$. The case $x_{1}=0$ will follow by taking the limit. We first prove (1.6) and we define

$$
\begin{equation*}
f(\mathbf{x})=\frac{A_{n}^{1 / q}-(1-q)^{(r-1) / q r} M_{n, r}^{1 / q}}{G_{n}^{1 / q}} . \tag{2.1}
\end{equation*}
$$

If $x_{1}=\cdots=x_{n}$, then $f=0$; otherwise we may assume $n \geq 2$ and $0<x=x_{1}=\cdots=x_{k}<x_{k+1}$ for some $1 \leq k<n$, then

$$
\begin{equation*}
\frac{\partial f}{\partial x}=\sum_{i=1}^{k} \frac{\partial f}{\partial x_{i}} \tag{2.2}
\end{equation*}
$$

We want to show that the right-hand side above is nonnegative. It suffices to show that each single term in the sum is nonnegative. Without loss of generality, we now show that

$$
\begin{equation*}
\frac{\partial f}{\partial x_{1}} \geq 0 \tag{2.3}
\end{equation*}
$$

We have

$$
\begin{equation*}
\frac{q x_{1} G_{n}^{1 / q}}{q_{1}} \frac{\partial f}{\partial x_{1}}=A_{n}^{1 / q-1}\left(x_{1}-A_{n}\right)-(1-q)^{(r-1) / q r} M_{n, r}^{1 / q-r}\left(x_{1}^{r}-M_{n, r}^{r}\right) \tag{2.4}
\end{equation*}
$$

Now we set

$$
\begin{equation*}
y(r)=\left(\frac{\left(q_{1}-q\right) x_{1}^{r}+\sum_{i=2}^{n} q_{i} x_{i}^{r}}{1-q}\right)^{1 / r} \tag{2.5}
\end{equation*}
$$

so that

$$
\begin{align*}
A_{n}^{1 / q-1}\left(x_{1}-A_{n}\right) & =(1-q)\left(q x_{1}+(1-q) y(1)\right)^{1 / q-1}\left(x_{1}-y(1)\right) \tag{2.6}\\
& \geq(1-q)\left(q x_{1}+(1-q) y(r)\right)^{1 / q-1}\left(x_{1}-y(r)\right)
\end{align*}
$$

Hence

$$
\begin{align*}
& \frac{q G_{n}^{1 / q}}{q_{1}(1-q)^{1 / q} x_{1}^{1 / q-1}} \frac{\partial f}{\partial x_{1}} \tag{2.7}\\
& \quad \geq\left(\frac{q}{1-q}+\frac{y(r)}{x_{1}}\right)^{1 / q-1}\left(1-\frac{y(r)}{x_{1}}\right)-\left(\frac{q}{1-q}+\frac{y^{r}(r)}{x_{1}^{r}}\right)^{1 / q r-1}\left(1-\frac{y^{r}(r)}{x_{1}^{r}}\right) .
\end{align*}
$$

We want to show that the right-hand side expression above is nonnegative, and by setting $z=y(r) / x_{1}$, this is equivalent to show that

$$
\begin{equation*}
g(z, q)=\frac{(q /(1-q)+z)^{1 / q-1}(z-1)}{\left(q /(1-q)+z^{r}\right)^{1 / q r-1}\left(z^{r}-1\right)} \leq 1 \tag{2.8}
\end{equation*}
$$

for $z \geq 1,0 \leq q \leq 1 / 2$ and calculation yields that

$$
\begin{align*}
& \frac{\left(\left(q /(1-q)+z^{r}\right)^{1 / q r-1}\left(z^{r}-1\right)\right)^{2}}{(q /(1-q)+z)^{1 / q-2}\left(q /(1-q)+z^{r}\right)^{1 / q r-2}} \frac{\partial g}{\partial z} \\
& \quad=\frac{1}{q}\left(\left(z-1+\frac{q}{1-q}\right)\left(z^{r}-1\right)\left(z^{r}+\frac{q}{1-q}\right)-\left(z+\frac{q}{1-q}\right)\left(z^{r}-z^{r-1}\right)\left(z^{r}+\frac{r q}{1-q}-1\right)\right) . \tag{2.9}
\end{align*}
$$

We now set $s=q /(1-q)$ with $0 \leq s \leq 1$ and we consider

$$
\begin{equation*}
a(z, s)=(z-1+s)\left(z^{r}-1\right)\left(z^{r}+s\right)-(z+s)\left(z^{r}-z^{r-1}\right)\left(z^{r}+r s-1\right) \tag{2.10}
\end{equation*}
$$

By Cauchy's mean value theorem,

$$
\begin{equation*}
\frac{\partial^{2} a}{\partial s^{2}}=2\left(z^{r}-1-r z^{r-1}(z-1)\right) \leq 0 \tag{2.11}
\end{equation*}
$$

It follows that for $0 \leq s \leq 1$,

$$
\begin{equation*}
a(z, s) \geq \min \{a(z, 0), a(z, 1)\}=\min \{0, a(z, 1)\} \tag{2.12}
\end{equation*}
$$

It follows from the discussion in [3] (see the function $a(y, 1)$ defined in the proof of Theorem 3.5 there and note that we have $r \geq 2$ here) that $a(z, 1) \geq 0$. This implies that $a(z, s) \geq 0$ so that $g(z, q)$ is an increasing function of z and we then deduce that

$$
\begin{equation*}
g(z, q) \leq \lim _{z \rightarrow+\infty} g(z, q)=1 \tag{2.13}
\end{equation*}
$$

This shows that $\partial f / \partial x_{1} \geq 0$ and hence $\partial f / \partial x \geq 0$ and by letting $x \rightarrow x_{k+1}$ and repeating the above argument, we conclude that $f(\mathbf{x}) \leq f\left(x_{n}, x_{n}, \ldots, x_{n}\right)=1-(1-q)^{(r-1) / q r}$ which completes the proof for (1.6).

Now, to prove (1.7), we consider

$$
\begin{equation*}
h(\mathbf{x})=\frac{A_{n}^{1 /(1-q)}-q^{(r-1) /(1-q) r} M_{n, r}^{1 /(1-q)}}{G_{n}^{1 /(1-q)}} \tag{2.14}
\end{equation*}
$$

Similar to our discussion above, it suffices to show $\partial h / \partial x_{n} \geq 0$. Now

$$
\begin{equation*}
\frac{x_{n} G_{n}^{1 /(1-q)}(1-q)}{q_{n}} \frac{\partial h}{\partial x_{n}}=A_{n}^{1 /(1-q)-1}\left(x_{n}-A_{n}\right)-q^{(r-1) /(1-q) r} M_{n, r}^{1 /(1-q)-r}\left(x_{n}^{r}-M_{n, r}^{r}\right) \tag{2.15}
\end{equation*}
$$

Now we set

$$
\begin{equation*}
w(r)=\left(\frac{\left(q_{n}-q\right) x_{n}^{r}+\sum_{i=1}^{n-1} q_{i} x_{i}^{r}}{1-q}\right)^{1 / r} \tag{2.16}
\end{equation*}
$$

so that

$$
\begin{align*}
A_{n}^{1 /(1-q)-1}\left(x_{n}-A_{n}\right) & =(1-q)\left(q x_{n}+(1-q) w(1)\right)^{1 /(1-q)-1}\left(x_{n}-w(1)\right) \\
& \geq(1-q)\left(q x_{n}+(1-q) w(r)\right)^{1 /(1-q)-1}\left(x_{n}-w(r)\right) \tag{2.17}
\end{align*}
$$

where the inequality follows from the observation that the function

$$
\begin{equation*}
z \longmapsto\left(q x_{n}+(1-q) z\right)^{1 /(1-q)-1}\left(x_{n}-z\right) \tag{2.18}
\end{equation*}
$$

is decreasing for $0<z<x_{n}$.
We then deduce that

$$
\begin{align*}
& \frac{x_{n} \mathrm{G}_{n}^{1 /(1-q)}}{q_{n} q^{1 /(1-q)-1} w^{1 /(1-q)}(r)} \frac{\partial h}{\partial x_{n}} \\
& \quad \geq\left(\frac{x_{n}}{w(r)}+\frac{1-q}{q}\right)^{1 /(1-q)-1}\left(\frac{x_{n}}{w(r)}-1\right)-\left(\frac{x_{n}^{r}}{w^{r}(r)}+\frac{1-q}{q}\right)^{1 /(1-q) r-1}\left(\frac{x_{n}^{r}}{w^{r}(r)}-1\right) . \tag{2.19}
\end{align*}
$$

By proceeding similarly as in the proof of (1.6) above, one is then able to establish (1.7) and we shall omit all the details here.

