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1. Introduction and Formulations

In the resent years, the vector equilibrium problems have been studied in [1–7] and the
references therein which is a unified model of several problems, for instance, vector varia-
tional inequality, vector variational-like inequality, vector complementarity problems, vector
optimization problems. A comprehensive bibliography on vector equilibrium problems,
vector variational inequalities, vector variational-like inequalities and their generalizations
can be found in a recent volume [1]. Ansari and Yao [8] and Chiang et al. [9] introduced and
studied some vector quasi-equilibrium problems which generalized those quasi-equilibrium
problems in [10–17] to the case of vector-valued function. Very recently, the system of vector
equilibrium problems was introduced by Ansari et al. [18] with applications in Nash-type
equilibrium problem for vector-valued functions. The system of vector quasi-equilibrium
problems was introduced by Ansari et al. [19]with applications in Debreu-type equilibrium
problem for vector-valued functions. As a generalization of the above models, we introduce a
new system of generalized vector quasi-equilibrium problems, that is, a family of generalized
quasi-equilibrium problems for vector-valued maps defined on a product set.
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Throughout this paper, for a set A in a topological space, we denote by coA, intA,
coA the convex hull, interior, and the convex closure of A, respectively.

Let I be an index set. For each i ∈ I, let Zi, Ei and let Fi be topological vector spaces.
Consider two family of nonempty convex subsets {Xi}i∈I withXi ⊆ Ei and {Yi}i∈I with Yi ⊆ Fi.
Let

E =
∏

i∈I
Ei, X =

∏

i∈I
Xi, F =

∏

i∈I
Fi, Y =

∏

i∈I
Yi. (1.1)

An element of the set Xi =
∏

j∈I\iXi will be denoted by xi, therefore, x ∈ X will be written as
x = (xi, xi) ∈ Xi×Xi. Similarly, an element of the set Y will be denoted by y = (yi, yi) ∈ Y i×Yi.
For each i ∈ I, let Ci : X → 2Zi , Di : X × Y → 2Xi and Ti : X × Y → 2Yi be set-valued maps
with nonempty values, and let fi : X × Y × Xi → Zi be a the vector-valued function. Then
the system of generalized vector quasi-equilibrium problems (in Short, SGVQEP) is to find
(x, y) = (xi, xi, y

i, yi) in X × Y such that for each i ∈ I,

xi ∈ Di

(
x, y

)
, yi ∈ Ti

(
x, y

)
: fi

(
x, y, zi

)
/∈ − intCi(x), ∀zi ∈ Di

(
x, y

)
. (1.2)

Here are some special cases of the (SGVQEP).
(i) For each i ∈ I, let φi : X × Y → Zi be a vector-valued function. We define a

trifunction fi : X × Y ×Xi → Zi as fi(x, y, ui) = φi(xi, y, ui) − φi(x, y), ∀(x, y, ui) ∈ X × Y ×Xi.
Then the (SGVQEP) reduces to the generalized Debreu-type equilibrium problem for vector-
valued functions (in short, G-Debreu VEP), which is to find (x, y) = (xi, xi, y

i, yi) in X × Y
such that for each i ∈ I,

xi ∈ Di

(
x, y

)
, yi ∈ Ti

(
x, y

)
: φi

(
xi, y, zi

)
− φi

(
x, y

)
/∈ − intCi(x), ∀zi ∈ Di

(
x, y

)
. (1.3)

(ii) We denote by R and R+ the set of real numbers and the set of real nonnegative
numbers, respectively. For each i ∈ I, if Zi = R, and Ci(x) = R+ for all x ∈ X, then
the (SGVQEP) reduces to the system of generalized quasi-equilibrium problems (in short,
SGQEP), which is to find (x, y) = (xi, xi, y

i, yi) in X × Y such that for each i ∈ I,

xi ∈ Di

(
x, y

)
, yi ∈ Ti

(
x, y

)
: fi

(
x, y, zi

) ≥ 0, ∀zi ∈ Di

(
x, y

)
. (1.4)

And the G-Debreu VEP reduces to the generalized Debreu-type equilibrium problem
for scalar-valued functions (in short, G-Debreu EP), which is to find (x, y) = (xi, xi, y

i, yi) in
X × Y such that for each i ∈ I,

xi ∈ Di

(
x, y

)
, yi ∈ Ti

(
x, y

)
: φi

(
xi, y, zi

)
≥ φi

(
x, y

)
, ∀zi ∈ Di

(
x, y

)
. (1.5)

(iii) Let Y = {y}. For each i ∈ I, let Di(x, y) = Ai(x), Ti(x, y) = {yi} for all x ∈ X,
where Ai : X → 2Xi is a set-valued map. We define a function ϕi : X × Xi → Zi

and a function hi : X × Y → Zi as ϕi(x, zi) = fi(x, y, zi), for all (x, zi) ∈ X × Xi, and
hi(x) = φi(x, y), for all x ∈ X, then (SGVQEP) and (G-Debreu VEP), respectively, reduce to
the system of vector quasi-equilibrium problems and the (Debreu VEP) introduced by Ansari
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et al. [19]which contain those mathematical in [18, 20] as special cases. The (SGQEP) reduces
to the mathematical models in [21, page 286] and [22, pages 152-153] and the (G-Debreu EP)
reduces to the abstract economy in [23, page 345] which contains the noncooperative game
in [24] as a special case.

(iv) If the index set I is singleton, D(x, y) = Di(x), T(x, y) = T(x), and C(x) = C, then
the (SGVQEP) becomes the implicit vector variational inequality in [9] and the (SGQEP)
reduces to the quasi-equilibrium problem investigated in [14–17].

The rest of this paper is arranged in the following manner. The following section deals
with some preliminary definitions, notations and results which will be used in the sequel. In
Section 3, we establish existence results for a solution to the (SGVQEP) and the (SGQEP)with
or without involving Φ-condensing maps by using similar techniques in [19]. In Section 4, as
applications of the results of Section 3, we derive some existence results of a solution for the
(G-Debreu VEP) and the the (G-Debreu EP).

2. Preliminaries

In order to prove the main results, we need the following definitions.

Definition 2.1 ([19, 25]). Let M be a nonempty convex subset of a topological vector space E
and Z a real topological space with a closed and convex cone P with apex at the origin. A
vector-valued function ϕ : M → Z is called

(i) P -quasifunction if and only if, for all z ∈ Z, the set {x ∈ M : ϕ(x) ∈ z−P} is convex,
(ii) natural P -quasifunction if and only if, ∀x, y ∈ M, and λ ∈ [0, 1], ϕ(λx + (1 − λ)y) ∈

co{ϕ(x), ϕ(y)} − P .

Definition 2.2 ([13]). LetX and Y be two topological spaces. T : X → 2Y be a set-valued map.
Then T is said to be upper semicontinuous if the set {x ∈ X : T(x) ⊆ V } is open inX for every
open subset V of Y . Also T is said to be lower semicontinuous if the set {x ∈ X : T(x) ∩ V }
is open in X for every open subset V of Y · T is said to have open lower sections if the set
T−1(y) = {x ∈ X : y ∈ T(x)} is open in X for each y ∈ Y .

Definition 2.3 ([26]). Let E be a Hausdorff topological space and L a lattice with least element,
denoted by 0. AmapΦ : 2E → L is a measure of noncompactness provided that the following
conditions hold ∀M,N ∈ 2E:

(i) Φ(M) = 0 iff M is precompact ( i.e., it is relatively compact),

(ii) Φ(coM) = Φ(M),

(iii) Φ(M ∪N) =max{Φ(M),Φ(N)}.

Definition 2.4 ([26]). Let Φ : 2E → L be a measure of noncompactness on E and X ⊆ E. A
set-valued map T : X → 2E is called Φ-condensing provided that, ifM ⊆ X with Φ(T(M)) ≥
Φ(M), thenM is relatively compact.