3. A General Discussion on (1.8)

Theorem 3.1. For fixed $\alpha>0, r>1>s>0$, (1.8) holds for all n if and only if it holds for $n=2$.
Proof. We consider the function

$$
\begin{equation*}
f_{n}(\mathbf{x} ; \mathbf{q}, q):=\lambda_{r, s}\left((1-q)^{\alpha}\right) M_{n, r}^{\alpha}+\left(1-\lambda_{r, s}\left((1-q)^{\alpha}\right)\right) M_{n, s}^{\alpha}-A_{n}^{\alpha} \tag{3.1}
\end{equation*}
$$

The theorem asserts that in order to show $f_{n} \geq 0$, it suffices to check the case $n=2$. To see this, we may assume by homogeneity that $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n-1} \leq x_{n}=1$ and we let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in[0,1]^{n-1}$ be the point in which the absolute minimum of f_{n} is reached. We may assume that $0 \leq a_{1}<a_{2}<\cdots<a_{n-1}<a_{n}=1$ for otherwise if $a_{i}=a_{i+1}$ for some $1 \leq i \leq n-1$, by combining a_{i} with a_{i+1} and q_{i} with q_{i+1}, and noticing that $\lambda_{r, s}(x)$ is an increasing function of x by [2, Lemma 2.1], we have

$$
\begin{equation*}
f_{n}(\mathbf{a} ; \mathbf{q}, q) \geq f_{n-1}\left(\mathbf{a}^{\prime} ; \mathbf{q}^{\prime}, q^{\prime}\right) \tag{3.2}
\end{equation*}
$$

where $\mathbf{a}^{\prime}=\left(a_{1}, \ldots, a_{i-1}, a_{i}+a_{i+1}, a_{i+2}, \ldots, a_{n}\right), \mathbf{q}^{\prime}=\left(q_{1}, \ldots, q_{i-1}, q_{i}+q_{i+1}, q_{i+2}, \ldots, q_{n}\right)$, and $q^{\prime}=$ $\min \left(q_{1}, \ldots, q_{i-1}, q_{i}+q_{i+1}, q_{i+2}, \ldots, q_{n}\right)$. We can then reduce the determination of the absolute minimum of f_{n} to that of f_{n-1} with different weights.

If \mathbf{a} is a boundary point of $[0,1]^{n-1}$, then $a_{1}=0$, and in this case we show that $f_{n}\left(\mathbf{a} ; \mathbf{q}_{n}, q\right) \geq 0$ follows from $f_{n-1}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}, q\right) \geq 0$, where $\mathbf{a}^{\prime \prime}=\left(a_{2}, \ldots, a_{n}\right)$ and $\mathbf{q}^{\prime \prime}=$ $\left(q_{2}, \ldots, q_{n}\right) /\left(1-q_{1}\right)$. On writing $f_{n-1}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}, q\right) \geq 0$ explicitly, we get

$$
\begin{align*}
\left(\sum_{i=2}^{n} q_{i} a_{i}\right)^{\alpha} \leq & \lambda_{r, s}\left((1-q)^{\alpha}\right)\left(1-q_{1}\right)^{\alpha} M_{n-1, r}^{\alpha}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}\right) \tag{3.3}\\
& +\left(1-\lambda_{r, s}\left((1-q)^{\alpha}\right)\right)\left(1-q_{1}\right)^{\alpha} M_{n-1, s}^{\alpha}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}\right)
\end{align*}
$$

Meanwhile, $f_{n}\left(\mathbf{a} ; \mathbf{q}_{n}, q\right) \geq 0$ is equivalent to

$$
\begin{align*}
\left(\sum_{i=2}^{n} q_{i} a_{i}\right)^{\alpha} \leq & \lambda_{r, s}\left((1-q)^{\alpha}\right)\left(1-q_{1}\right)^{\alpha / r} M_{n-1, r}^{\alpha}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}\right) \tag{3.4}\\
& +\left(1-\lambda_{r, s}\left((1-q)^{\alpha}\right)\right)\left(1-q_{1}\right)^{\alpha / s} M_{n-1, s}^{\alpha}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}\right)
\end{align*}
$$

Thus, it amounts to show that

$$
\begin{align*}
& \lambda_{r, s}\left((1-q)^{\alpha}\right)\left(1-q_{1}\right)^{\alpha} M_{n-1, r}^{\alpha}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}\right)+\left(1-\lambda_{r, s}\left((1-q)^{\alpha}\right)\right)\left(1-q_{1}\right)^{\alpha} M_{n-1, s}^{\alpha}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}\right) \\
& \quad \leq \lambda_{r, s}\left((1-q)^{\alpha}\right)\left(1-q_{1}\right)^{\alpha / r} M_{n-1, r}^{\alpha}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}\right)+\left(1-\lambda_{r, s}\left((1-q)^{\alpha}\right)\right)\left(1-q_{1}\right)^{\alpha / s} M_{n-1, s}^{\alpha}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}\right), \tag{3.5}
\end{align*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{\left(1-\lambda_{r, s}\left((1-q)^{\alpha}\right)\right) \lambda_{r, s}\left(\left(1-q_{1}\right)^{\alpha}\right)}{\left(1-\lambda_{r, s}\left(\left(1-q_{1}\right)^{\alpha}\right)\right) \lambda_{r, s}\left((1-q)^{\alpha}\right)} M_{n-1, s}^{\alpha} \leq M_{n-1, r}^{\alpha} . \tag{3.6}
\end{equation*}
$$

Now the above inequality follows from $M_{n-1, s} \leq M_{n-1, r}$ and

$$
\begin{equation*}
\left(1-\lambda_{r, s}\left((1-q)^{\alpha}\right)\right) \lambda_{r, s}\left(\left(1-q_{1}\right)^{\alpha}\right) \leq\left(1-\lambda_{r, s}\left(\left(1-q_{1}\right)^{\alpha}\right)\right) \lambda_{r, s}\left((1-q)^{\alpha}\right) \tag{3.7}
\end{equation*}
$$

since $\lambda_{r, s}(x)$ is an increasing function of x.
Thus $f_{n}\left(\mathbf{a} ; \mathbf{q}_{n}, q\right) \geq 0$ follows from $f_{n-1}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}, q\right) \geq 0$. Moreover, on writing $q^{\prime \prime}=$ $\min \left(q_{2} /\left(1-q_{1}\right), \ldots, q_{n} /\left(1-q_{1}\right)\right)$ and noticing that $q^{\prime \prime}>q$, we deduce that $f_{n-1}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}, q\right) \geq$ $f_{n-1}\left(\mathbf{a}^{\prime \prime} ; \mathbf{q}^{\prime \prime}, q^{\prime \prime}\right)$. Hence the determination of $f_{n} \geq 0$ can be reduced to the determination of $f_{n-1} \geq 0$ with different weights.

It remains to show the case $a_{1}>0$, so that a is an interior point of $[0,1]^{n-1}$. In this case we have

$$
\begin{equation*}
\nabla f_{n}(\mathbf{a} ; \mathbf{q}, q)=0 \tag{3.8}
\end{equation*}
$$

Thus a_{1}, \ldots, a_{n-1} solve the equation

$$
\begin{equation*}
g(x)=\lambda_{r, s}\left((1-q)^{\alpha}\right) M_{n, r}^{\alpha-r} x^{r-1}+\left(1-\lambda_{r, s}\left((1-q)^{\alpha}\right)\right) M_{n, s}^{\alpha-s} x^{s-1}-A_{n}^{\alpha-1}=0 \tag{3.9}
\end{equation*}
$$

Note that

$$
\begin{equation*}
f_{n}(\mathbf{a} ; \mathbf{q}, q)=\sum_{i=1}^{n} q_{i} a_{i} g\left(a_{i}\right)=q_{n} a_{n} g\left(a_{n}\right) \tag{3.10}
\end{equation*}
$$

Thus if $g\left(a_{n}\right) \geq 0$, then $f_{n} \geq 0$. If $g\left(a_{n}\right)<0$, we note that $g(x)=0$ can have at most two roots in $\left(0, a_{n}\right]$ since it is easy to see that $g^{\prime}(x)=0$ can have at most one positive root. As $\lim _{x \rightarrow 0^{+}} g(x)=+\infty$, this implies that $g(x)=0$ has only one root in $\left(0, a_{n}\right]$. As a_{1}, \ldots, a_{n-1} are the distinct roots of $g(x)=0$, this implies that we must have $n-1=1$ so that we only need to show $f_{n} \geq 0$ for the case $n=2$ and this completes the proof.