Remark 2.5. Note that every set-valuedmap defined on a compact set isΦ-condensing for any
measure of noncompactness Φ. If E is locally convex and T : X → 2E is a compact set-valued
map (i.e., T(X) is precompact), then T is Φ-condensing for any measure of noncompactness
Φ. It is clear that if T : X → 2E is Φ-condensing and T ∗ : X → 2E satisfies T ∗(x) ⊆ T(x) ∀x ∈
X, then T ∗ is also Φ-condensing.
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We will use the following particular forms of two maximal element theorems for a
family of set-valued maps due to Deguire et al. [27, Theorem 7] and Chebbi and Florenzano
[28, Corollary 4].

Lemma 2.6 ([19, 27]). Let {Xi}i∈I be a family of nonempty convex subsets where eachXi is contained
in a Hausdorff topological vector space Ei, For each i ∈ I, let Si : X → 2Xi be a set-valued map such
that

(i) for each i ∈ I, Si(x) is convex,

(ii) for each x ∈ X, xi /∈Si(x),

(iii) for each yi ∈ Xi, Si
−1(yi) is open in X.

(iv) there exist a nonempty compact subset N of X and a nonempty compact convex subset Bi

of Xi for each i ∈ I such that for each x ∈ X \N there exists i ∈ I satisfying Si(x)∩Bi /= ∅.
Then there exists x ∈ X such that Si(x) = ∅ for all i ∈ I.

Lemma 2.7 ([19, 28]). Let I be any index set and {Xi}i∈I be a family of nonempty, closed and convex
subsets where each Xi is contained in a locally convex Hausdorff topological vector space Ei. For each
i ∈ I, let Si : X → 2Xi be a set-valued map. Assume that the set-valued map S : X → 2X defined as
S(x) =

∏
i∈ISi(x), ∀x ∈ X, isΦ-condensing and the conditions (i), (ii), (iii) of Lemma 2.6 hold. Then

there exists x ∈ X such that Si(x) = ∅ for all i ∈ I.

3. Existence Results

An existence result of a solution for the system of generalized vector quasi-equilibrium
problems with or without Φ-condensing maps are will shown in this section.

Theorem 3.1. Let I be any index set. For each i ∈ I, let Zi be a topological vector space, let Ei and Fi

be two Hausdorff topological vector spaces, let Xi ⊆ Ei and Yi ⊆ Fi be nonempty and convex subsets,
let Di : X × Y → 2Xi and Ti : X × Y → 2Yi be set-valued maps with nonempty convex values and
open lower sections, and the set Wi = {(x, y) ∈ X × Y : xi ∈ Di(x, y) and yi ∈ Ti(x, y)} be closed
in X × Y and let fi : X × Y ×Xi → Zi be a vector-valued function. For each i ∈ I, let Ci : X → 2Zi

be a set-valued map such that Ci(x) be a proper closed and convex cone with apex at the origin and
intCi(x)/= ∅ for all x ∈ X and Pi = ∩x∈XCi(x). Assume that

(i) for all x = (xi, xi) ∈ X, for all y ∈ Y , fi(x, y, xi)/∈ − intCi(x);

(ii) for each (x, y) ∈ X × Y , zi �→ fi(x, y, zi) is natural Pi-quasifunction;

(iii) for all zi ∈ Xi, the set {(x, y) ∈ X × Y : fi(x, y, zi)/∈ − intCi(x)} is closed in X × Y ;

(iv) there exist nonempty and compact subsets N ⊆ X and K ⊆ Y and nonempty, compact
and convex subsets Bi ⊆ Xi, Ai ⊆ Yi for each i ∈ I such that ∀(x, y) = (xi, xi, y) ∈
X × Y \N ×K ∃i ∈ I and ∃ui ∈ Bi, vi ∈ Ai satisfying ui ∈ Di(x, y), vi ∈ Ti(x, y) and
fi(x, y, ui) ∈ − intCi(x).

Then, there exists (x, y) = (xi, xi, y
i, yi) in X × Y such that for each i ∈ I,

xi ∈ Di

(
x, y

)
, yi ∈ Ti

(
x, y

)
: fi

(
x, y, zi

)
/∈ − intCi(x), ∀zi ∈ Di

(
x, y

)
. (3.1)

That is, the solution set of the (SGVQEP) is nonempty.
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Proof. For each i ∈ I, let us define a set-valued map Qi : X × Y → 2Xi by

Qi

(
x, y

)
=
{
zi ∈ Xi : fi

(
x, y, zi

) ∈ − intCi(x)
}
, ∀(x, y) ∈ X × Y. (3.2)

Then, ∀i ∈ I and ∀(x, y) ∈ X × Y , Qi(x, y) is a convex set.
To prove it, let us fix arbitrary i ∈ I and (x, y) ∈ X × Y . Let zi1, zi2 ∈ Qi(x, y) and

λ ∈ [0, 1], then we have

fi
(
x, y, zij

)
∈ − intCi(x), for j = 1, 2. (3.3)

Since fi(x, y, ·) is natural Pi-quasifunction, ∃μ ∈ [0, 1] such that

fi
(
x, y, λzi1 + (1 − λ)zi2

) ∈ μfi
(
x, y, zi1

)
+
(
1 − μ

)
fi
(
x, y, zi2

) − Pi. (3.4)

From (3.3) and (3.4), we get

fi
(
x, y, λzi1 + (1 − λ)zi2

) ∈ − intCi(x) − intCi(x) − Pi ⊆ − intCi(x). (3.5)

Hence λzi1 + (1 − λ)zi2 ∈ Qi(x, y) and, therefore, Qi(x, y) is convex.
It follows from condition (i) that, for each i ∈ I and for all (x, y) = (xi, xi, y) ∈ X × Y ,

xi /∈Qi

(
x, y

)
. (3.6)

It follows from condition (iii) that for each i ∈ I and each zi ∈ Xi, the set

Qi
−1(zi) =

{(
x, y

) ∈ X × Y : fi
(
x, y, zi

) ∈ − intCi(x)
}

(3.7)

is open in Xi. That is, Qi has open lower sections on X × Y . For each i ∈ I, we also define
another set-valued map Si : X × Y → 2Xi×Yi by

Si

(
x, y

)
=

⎧
⎨

⎩

[
Di

(
x, y

) ∩Qi

(
x, y

)] × Ti
(
x, y

)
, if

(
x, y

) ∈ Wi,

Di

(
x, y

) × Ti
(
x, y

)
, if

(
x, y

)
/∈Wi.

(3.8)

Then, it is clear that ∀i ∈ I and ∀(x, y) ∈ X × Y , Si(x, y) is convex, and (xi, yi)/∈Si(x, y). Since
∀i ∈ I and ∀(ui, vi) ∈ Xi × Yi,

Si
−1(ui, vi) =

[
Q−1

i (ui) ∩
(
Di

−1(ui)
)
∩
(
Ti

−1(vi)
)]

∪
[
(X × Y \Wi) ∩

(
Di

−1(ui)
)
∩
(
Ti

−1(vi)
)]

,

(3.9)

andDi
−1(ui), Ti−1(vi),Qi

−1(ui), and X × Y \Wi are open in X × Y , we have Si
−1(ui, vi) is open

in X × Y .
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From condition (iv), there exist a nonempty and compact subset N × K ⊆ X × Y and
a nonempty, compact, and convex subset Bi × Ai ⊆ Xi × Yi for each i ∈ I such that ∀(x, y) =
(xi, xi, y) ∈ X × Y \N × K ∃i ∈ I and ∃(ui, vi) ∈ Si(x, y) ∩ (Bi × Ai). Hence, by Lemma 2.6,
∃(x, y) ∈ X × Y such that Si(x, y) = ∅, ∀i ∈ I. Since ∀i ∈ I and ∀(x, y) ∈ X × X, Di(x, y) and
Ti(x, y) are nonempty, we have (x, y) ∈ Wi and Di(x, y) ∩ Qi(x, y) = ∅, ∀i ∈ I. This implies
(x, y) ∈ Wi and Di(x, y) ∩Qi(x, y) = ∅, ∀i ∈ I. Therefore, ∀i ∈ I,

xi ∈ Di

(
x, y

)
, yi ∈ Ti

(
x, y

)
, fi

(
x, y, zi

)
/∈ − intCi(x), ∀zi ∈ Di

(
x, y

)
. (3.10)

That is, the solution set of the (SGVQEP) is nonempty.