In what follows, we will apply Theorem 3.1 to establish (1.8) for certain r, s, α 's. Before we proceed, we note that there is a natural condition to be satisfied by r, s, α in order for (1.8) to hold, namely, if we take $n=2$ and rewrite it as

$$
\begin{equation*}
\frac{M_{2, r}^{\alpha}-M_{2, s}^{\alpha}}{M_{2, r}^{\alpha}-A_{2}^{\alpha}} \leq \frac{1}{1-\lambda_{r, s}\left((1-q)^{\alpha}\right)} . \tag{3.11}
\end{equation*}
$$

On taking $x_{1} \rightarrow x_{2}$, we conclude that

$$
\begin{equation*}
\frac{r-s}{r-1} \leq \frac{1}{1-\lambda_{r, s}\left((1-q)^{\alpha}\right)} \tag{3.12}
\end{equation*}
$$

Before we prove our next result, we need two lemmas.
Lemma 3.2. Fixing $u<0$, the function

$$
\begin{equation*}
f(t)=\frac{1-t}{1-t^{u}}, \quad 0<t \neq 1 \tag{3.13}
\end{equation*}
$$

is concave for $u<-1$ and is convex for $-1<u<0$.
Proof. Calculation yields that

$$
\begin{equation*}
f^{\prime \prime}(t)=\frac{u t^{u-2}}{\left(1-t^{u}\right)^{3}} g(t) \tag{3.14}
\end{equation*}
$$

where

$$
\begin{equation*}
g(t)=-(u-1) t^{u+1}+(1+u) t^{u}-(1+u) t+u-1 . \tag{3.15}
\end{equation*}
$$

Now

$$
\begin{equation*}
g^{\prime \prime}(t)=u(u+1)(u-1) t^{u-2}(1-t) \tag{3.16}
\end{equation*}
$$

Thus if $-1<u<0$, then $g^{\prime \prime}(t)>0$ for $0<t<1$ and $g^{\prime \prime}(t)<0$ for $t>1$. Since $g^{\prime}(1)=0$, this implies that $g^{\prime}(t)<0$ for $0<t \neq 1$. As $g(1)=0$, we then conclude that $g(t)>0$ for $0<t<1$ and $g(t)<0$ for $t>1$. It follows from this that $f(t)$ is convex for $-1<u<0$ and the other assertion can be shown similarly, which completes the proof.

Lemma 3.3. For $r>1,0<q_{1}, q_{2}<1, q_{1}+q_{2}=1$, the function

$$
\begin{equation*}
f(t)=\left(q_{1} t^{1 /(r-1)}+q_{2}\right)^{\alpha-1}\left(q_{1} t^{r /(r-1)}+q_{2}\right)^{1-\alpha / r} \tag{3.17}
\end{equation*}
$$

is convex for $t>0$ when $r \geq 2,1>\alpha>0$, or $\alpha=1, r>1$.
Proof. Direct calculation shows that

$$
\begin{equation*}
f^{\prime \prime}(t)=\frac{q_{1}}{r-1}\left(q_{1} t^{1 /(r-1)}+q_{2}\right)^{\alpha-3}\left(q_{1} t^{r /(r-1)}+q_{2}\right)^{-\alpha / r-1} t^{1 /(r-1)-2} g(t) \tag{3.18}
\end{equation*}
$$

where

$$
\begin{align*}
g(t)= & \frac{(1-\alpha)(r-2)}{r-1} q_{1}^{2} q_{2} t^{2+2 /(r-1)}+\frac{(1-\alpha)(r-\alpha)}{r-1} q_{1} q_{2}^{2} t^{2+1 /(r-1)}+\frac{r-\alpha}{r-1} q_{1}^{2} q_{2} t^{1+2 /(r-1)} \\
& +2\left(1-\frac{(1-\alpha)^{2}}{r-1}\right) q_{1} q_{2}^{2} t^{1+1 /(r-1)}+\frac{r-\alpha}{r-1} q_{2}^{3} t+\frac{(1-\alpha)(r-\alpha)}{r-1} q_{1} q_{2}^{2} t^{1 /(r-1)}+\frac{(1-\alpha)(r-2)}{r-1} q_{2}^{3} \tag{3.19}
\end{align*}
$$

One then easily deduce the assertion of the lemma from the above expression of $g(t)$ and this completes the proof.

Theorem 3.4. Inequality (1.8) holds for the cases $r \geq 2,1>\alpha>0$ or $\alpha=1, r>1, r+s \geq 2$, provided that (3.12) holds with strict inequality.

Proof. By Theorem 3.1, it suffices to prove the theorem for the case $n=2$. We write $\lambda=$ $\lambda_{r, s}\left((1-q)^{\alpha}\right)$ for short in this proof. What we need to prove is the following:

$$
\begin{equation*}
\left(q_{1} x_{1}+q_{2} x_{2}\right)^{\alpha} \leq \lambda\left(q_{1} x_{1}^{r}+q_{2} x_{2}^{r}\right)^{\alpha / r}+(1-\lambda)\left(q_{1} x_{1}^{s}+q_{2} x_{2}^{s}\right)^{\alpha / s} \tag{3.20}
\end{equation*}
$$

Without loss of generality, we may assume that $q_{1}=q, q_{2}=1-q$ and define

$$
\begin{equation*}
f(t)=\left(q_{1} t^{s}+q_{2}\right)^{-\alpha / s}\left(\left(q_{1} t+q_{2}\right)^{\alpha}-\lambda\left(q_{1} t^{r}+q_{2}\right)^{\alpha / r}\right) \tag{3.21}
\end{equation*}
$$

so that we need to show that $f(t) \leq f(1)$ for $t \geq 0$. We have

$$
\begin{align*}
f^{\prime}(t) & =\alpha q_{1} q_{2}\left(q_{1} t^{s}+q_{2}\right)^{-\alpha / s-1}\left(\left(q_{1} t+q_{2}\right)^{\alpha-1}\left(1-t^{s-1}\right)+\lambda\left(q_{1} t^{r}+q_{2}\right)^{\alpha / r-1}\left(t^{s-1}-t^{r-1}\right)\right) \\
& =\alpha q_{1} q_{2}\left(q_{1} t^{s}+q_{2}\right)^{-\alpha / s-1}\left(q_{1} t^{r}+q_{2}\right)^{\alpha / r-1}\left(1-t^{s-1}\right) g\left(t^{r-1}\right) \tag{3.22}
\end{align*}
$$

where

$$
\begin{equation*}
g(t)=\left(q_{1} t^{1 /(r-1)}+q_{2}\right)^{\alpha-1}\left(q_{1} t^{r /(r-1)}+q_{2}\right)^{1-\alpha / r}+\lambda \frac{1-t}{1-t^{(s-1) /(r-1)}}-\lambda \tag{3.23}
\end{equation*}
$$

By Lemmas 3.2 and 3.3, we see that $g(t)$ is a strictly convex function for $r \geq 2,1>\alpha>0$ or $\alpha=1, r>1, r+s \geq 2$. Note that by our assumption (3.12) with strict inequality,

$$
\begin{equation*}
\lim _{t \rightarrow 1} g(t)=1+\lambda \frac{r-s}{s-1}<0 \tag{3.24}
\end{equation*}
$$

On the other hand, note that λ satisfies

$$
\begin{equation*}
(1-q)^{\alpha}=\lambda(1-q)^{\alpha / r}+(1-\lambda)(1-q)^{\alpha / s} \tag{3.25}
\end{equation*}
$$

so that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} g(t)=(1-q)^{\alpha-\alpha / r}-\lambda=(1-\lambda)(1-q)^{\alpha / s-\alpha / r}>0 \tag{3.26}
\end{equation*}
$$

As $g(t)$ is strictly convex, this implies that there are exactly two roots t_{1}, t_{2} of $g(t)=0$ satisfying that $t_{1} \in(0,1)$ and $t_{2}>1$. Note further that $f(0)=f(1)$ and $\lim _{t \rightarrow 0^{+}} f^{\prime}(t)<0$, which implies that $f(t) \leq f(1)$ for $0 \leq t \leq 1$. Similarly, we note that $f^{\prime}(t)<0$ for $t \in(1,1+\epsilon)$ with $\epsilon>0$ being small enough. This combined with the observation that $\lim _{t \rightarrow+\infty} f(t) \leq f(1)$ as $\lambda_{r, s}(x)$ is an increasing function of x implies that $f(t) \leq f(1)$ for $t \geq 1$ which completes the proof.

We remark here that if condition (3.12) is satisfied for some r, s, α, then it is also satisfied for r, s, α^{\prime} with $0<\alpha^{\prime}<\alpha$. Thus it is not surprising to expect a result like Theorem 3.4 to hold.

To end this section, we prove a variant of (1.3) which is motivated by the following inequality due to Mesihović [9] (with $q_{i}=1 / n$ here):

$$
\begin{equation*}
\left(1-\frac{1}{n}\right) A_{n}+\frac{1}{n} G_{n} \geq\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{1-1 / n}\right)\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{1 / n}\right) \tag{3.27}
\end{equation*}
$$

We now generalize the above inequality to the arbitrary weight case.