Remark 3.2. (1) The condition (iii) of Theorem 3.1 is satisfied if the following conditions hold
∀i ∈ I:

(a) Ci : X → 2Zi is a set-valued map such that intCi(x)/= ∅ for each x ∈ X and the
set-valued map Mi = Zi \ (− intCi) : X → 2Zi is upper semicontinuous;

(b) for all zi ∈ Xi, the map (x, y) �→ fi(x, y, zi) is continuous on X × Y ;

(2) If ∀i ∈ I, and ∀x ∈ X, Ci(x) = Ci, a (fixed) proper, closed and convex cone in Zi,
then the condition (ii) and (iii) of Theorem 3.1 can be replaced, respectively, by the following
conditions:

(c) ∀i ∈ I, the vector-valued function ∀(x, y) ∈ X × Y , zi �→ fi(x, y, zi) is Ci-
quasifunction;

(d) ∀i ∈ I, ∀zi ∈ Xi, the map (x, y) �→ fi(x, y, zi) is Ci-upper semicontinuous on X × Y ;

(3) Theorem 3.1 extends and generalizes in [19, Theorem 2], [20, Theorem 2.1] and
[18, Theorem 2.1] in several ways.

(4) If ∀i ∈ I, Xi is a nonempty, compact and convex subset of a Hausdorff topological
vector space Ei, then the conclusion of Theorem 3.1 holds without condition (iv).

Theorem 3.3. Let I be any index set. For each i ∈ I, letZi be a topological vector space, letEi and Fi be
two locally convex Hausdorff topological vector spaces, letXi ⊆ Ei and Yi ⊆ Fi be nonempty, closed and
convex subsets, letDi : X×Y → 2Xi and Ti : X×Y → 2Yi be set-valued maps with nonempty convex
values and open lower sections, the set Wi = {(x, y) ∈ X × Y : xi ∈ Di(x, y) and yi ∈ Ti(x, y)}
be closed in X × Y and fi : X × Y × Xi → Zi be a vector-valued function. For each i ∈ I, let
Ci : X → 2Zi be a set-valued map such that Ci(x) be a proper closed and convex cone with apex
at the origin and intCi(x)/= ∅ for all x ∈ X and Pi = ∩x∈XCi(x). Assume that the set-valued map
D×T = (

∏
i∈IDi×

∏
i∈ITi) : X×Y → 2X×Y defined as (D×T)(x, y) = ∏

i∈IDi(x, y)×
∏

i∈ITi(x, y),
∀(x, y) ∈ X × Y , is Φ-condensing and for each i ∈ I, the conditions (i), (ii) and (iii) of Theorem 3.1
hold. Then the solution set of the (SGVQEP) is nonempty.

Proof. In view of Lemma 2.7 and the proof of Theorem 3.1, it is sufficient to show that the
set-valued map S : X × Y → 2X×Y defined as S(x, y) =

∏
i∈ISi(x, y), for all (x, y) ∈ X × Y ,

is Φ-condensing, where Si’s are the same as in the proof of Theorem 3.1. By the definition
of Si, Si(x, y) ⊆ Di(x, y) × Ti(x, y) for all (x, y) ∈ X × Y and for each i ∈ I, and therefore
S(x, y) ⊆ D(x, y) × T(x, y) for all (x, y) ∈ X × Y . SinceD × T is Φ-condensing, by Remark 2.5,
we have S is also Φ-condensing.
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By Theorem 3.1 and Remark 3.2, we can easily get the following result.