Theorem 3.5. For $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\begin{equation*}
(1-q) A_{n}+q G_{n} \geq\left(\sum_{i=1}^{n} q_{i} x_{i}^{1-q}\right)\left(\sum_{i=1}^{n} q_{i} x_{i}^{q}\right) \tag{3.28}
\end{equation*}
$$

with equality holding if and only if $x_{1}=\cdots=x_{n}$ or $x_{1}=0, q_{1}=q, x_{2}=\cdots=x_{n}$, or $n=2, q=1 / 2$.
Proof. Define

$$
\begin{equation*}
D_{n}(\mathbf{x})=(1-q) A_{n}+q G_{n}-\left(\sum_{i=1}^{n} q_{i} x_{i}^{1-q}\right)\left(\sum_{i=1}^{n} q_{i} x_{i}^{q}\right) \tag{3.29}
\end{equation*}
$$

We need to show $D_{n} \geq 0$ and we have

$$
\begin{equation*}
\frac{1}{q_{n}} \frac{\partial D_{n}}{\partial x_{n}}=1-q+q \frac{G_{n}}{x_{n}}-(1-q)\left(x_{n}^{-q} \sum_{i=1}^{n} q_{i} x_{i}^{q}\right)-q\left(x_{n}^{q-1} \sum_{i=1}^{n} q_{i} x_{i}^{1-q}\right) \tag{3.30}
\end{equation*}
$$

By a change of variables: $x_{i} / x_{n} \rightarrow x_{i}, 1 \leq i \leq n$, we may assume $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}=1$ in (3.30) and rewrite it as

$$
\begin{equation*}
g_{n}\left(x_{1}, \ldots, x_{n-1}\right):=1-q+q G_{n}-(1-q)\left(\sum_{i=1}^{n} q_{i} x_{i}^{q}\right)-q\left(\sum_{i=1}^{n} q_{i} x_{i}^{1-q}\right) \tag{3.31}
\end{equation*}
$$

We want to show $g_{n} \geq 0$. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n-1}\right) \in[0,1]^{n-1}$ be the point in which the absolute minimum of g_{n} is reached. We may assume $a_{1} \leq a_{2} \leq \cdots \leq a_{n-1}$. If $a_{1}=0$, then \mathbf{a} is a boundary point of $[0,1]^{n-1}$, and in this case we have

$$
\begin{align*}
g_{n}\left(a_{1}=0, \ldots, a_{n-1}\right) & =1-q-(1-q)\left(\sum_{i=2}^{n} q_{i} a_{i}^{q}\right)-q\left(\sum_{i=2}^{n} q_{i} a_{i}^{1-q}\right) \tag{3.32}\\
& \geq 1-q-(1-q)\left(1-q_{1}\right)-q\left(1-q_{1}\right)=q_{1}-q \geq 0
\end{align*}
$$

with equality holding if and only if $q_{1}=q, a_{2}=\cdots=a_{n}=1$. Now suppose $a_{1}>0$ and $a_{m-1}<a_{m}=\cdots=a_{n}=1$ for some $1 \leq m \leq n$, then a_{1}, \ldots, a_{m-1} solve the equation

$$
\begin{equation*}
\nabla g_{n}\left(a_{1}, \ldots, a_{n-1}\right)=0 \tag{3.33}
\end{equation*}
$$

Equivalently, a_{1}, \ldots, a_{m-1} solve the equation

$$
\begin{equation*}
G_{n}=(1-q)\left(x^{q}+x^{1-q}\right) \tag{3.34}
\end{equation*}
$$

As the right-hand side expression above is an increasing function of x, the above equation has at most one root (regarding G_{n} as constant). So we only need to show $g_{n} \geq 0$ for the case
$a_{1}=\cdots=a_{m-1}=x<a_{m}=\cdots=a_{n}=1$ in (3.31) for some $1 \leq m \leq n$. In this case we regard g_{n} as a function of x and we recast it as

$$
\begin{align*}
h(\omega, x) & =1-q+q x^{\omega}-(1-q)\left(\omega x^{q}+1-\omega\right)-q\left(\omega x^{1-q}+1-\omega\right) \tag{3.35}\\
& =\omega-q+q x^{\omega}-(1-q) \omega x^{q}-q \omega x^{1-q}
\end{align*}
$$

Here $0<x \leq 1$ and $q \leq \omega \leq 1-q$. Note first that when $q=1 / 2, h(\omega, x)=0$ so that we may now assume $0<q<1 / 2$. We have

$$
\begin{equation*}
\left.\frac{\partial h}{\partial \omega}\right|_{\omega=q}=1+q x^{q} \ln x-(1-q) x^{q}-q x^{1-q}:=d(x) \tag{3.36}
\end{equation*}
$$

Now

$$
\begin{equation*}
d^{\prime}(x)=q x^{q-1} e(x) \tag{3.37}
\end{equation*}
$$

where

$$
\begin{equation*}
e(x)=1+q \ln x-(1-q)-(1-q) x^{1-2 q} \tag{3.38}
\end{equation*}
$$

Note that $e^{\prime}(x)=0$ has one $\operatorname{root}(1-q)(1-2 q) x_{0}^{1-2 q}=q$ so that if $0<x_{0}<1$, then at this point

$$
\begin{equation*}
e\left(x_{0}\right)=q \ln x_{0}+q-\frac{q}{1-2 q}<0 \tag{3.39}
\end{equation*}
$$

Note also that $\lim _{x \rightarrow 0^{+}} e(x)<0, e(1)=2 q-1<0$. This implies that $e(x)<0$ for $0<x \leq 1$. Hence $d(x) \geq d(1)=0$ for $0<x \leq 1$. As it is easy to see that $h(\omega, x)$ is a convex function of ω for fixed x, we conclude that $h(\omega, x)$ is an increasing function of $q \leq \omega \leq 1-q$ for fixed x. Thus for $0<x \leq x, q \leq \omega \leq 1-q$,

$$
\begin{equation*}
h(\omega, x) \geq h(q, x)=q^{2}\left(x^{q}-x^{1-q}\right) \geq 0 \tag{3.40}
\end{equation*}
$$

with equality holding if and only if $x=1$.
Thus we have shown $g_{n} \geq 0$; hence $\partial D_{n} / \partial x_{n} \geq 0$ with equality holding if and only if $x_{1}=\cdots=x_{n}$ or $x_{1}=0, q_{1}=q, x_{2}=\cdots=x_{n}$ or $n=2, q_{1}=1 / 2$. By letting x_{n} tend to x_{n-1}, we have $D_{n} \geq D_{n-1}$ (with weights $q_{1}, \ldots, q_{n-2}, q_{n-1}+q_{n}$) with equality holding if and only if $x_{n}=x_{n-1}$ or $n=2$ and either $q=1 / 2$ or $x_{1}=0, q_{1}=q$. It follows by induction that $D_{n} \geq 0$ with equality holding if and only if $x_{1}=\cdots=x_{n}$ or $x_{1}=0, q_{1}=q, x_{2}=\cdots=x_{n}$ or $n=2, q=1 / 2$ and this completes the proof.

We remark here that if we define

$$
\begin{equation*}
S(\beta)=\left(\sum_{i=1}^{n} q_{i} x_{i}^{1-\beta}\right)\left(\sum_{i=1}^{n} q_{i} x_{i}^{\beta}\right) \tag{3.41}
\end{equation*}
$$

then for $1 \leq \beta \leq 1 / 2$,

$$
\begin{equation*}
\frac{d S}{d \beta}=\sum_{1 \leq i \leq j \leq n} q_{i} q_{j} x_{i}^{\beta} x_{j}^{\beta}\left(x_{j}^{1-2 \beta}-x_{i}^{1-2 \beta}\right) \ln \left(\frac{x_{i}}{x_{j}}\right) \leq 0 \tag{3.42}
\end{equation*}
$$

Hence Theorem 3.5 improves (1.3) for the case $\{1,1 / 2,0\}, \alpha=1$.

4. Inequalities Involving the Symmetric Means

In this section, we set $q_{i}=1 / n, 1 \leq i \leq n$. As an analogue of (1.8) (or (1.3)), we first consider

$$
\begin{equation*}
A_{n}^{\alpha} \leq \lambda_{\alpha, r, k}(n) M_{n, r}^{\alpha}+\left(1-\lambda_{\alpha, r, k}(n)\right) P_{n, k^{\prime}}^{\alpha} \tag{4.1}
\end{equation*}
$$

where $\alpha>0, r>1, n \geq k \geq 2$, and

$$
\begin{equation*}
\lambda_{\alpha, r, k}(n)=\frac{(1-1 / n)^{\alpha}-((n-k) / n)^{\alpha / k}}{(1-1 / n)^{\alpha / r}-((n-k) / n)^{\alpha / k}} \tag{4.2}
\end{equation*}
$$

The case $r=2, \alpha=k$ in (4.1) is just Theorem 1.3. In what follows, we will give a proof of Theorem 1.3 by combining the methods in $[8,10]$. Before we prove our result, we would like to first recast (4.1) for the case $\alpha=k$ as

$$
\begin{equation*}
\left(\sum_{i=1}^{n} x_{i}\right)^{k} \leq\left(n^{k}-\tilde{\lambda}_{r, k}(n)\binom{n}{k}\right) M_{n, r}^{k}+\tilde{\lambda}_{r, k}(n) E_{n, k} \tag{4.3}
\end{equation*}
$$

where $\tilde{\lambda}_{r, k}(n)$ is defined as in the statement of Theorem 1.3. Now we need two lemmas.
Lemma 4.1. For $2 \leq r \leq k \leq n-1$,

$$
\begin{equation*}
\tilde{\lambda}_{r, k}(n) \leq \tilde{\lambda}_{r, k}(n-1) \tag{4.4}
\end{equation*}
$$

Proof. We follow the method in the proof of Lemma 2 in [8]. We write $\tilde{\mathcal{J}}_{r, k}(n)$ as

$$
\begin{equation*}
\tilde{\lambda}_{r, k}(n)=\frac{k!\left(n^{k}(1-1 / n)^{k / r}-(n-1)^{k}\right)}{\left(\prod_{i=1}^{k-1}(n-i)\right)\left(n(1-1 / n)^{k / r}-n+k\right)} \tag{4.5}
\end{equation*}
$$

From the above we see that in order for (4.4) to hold, it suffices to show that

$$
\begin{equation*}
f(t)=\frac{k!\left((1-t)^{k / r}-(1-t)^{k}\right)}{\left(\prod_{i=1}^{k-1}(1-i t)\right)\left((1-t)^{k / r}-1+k t\right)} \tag{4.6}
\end{equation*}
$$

is increasing on $(0,1 / k)$. The logarithmic derivative of $f(t)$ is

$$
\begin{equation*}
\frac{f^{\prime}(t)}{f(t)}=\frac{k}{r(1-t)}\left(1-r+\frac{r-1}{1-(1-t)^{k(1-1 / r)}}-\frac{r-1+(k-r) t}{(1-t)^{k / r}-1+k t}\right)+\sum_{i=1}^{k-1} \frac{i}{1-i t} \tag{4.7}
\end{equation*}
$$

Note that for $0<t<1$, we have

$$
\begin{equation*}
(1-t)^{k / r}-1+k t \geq 1-(1-t)^{k(1-1 / r)}>0 \tag{4.8}
\end{equation*}
$$

by considering the Taylor expansions to the order of t^{2}. It follows from this that

$$
\begin{align*}
\frac{f^{\prime}(t)}{f(t)} & \geq \frac{k}{r(1-t)}\left(1-r+\frac{r-1}{1-(1-t)^{k(1-1 / r)}}-\frac{r-1+(k-r) t}{1-(1-t)^{k(1-1 / r)}}\right)+\sum_{i=1}^{k-1} \frac{i}{1-t} \tag{4.9}\\
& =\frac{k}{1-t}\left(\frac{1-r}{r}-\frac{(k-r) t / r}{1-(1-t)^{k(1-1 / r)}}+\frac{k-1}{2}\right)
\end{align*}
$$

It is easy to see that the function

$$
\begin{equation*}
t \longmapsto \frac{t}{1-(1-t)^{k(1-1 / r)}} \tag{4.10}
\end{equation*}
$$

is an increasing function for $0<t \leq 1$. Hence

$$
\begin{equation*}
\frac{1-r}{r}-\frac{(k-r) t / r}{1-(1-t)^{k(1-1 / r)}}+\frac{k-1}{2} \geq \frac{1-r}{r}-\frac{k-r}{r}+\frac{k-1}{2}=(k-1)\left(\frac{1}{2}-\frac{1}{r}\right) \geq 0 . \tag{4.11}
\end{equation*}
$$

Lemma 4.2. Inequality (4.1) holds for all \mathbf{x} in the case $n \geq k \geq r \geq 2, \alpha=k$ if it holds for $\mathbf{x}=$ (a, b, \ldots, b) with $0<a \leq b$.

Proof. In this proof we assume that $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. We prove the lemma by induction on n. When $n=k$, the assertion holds as a special case of (1.6). Now assume that the assertion holds for $n-1$, and we proceed to show it also holds for n. If $x_{1}=0$, we use the equivalent form (4.3) of (4.1) for the case $\alpha=k$ to see that what we need to prove is

$$
\begin{equation*}
\left(\sum_{i=2}^{n-1} x_{i}\right)^{k} \leq\left(n^{k}-\tilde{\lambda}_{r, k}(n)\binom{n}{k}\right)\left(\frac{n-1}{n}\right)^{k / r} M_{n-1, r}^{k}\left(x_{2}, \ldots, x_{n}\right)+\tilde{\lambda}_{r, k}(n) E_{n-1, k}\left(x_{2}, \ldots, x_{n}\right) . \tag{4.12}
\end{equation*}
$$

By the induction case $n-1$, we have

$$
\begin{align*}
\left(\sum_{i=2}^{n-1} x_{i}\right)^{k} \leq & \left((n-1)^{k}-\tilde{\lambda}_{r, k}(n-1)\binom{n-1}{k}\right) M_{n-1, r}^{k}\left(x_{2}, \ldots, x_{n}\right) \tag{4.13}\\
& +\tilde{\lambda}_{r, k}(n-1) E_{n-1, k}\left(x_{2}, \ldots, x_{n}\right)
\end{align*}
$$

Note that

$$
\begin{equation*}
\left(n^{k}-\tilde{\lambda}_{r, k}(n)\binom{n}{k}\right)\left(\frac{n-1}{n}\right)^{k / r}=(n-1)^{k}-\tilde{\lambda}_{r, k}(n)\binom{n-1}{k} \tag{4.14}
\end{equation*}
$$

Using this with Lemma 4.1 together with the observation that

$$
\begin{equation*}
\frac{E_{n-1, k}}{\binom{n-1}{k}}=P_{n-1, k}^{k} \leq M_{n-1, r}^{k} \tag{4.15}
\end{equation*}
$$

we see that inequality (4.12) follows from (4.13).
Thus from now on we may focus on the case $x_{1}>0$. Since both sides of (4.1) are homogeneous functions, it suffices to show that

$$
\begin{equation*}
\min _{x \in \Delta}\left\{\lambda_{k, r, k}(n) M_{n, r}^{k}+\left(1-\lambda_{k, r, k}(n)\right) P_{n, k}^{k}\right\} \geq 1 \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i} \geq 0,1 \leq i \leq n, \sum_{i=1}^{n} x_{i}=n\right\} \tag{4.17}
\end{equation*}
$$

Assume that $\lambda_{k, r, k}(n) M_{n, r}^{k}+\left(1-\lambda_{k, r, k}(n)\right) P_{n, k}^{k}$ attains its minimum at some point $\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i}>0,1 \leq i \leq n$. If $a_{1}=a_{2}=\cdots=a_{n}$, then (4.16) holds. Furthermore, if $n=2$, then (4.16) also holds, being a special case of (1.6). Thus without loss of generality, we may assume $n \geq 3$ and $a_{n}>a_{n-1} \geq a_{n-2}$ here. We may also assume that when $r=2, k>2$ since otherwise inequality (4.1) becomes an identity. Consider the function

$$
\begin{equation*}
f(x, y):=\lambda_{k, r, k}(n) M_{n, r}^{k}\left(a_{1}, \ldots, a_{n-2}, x, y\right)+\left(1-\lambda_{k, r, k}(n)\right) P_{n, k}^{k}\left(a_{1}, \ldots, a_{n-2}, x, y\right) \tag{4.18}
\end{equation*}
$$

on the set

$$
\begin{equation*}
\left\{(x, y): x \geq 0, y \geq 0, x+y=n-\sum_{i=1}^{n-2} a_{i}\right\} \tag{4.19}
\end{equation*}
$$

It is minimized at $\left(a_{n-1}, a_{n}\right)$. It is easy to see that f has the form

$$
\begin{equation*}
\lambda_{k, r, k}(n)\left(\frac{1}{n}\left(x^{r}+y^{r}\right)+B\right)^{k / r}+C\left(a_{1}, \ldots, a_{n-2}\right) x y+D \tag{4.20}
\end{equation*}
$$

where B, C, and D are nonnegative constants with C depends on a_{1}, \ldots, a_{n-2}. We now set $x+y=c$ and $x y=z$ with $0 \leq z=x y \leq(x+y)^{2} / 4=c^{2} / 4$. Note here that equality holds if and only if $x y=0$ or $x=y$. We regard the above function as a function of $z=x y$ and recast it as
$h(z)=\lambda_{k, r, k}(n)\left(\frac{1}{n}\left(\left(\frac{c+\sqrt{c^{2}-4 z}}{2}\right)^{r}+\left(\frac{c-\sqrt{c^{2}-4 z}}{2}\right)^{r}\right)+B\right)^{k / r}+C\left(a_{1}, \ldots, a_{n-2}\right) z+D$.