Corollary 3.4. Let I be any index set. For each i ∈ I, let Ei and Fi be two Hausdorff topological
vector spaces, let Xi ⊆ Ei and Yi ⊆ Fi be nonempty and convex subsets, let Di : X × Y → 2Xi and
Ti : X×Y → 2Yi be set-valued maps with nonempty convex values and open lower sections, let the set
Wi = {(x, y) ∈ X×Y : xi ∈ Di(x, y) and yi ∈ Ti(x, y)} be closed inX×Y, and fi : X×Y ×Xi → R
be a function. Assume that

(i) for all x = (xi, xi) ∈ X, for all y ∈ Y , fi(x, y, xi) ≥ 0;

(ii) for each (x, y) ∈ X × Y , zi �→ fi(x, y, zi) is quasiconvex;

(iii) for all zi ∈ Xi, the set {(x, y) ∈ X × Y : fi(x, y, zi) ≥ 0} is closed in X × Y ;

(iv) there exist nonempty and compact subsets N ⊆ X and K ⊆ Y and nonempty, compact
and convex subsets Bi ⊆ Xi, Ai ⊆ Yi for each i ∈ I such that ∀(x, y) = (xi, xi, y) ∈
X × Y \N ×K ∃i ∈ I and ∃ui ∈ Bi, vi ∈ Ai satisfying ui ∈ Di(x, y), vi ∈ Ti(x, y) and
fi(x, y, ui) < 0.

Then, there exists (x, y) = (xi, xi, y
i, yi) in X × Y such that for each i ∈ I,

xi ∈ Di

(
x, y

)
, yi ∈ Ti

(
x, y

)
: fi

(
x, y, zi

) ≥ 0, ∀zi ∈ Di

(
x, y

)
. (3.11)

That is, the solution set of the (SGQEP) is nonempty.

By Theorem 3.3, we can easily get the following result.

Corollary 3.5. Let I be any index set. For each i ∈ I, let Zi be a topological vector space, let Ei and Fi

be two locally convex Hausdorff topological vector spaces, let Xi ⊆ Ei and Yi ⊆ Fi be nonempty, closed
and convex subsets, let Di : X × Y → 2Xi and Ti : X × Y → 2Yi be set-valued maps with nonempty
convex values and open lower sections, the set Wi = {(x, y) ∈ X × Y : xi ∈ Di(x, y) and yi ∈
Ti(x, y)} be closed in X × Y and fi : X × Y ×Xi → R be a function. Assume that the set-valued map
D×T = (

∏
i∈IDi×

∏
i∈ITi) : X×Y → 2X×Y defined as (D×T)(x, y) = ∏

i∈IDi(x, y)×
∏

i∈ITi(x, y),
∀(x, y) ∈ X × Y , is Φ-condensing and for each i ∈ I, the conditions (i), (ii) and (iii) of Corollary 3.4
hold. Then the solution set of the (SGQEP) is nonempty.

Remark 3.6. Theorem 3.3 is a generalization of [19, Theorem 3]. Corollaries 3.4 and 3.5 extend
and generalize the main results in [10–17].

4. Applications

In this section, we present some existence of a solution for the (G-Debreu VEP) and the (G-
Debreu EP).

Theorem 4.1. Let I be any index set. For each i ∈ I, let Zi be a topological vector space, let Ei and Fi

be two Hausdorff topological vector spaces, let Xi ⊆ Ei and Yi ⊆ Fi be nonempty and convex subsets,
let Ci : X → 2Zi be a set-valued map such that Ci(x) is a proper, closed and convex cone with
apex at the origin and intCi(x)/= ∅ for each x ∈ X and Pi = ∩x∈XCi(x), Di : X × Y → 2Xi and
Ti : X × Y → 2Yi be set-valued maps with nonempty convex values and open lower sections, the set
Wi = {(x, y) ∈ X × Y : xi ∈ Di(x, y) and yi ∈ Ti(x, y)} be closed in X × Y and φi be a bifunction
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from X × Y into Zi. For each i ∈ I, assume that

(i) Mi = Zi \ (− intCi) : X → 2Zi is upper semicontinuous;

(ii) For all xi ∈ Xi and y ∈ Y , zi �→ φi(xi, y, zi) is natural Pi-quasifunction, where Pi =
∩x∈XCi(x);

(iii) φi is continuous on X × Y ;

(iv) there exist nonempty and compact subsets N ⊆ X and K ⊆ Y and nonempty, compact
and convex subsets Bi ⊆ Xi, Ai ⊆ Yi for each i ∈ I such that ∀(x, y) = (xi, xi, y) ∈
X × Y \N ×K ∃i ∈