For $y>x>0$, calculation yields

$$
\begin{equation*}
h^{\prime}(x y)=-\frac{\lambda_{k, r, k}(n) k}{n}\left(\frac{1}{n}\left(x^{r}+y^{r}\right)+B\right)^{k / r-1}\left(\frac{y^{r-1}-x^{r-1}}{y-x}\right)+C\left(a_{1}, \ldots, a_{n-2}\right) \tag{4.22}
\end{equation*}
$$

Since $a_{n}>a_{n-1}>0$, we must have $h^{\prime}\left(a_{n-1} a_{n}\right)=0$ and we can further recast this as

$$
\begin{equation*}
C\left(a_{1}, \ldots, a_{n-2}\right)=\frac{\lambda_{k, r, k}(n) k}{n} M_{n, r}^{k-r}\left(a_{1}, \ldots, a_{n}\right)\left(\frac{a_{n}^{r-1}-a_{n-1}^{r-1}}{a_{n}-a_{n-1}}\right) \tag{4.23}
\end{equation*}
$$

Now if $a_{n-2}>0$, we can repeat the same argument for the pair $\left(a_{n-1}, a_{n-2}\right)$. By a slightly abuse of notation, we obtain

$$
\begin{equation*}
h^{\prime}\left(a_{n-2} a_{n-1}\right)=C\left(a_{1}, \ldots, a_{n-3}, a_{n}\right)-\frac{\lambda_{k, r, k}(n) k}{n} M_{n, r}^{k-r}\left(a_{1}, \ldots, a_{n}\right)\left(\frac{a_{n-1}^{r-1}-a_{n-2}^{r-1}}{a_{n-1}-a_{n-2}}\right) \tag{4.24}
\end{equation*}
$$

It is easy to see that (since we assume $a_{i}>0$ and $k \geq 3$ when $r=2$)

$$
\begin{equation*}
C\left(a_{1}, \ldots, a_{n-3}, a_{n}\right)>C\left(a_{1}, \ldots, a_{n-2}\right) \tag{4.25}
\end{equation*}
$$

Moreover, one checks easily that the function

$$
\begin{equation*}
(x, y) \longmapsto \frac{y^{r-1}-x^{r-1}}{y-x} \tag{4.26}
\end{equation*}
$$

is increasing with respect to each variable $x, y>0$ when $r \geq 2$. It follows that when $r \geq 2$,

$$
\begin{equation*}
h^{\prime}\left(a_{n-2} a_{n-1}\right)>h^{\prime}\left(a_{n-1} a_{n}\right)=0 \tag{4.27}
\end{equation*}
$$

which implies that by decreasing the value of $a_{n-2} a_{n-1}$ while keeping $a_{n-2}+a_{n-1}$ fixed, one is able to get a smaller value for $\lambda_{k, r, k}(n) M_{n, r}^{k}+\left(1-\lambda_{k, r, k}(n)\right) P_{n, k^{\prime}}^{k}$, contradicting the assumption that it attains its minimum at $\left(a_{1}, \ldots, a_{n}\right)$.

Hence we conclude that $\lambda_{k, r, k}(n) M_{n, r}^{k}+\left(1-\lambda_{k, r, k}(n)\right) P_{n, k}^{k}$ is minimized at (a, b, \ldots, b) with $0<a \leq b$ satisfying $a+(n-1) b=n$. In this case (4.16) holds by our assumption which completes the proof.

Now we are ready to prove a slightly generalization of Theorem 1.3.
Corollary 4.3. Inequality (4.1) holds in the cases $n \geq k \geq r=2, \alpha=k$ and $n \geq \alpha=r=k \geq 2$.
Proof. The first case is just Theorem 1.3 and by Lemma 4.2, it suffices to show that inequality (4.1) holds for the case $\mathbf{x}=(a, b, \ldots, b)$ with $0<a \leq b$ and this has been already treated in the proof of Theorem 2 in [8]. For the case $n \geq \alpha=r=k \geq 2$, by Lemma 4.2 again, we only need to check the case $\mathbf{x}=(a, b, \ldots, b)$ with $0<a \leq b$. In this case we define
$f(a, b)=\lambda_{k, k, k}(n)\left(\frac{a^{k}}{n}+\frac{(n-1) b^{k}}{n}\right)+\left(1-\lambda_{k, k, k}(n)\right)\left(\frac{n-k}{n} b^{k}+\frac{k}{n} a b^{k-1}\right)-\left(\frac{a}{n}+\frac{(n-1) b}{n}\right)^{k}$.

As in the proof of Theorem 1.2, it suffices to show that

$$
\begin{equation*}
\frac{n}{k(n-1) b^{k-1}} \frac{\partial f}{\partial b}=\lambda_{k, k, k}(n)+\left(1-\lambda_{k, k, k}(n)\right)\left(\frac{n-k}{n-1}+\frac{k-1}{n-1} \frac{a}{b}\right)-\left(\frac{a}{n b}+\frac{n-1}{n}\right)^{k-1} \geq 0 \tag{4.29}
\end{equation*}
$$

By a change of variables $a / b \rightarrow a$, we can recast inequality (4.29) as

$$
\begin{equation*}
g(a)=\lambda_{k, k, k}(n)+\left(1-\lambda_{k, k, k}(n)\right)\left(\frac{n-k}{n-1}+\frac{k-1}{n-1} a\right)-\left(\frac{n-1}{n}+\frac{a}{n}\right)^{k-1} . \tag{4.30}
\end{equation*}
$$

As $g(1)=0$ and $g(0)=0$, we conclude that $g(a) \geq 0$ for $0 \leq a \leq 1$ as $g(a)$ is a concave function for $0 \leq a \leq 1$ and this completes the proof.

We recall a result of Kuczma [10].
Theorem 4.4. For $n \geq 3,1 \leq k \leq n-1, P_{n, k} \leq M_{n, \eta(k)}$ with

$$
\begin{equation*}
\eta(k)=\frac{k(\ln n-\ln (n-1))}{\ln n-\ln (n-k)} \tag{4.31}
\end{equation*}
$$

and the result is best possible.
The above theorem combined with Corollary 4.3 immediately yields the following.

Corollary 4.5. Let $q_{i}=1 / n$ with $n \geq 1$ being an integer. Then for any integer $n-1 \geq k \geq r=2$ or $n-1 \geq k=r \geq 2$,

$$
\begin{equation*}
A_{n}^{k} \leq \lambda_{k, r, k}(n) M_{n, r}^{k}+\left(1-\lambda_{k, r, k}(n)\right) M_{n, \eta(k)}^{k} \tag{4.32}
\end{equation*}
$$

where $\lambda_{k, r, k}(n)$ is defined as in (4.2) and $\eta(k)$ is defined as in Theorem 4.4.
Next, we consider the following inequality:

$$
\begin{equation*}
P_{n, l}^{\alpha} \leq \mu_{\alpha, k, l}(n) A_{n}^{\alpha}+\left(1-\mu_{\alpha, k, l}(n)\right) P_{n, k^{\prime}}^{\alpha} \tag{4.33}
\end{equation*}
$$

where $\alpha>0, n \geq k>l \geq 2$ and

$$
\begin{equation*}
\mu_{\alpha, k, l}(n)=\frac{((n-l) / n)^{\alpha / l}-((n-k) / n)^{\alpha / k}}{((n-1) / n)^{\alpha}-((n-k) / n)^{\alpha / k}} . \tag{4.34}
\end{equation*}
$$

We note here that it is easy to check that the function

$$
\begin{equation*}
x \longmapsto\left(\frac{n-x}{n}\right)^{1 / x} \tag{4.35}
\end{equation*}
$$

is a decreasing function for $1 \leq x<n$ so that we have $0<\mu_{\alpha, k, l}(n)<1$.
As an analogue of Theorem 1.1, one can show similarly the following.
Proposition 4.6. Let $n=k>l \geq 2$; if (4.33) holds for $\alpha_{0}>0$, then it also holds for any $0<\alpha<\alpha_{0}$.
The case $n=k, \alpha=1$ of (4.33) was established in [11]. In the case of $n=k$, one possible way of establishing (4.33) is to combine Theorems 4.4 and 1.2 together. However, this is not always applicable as one checks via certain change of variables that one needs to have $1 / \eta(k) \geq 2$ in order to apply Theorem 1.2, a condition which is not always satisfied. We now proceed directly to show the following.

Theorem 4.7. Inequality (4.33) holds for $n=k>l \geq 2$ and $0<\alpha \leq n$.
Proof. In view of Proposition 4.6, it suffices to prove the theorem for the case $\alpha=n$. We write $\mu(n)=\mu_{n, n, l}(n)$ in this proof and note that since both sides of (4.33) are homogeneous functions, it suffices to show that

$$
\begin{equation*}
\max _{x \in \Delta}\left\{P_{n, l}^{n}-(1-\mu(n)) G_{n}^{n}\right\} \leq \mu(n) \tag{4.36}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i} \geq 0,1 \leq i \leq n, \sum_{i=1}^{n} x_{i}=n\right\} \tag{4.37}
\end{equation*}
$$

Assume that $P_{n, l}^{n}-(1-\mu(n)) G_{n}^{n}$ attains its maximum at some point $\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i} \geq 0$, $1 \leq i \leq n$. Consider the function

$$
\begin{equation*}
f(x, y):=P_{n, l}^{n}\left(x, y, a_{3}, \ldots, a_{n}\right)-x y(1-\mu(n)) \prod_{i=3}^{n} a_{i} \tag{4.38}
\end{equation*}
$$

on the set

$$
\begin{equation*}
\left\{(x, y): x \geq 0, y \geq 0, x+y=n-\sum_{i=3}^{n} a_{i}\right\} \tag{4.39}
\end{equation*}
$$

It is maximized at $\left(a_{1}, a_{2}\right)$. It is easy to see that f has the form

$$
\begin{equation*}
(A x y+B)^{n / l}-C x y \tag{4.40}
\end{equation*}
$$

where A, B, and C are nonnegative constants. The above function is certainly convex with respect to $x y$. As $0 \leq x y \leq(x+y)^{2} / 4$ with equality holding if and only if $x y=0$ or $x=y$, f is maximized at $x y=0$ or $x=y$. Repeating the same argument for other pairs $\left(a_{i}, a_{j}\right)$, we conclude that in order to show (4.33) for $\alpha=n=k$, it suffices to check that it holds for \mathbf{x} being of the following form $(0, \ldots, 0, a \ldots, a)$ or (a, \ldots, a) for some positive constant a. It is easy to see that (4.33) holds when \mathbf{x} is of the second form and when \mathbf{x} is of the first form, let m denote the number of a^{\prime} s in \mathbf{x}; if $m<l$, then it is easy to see that (4.33) holds. So we may now assume that $l \leq m \leq n=k$ and we need to show that

$$
\begin{equation*}
\left(\frac{\binom{m}{l}^{1 / l}}{m}\right)^{k} \leq \mu_{k, k, l}(n)\left(\frac{\binom{n}{l}^{1 / l}}{n}\right)^{k} \tag{4.41}
\end{equation*}
$$

Certainly the left-hand side above increases with m; hence one only needs to verify the above inequality for the case $m=n-1$, which becomes an identity and this completes the proof.

We note here that Alzer [12] has shown that for $n \geq 3$,

$$
\begin{equation*}
P_{n, n-1}^{n-1} \leq \frac{n}{n+1} A_{n}^{n-1}+\frac{1}{n+1} G_{n}^{n-1} \tag{4.42}
\end{equation*}
$$

The case $\alpha=l=n-1$ of Theorem 4.7 now improves the above result, namely, for $n \geq 3$,

$$
\begin{equation*}
P_{n, n-1}^{n-1} \leq \frac{n^{n-2}}{(n-1)^{n-1}} A_{n}^{n-1}+\left(1-\frac{n^{n-2}}{(n-1)^{n-1}}\right) G_{n}^{n-1} \tag{4.43}
\end{equation*}
$$

as one checks easily that for $n \geq 3$,

$$
\begin{equation*}
\frac{n^{n-2}}{(n-1)^{n-1}} \leq \frac{n}{n+1} \tag{4.44}
\end{equation*}
$$

Similar to Theorem 4.7, we have the following.
Theorem 4.8. For $1 \leq k \leq n, q_{i}=1 / n$,

$$
\begin{equation*}
P_{n, k}^{k} \leq \frac{n-k}{n-1} M_{n, k}^{k}+\frac{k-1}{n-1} G_{n}^{k} . \tag{4.45}
\end{equation*}
$$

Proof. We define

$$
\begin{equation*}
f(\mathbf{x})=\frac{n-k}{n-1} M_{n, k}^{k}+\frac{k-1}{n-1} G_{n}^{k}-P_{n, k}^{k} . \tag{4.46}
\end{equation*}
$$

We now set

$$
\begin{equation*}
\tilde{P}_{n-1, k-1}=P_{n-1, k-1}\left(x_{1}, \ldots, x_{n-1}\right), \quad \tilde{G}_{n-1}=G_{n-1}\left(x_{1}, \ldots, x_{n-1}\right), \tag{4.47}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{\partial f}{\partial x_{n}}=\frac{k}{n} \frac{n-k}{n-1} x_{n}^{k-1}+\frac{k}{n} \frac{k-1}{n-1} \frac{G_{n}^{k}}{x_{n}}-\frac{k}{n} \widetilde{P}_{n-1, k-1}^{k-1} \tag{4.48}
\end{equation*}
$$

where we have also used the following relation:

$$
\begin{equation*}
P_{n, k}^{k}=\frac{k}{n} x_{n} P_{n-1, k-1}^{k-1}\left(x_{1}, \ldots, x_{n-1}\right)+\frac{n-k}{n} P_{n-1, k}^{k}\left(x_{1}, \ldots, x_{n-1}\right) . \tag{4.49}
\end{equation*}
$$

Similar to the proof of Theorem 1.2, it suffices to show that $\partial f / \partial x_{n} \geq 0$. By a change of variables $x_{i} \rightarrow x_{i} / x_{n}$, it suffices to show that for all $0 \leq x_{i} \leq 1$,

$$
\begin{equation*}
\tilde{P}_{n-1, k-1}^{k-1} \leq \frac{n-k}{n-1}+\frac{k-1}{n-1} \tilde{G}_{n-1}^{(n-1) k / n} . \tag{4.50}
\end{equation*}
$$

As a consequence of Lemma 3.2 in [3], one checks easily that

$$
\begin{equation*}
\tilde{P}_{n-1, k-1}^{k-1} \leq \frac{n-k}{n-1}+\frac{k-1}{n-1} \widetilde{G}_{n-1}^{n-1} . \tag{4.51}
\end{equation*}
$$

The above inequality then implies (4.50) and we then conclude that $\partial f / \partial x_{n} \geq 0$ which completes the proof.

We remark here that once again one may hope to establish the above theorem by combining Theorems 4.4 and 1.2 together. However, (1.6) is not applicable in this case since one checks readily that $k / \eta(k) \leq n$ is not satisfied in general.

We now want to establish some inequalities involving the symmetric means in the forms similar to (1.4). Before we state our result, let us first recall that for two real finite
decreasing sequences $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, \mathbf{x} is said to be majorized by \mathbf{y} (which we denote by $\mathbf{x} \leq \leq_{\operatorname{maj}} \mathbf{y}$) if

$$
\begin{gather*}
x_{1}+x_{2}+\cdots+x_{j} \leq y_{1}+y_{2}+\cdots+y_{j} \quad(1 \leq j \leq n-1) \\
x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}+\cdots+y_{n} \tag{4.52}
\end{gather*}
$$

For a fixed positive sequence $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and a nonnegative sequence $\boldsymbol{\alpha}=$ $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, we define

$$
\begin{equation*}
F(\boldsymbol{\alpha})=\frac{1}{n!} \sum_{\sigma} x_{\sigma(1)}^{\alpha_{1}} x_{\sigma(2)}^{\alpha_{2}} \cdots x_{\sigma(n)^{\prime}}^{\alpha_{n}} \tag{4.53}
\end{equation*}
$$

where the sum is over all the permutations of \mathbf{x}. A well-known result of Muirhead states the follwing.

Theorem 4.9 (see [13, Theorem 45]). Let $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha}^{\prime}$ be two nonnegative decreasing sequences. Then $F(\boldsymbol{\alpha}) \leq F\left(\boldsymbol{\alpha}^{\prime}\right)$ for any positive sequence if and only if $\boldsymbol{\alpha} \leq_{m a j} \boldsymbol{\alpha}^{\prime}$.

We now use the above result to show the following.
Theorem 4.10. For $1 \leq k \leq n, q_{i}=1 / n$,

$$
\begin{equation*}
A_{n}^{k} \geq \frac{1}{n^{k-1}} M_{n, k}^{k}+\left(1-\frac{1}{n^{k-1}}\right) P_{n, k}^{k} \tag{4.54}
\end{equation*}
$$

Proof. On expanding A_{n}^{k} out, we can write it as

$$
\begin{equation*}
A_{n}^{k} \geq \frac{1}{n^{k-1}} M_{n, k}^{k}+\text { linear combinations of various terms of the form } F(\alpha) \tag{4.55}
\end{equation*}
$$

where $F(\alpha)$ is defined as in (4.53) with $\alpha_{i} \geq 1, \sum_{i=1}^{n} \alpha_{i}=n$. It is then easy to see via Theorem 4.9 that for any such α appearing in (4.55), we have $P_{n, k}^{k} \leq F(\alpha)$. Hence one deduces that

$$
\begin{equation*}
A_{n}^{k} \geq \frac{1}{n^{k-1}} M_{n, k}^{k}+c P_{n, k}^{k} \tag{4.56}
\end{equation*}
$$

for some constant c, which can be easily identified to be $1-1 / n^{k-1}$ by taking $\mathbf{x}=(1, \ldots, 1)$ and noticing that we get identities in all the steps above.

Our next result gives a generalization of the above one and we shall need the following two lemmas in our next proof.

Lemma 4.11 (Hadamard's inequality). Let $f(x)$ be a convex function on $[a, b]$, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{4.57}
\end{equation*}
$$

The next lemma is similar to that in [10].
Lemma 4.12. Let $A, B, C, D>0$ be arbitrary constants and let $k \geq r=2$ or $k \geq r \geq 3$. The maximum value of $f(x, y)=A\left(x^{r}+y^{r}+B\right)^{k / r}+C x y$ on the set $\{(x, y): x \geq 0, y \geq 0, x+y=2 D\}$ is attained either when $x=y$ or when $x y=0$.

Proof. We set $z=x y$ and note that $0 \leq z \leq D^{2}$ with equality holding if and only if $x=y$ or $x y=0$. Moreover,

$$
\begin{equation*}
x, y=D \pm \sqrt{D^{2}-z} \tag{4.58}
\end{equation*}
$$

This allows us to rewrite $f(x, y)=A g(z)+C Z$ where

$$
\begin{equation*}
g(z)=\left(\left(D+\sqrt{D^{2}-z}\right)^{r}+\left(D-\sqrt{D^{2}-z}\right)^{r}+B\right)^{k / r} \tag{4.59}
\end{equation*}
$$

It suffices to show that $g(z)$ is convex for $0 \leq z \leq D^{2}$. Note that $2 g^{\prime}(z)=k \cdot h\left(\sqrt{D^{2}-z}\right)$ where $h(w)=p(w) q(w)$ with

$$
\begin{equation*}
p(w)=\left((D+w)^{r}+(D-w)^{r}+B\right)^{k / r-1}, \quad q(w)=\left((D-w)^{r-1}-(D+w)^{r-1}\right) w^{-1} \tag{4.60}
\end{equation*}
$$

As the derivative of $\sqrt{D^{2}-z}$ is negative for $0 \leq z<D^{2}$, it suffices to show $h^{\prime}(w) \leq 0$ for $0<w<D$. Note that $p(w) \geq 0, q(w) \leq 0$ and it is easy to check that $p^{\prime}(w) \geq 0$ for $0<w<D$. Hence it suffices to show that $q^{\prime}(w) \leq 0$ for $0<w<D$. Calculation shows that

$$
\begin{align*}
w^{2} q^{\prime}(w) & =-(r-1)\left((D+w)^{r-2}+(D-w)^{r-2}\right) w-(D-w)^{r-1}+(D+w)^{r-1} \\
& =(r-1)\left(\int_{D-w}^{D+w} u^{r-2} d u-w\left((D+w)^{r-2}+(D-w)^{r-2}\right)\right) \leq 0 \tag{4.61}
\end{align*}
$$

by Lemma 4.11. This completes the proof.
Now we are ready to prove the following.
Theorem 4.13. Let $q_{i}=1 / n$ and let r be a real number, $r=2$ or $r \geq 3$. Then for integers n, k, $n \geq k \geq r$,

$$
\begin{equation*}
A_{n}^{k} \geq \frac{1}{n^{k-k / r}} M_{n, r}^{k}+\left(1-\frac{1}{n^{k-k / r}}\right) P_{n, k}^{k} \tag{4.62}
\end{equation*}
$$

Proof. Since both sides of (4.62) are homogeneous functions, it suffices to show that

$$
\begin{equation*}
\max _{\mathrm{x} \in \Delta}\left\{\frac{1}{n^{k-k / r}} M_{n, r}^{k}+\left(1-\frac{1}{n^{k-k / r}}\right) P_{n, k}^{k}\right\} \leq 1 \tag{4.63}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i} \geq 0,1 \leq i \leq n, \sum_{i=1}^{n} x_{i}=n\right\} \tag{4.64}
\end{equation*}
$$

Assume that $\left(1 / n^{k-k / r}\right) M_{n, r}^{k}+\left(1-1 / n^{k-k / r}\right) P_{n, k}^{k}$ attains its maximum at some point $\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i} \geq 0,1 \leq i \leq n$. Consider the function

$$
\begin{equation*}
f(x, y):=\frac{1}{n^{k-k / r}} M_{n, r}^{k}\left(x, y, a_{3}, \ldots, a_{n}\right)+\left(1-\frac{1}{n^{k-k / r}}\right) P_{n, k}^{k}\left(x, y, a_{3}, \ldots, a_{n}\right) \tag{4.65}
\end{equation*}
$$

on the set

$$
\begin{equation*}
\left\{(x, y): x \geq 0, y \geq 0, x+y=n-\sum_{i=3}^{n} a_{i}\right\} \tag{4.66}
\end{equation*}
$$

It is maximized at $\left(a_{1}, a_{2}\right)$. Clearly, f has the form

$$
\begin{equation*}
A\left(x^{r}+y^{r}+B\right)^{k / r}+C x y+(\text { constant }) \tag{4.67}
\end{equation*}
$$

where A, B, and C are nonnegative constants. By Lemma 4.12, f attains its maximum value at either $x=0$ or $y=0$ or $x=y$. Repeating the same argument for other pairs $\left(a_{i}, a_{j}\right)$, we conclude that in order to show (4.62), it suffices to check that it holds for \mathbf{x} being of the following form $(0, \ldots, 0, a \ldots, a)$ or (a, \ldots, a) for some positive constant a. It is easy to see that (4.62) holds when \mathbf{x} is of the second form and when \mathbf{x} is of the first form, let m denote the number of a^{\prime} s in \mathbf{x}; if $m<k$, then it is easy to see that (4.62) holds. So we may now assume that $k \leq m \leq n$ and we need to show that

$$
\begin{equation*}
\left(\frac{m}{n}\right)^{k} \geq \frac{1}{n^{k-k / r}}\left(\frac{m}{n}\right)^{k / r}+\left(1-\frac{1}{n^{k-k / r}}\right) \frac{\binom{m}{k}}{\binom{n}{k}} \tag{4.68}
\end{equation*}
$$

Equivalently, we need to show

$$
\begin{equation*}
\frac{1}{n^{k}} \geq \frac{1}{n^{k}} m^{k / r-k}+\left(1-\frac{1}{n^{k-k / r}}\right) \frac{\binom{m}{k} m^{-k}}{\binom{n}{k}} \tag{4.69}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\binom{m}{k} m^{-k}=\frac{1}{k!} \prod_{i=1}^{k-1}\left(1-\frac{i}{m}\right) \tag{4.70}
\end{equation*}
$$

If we define for $1 / n \leq u \leq 1 /(k-1)$,

$$
\begin{equation*}
g(u)=\frac{1}{n^{k}} u^{k-k / r}+\left(1-\frac{1}{n^{k-k / r}}\right) \frac{1}{\binom{n}{k}} \frac{1}{k!} \prod_{i=1}^{k-1}(1-i u) \tag{4.71}
\end{equation*}
$$

then it is easy to check that $g^{\prime \prime}(u) \geq 0$ for $r \geq k /(k-1)$. Further note that

$$
\begin{equation*}
g\left(\frac{1}{n}\right)=\frac{1}{n^{k}}, \quad g\left(\frac{1}{k-1}\right)=\frac{1}{n^{k}}\left(\frac{1}{k-1}\right)^{k-k / r} \leq \frac{1}{n^{k}} \tag{4.72}
\end{equation*}
$$

This implies that $g(u) \leq 1 / n^{k}$ for $1 / n \leq u \leq 1 /(k-1)$, and hence it follows that (4.69) holds for $k \leq m \leq n$ and this completes the proof.

Acknowledgments

This work was partially carried out while the author was visiting the Centre de Recherches Mathématiques at the Université de Montréal in spring 2006. The author would like to thank the Centre de Recherches Mathématiques at the Université de Montréal for its generous support and hospitality.

References

[1] P. Gao, "On an inequality of Diananda," International Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 32, pp. 2061-2068, 2003.
[2] P. Gao, "On an inequality of Diananda. II," International Journal of Mathematics and Mathematical Sciences, vol. 2005, no. 9, pp. 1381-1386, 2005.
[3] P. Gao, "On an inequality of Diananda. III," International Journal of Mathematics and Mathematical Sciences, vol. 2006, Article ID 46382, 14 pages, 2006.
[4] P. H. Diananda, "On some inequalities of H. Kober," Proceedings of the Cambridge Philosophical Society, vol. 59, pp. 341-346, 1963.
[5] P. H. Diananda, ""On some inequalities of H. Kober": addendum," Proceedings of the Cambridge Philosophical Society, vol. 59, pp. 837-839, 1963.
[6] P. S. Bullen, D. S. Mitrinović, and P. M. Vasić, Means and Their Inequalities, vol. 31 of Mathematics and Its Applications, D. Reidel, Dordrecht, The Netherlands, 1988.
[7] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, vol. 61 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.
[8] Z. Luo, L. Lai, and J. J. Wen, "The dimension-descending computation method of global optimizations for symmetric functions," Journal of Chengdu University. Natural Sciences, vol. 21, no. 1, pp. 5-11, 2002 (Chinese).
[9] B. Mesihović, "On an inequality involving symmetric functions," Univerzitet u Beogradu. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika, vol. 320-328, pp. 43-46, 1970.
[10] M. E. Kuczma, "Symmetric means versus power means," Nieuw Archief voor Wiskunde. Vierde Serie, vol. 10, no. 1-2, pp. 27-31, 1992.
[11] J.-J. Wen and H.-N. Shi, "Optimizing sharpening for Maclaurin's inequalities," Journal of Chengdu University. Natural Sciences, vol. 19, pp. 1-8, 2000 (Chinese).
[12] H. Alzer, "A refinement of Sierpiński's inequalities," Acta Mathematica Universitatis Comenianae, vol. 58-59, pp. 175-180, 1990.
[13] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, Cambridge, UK, 1952.

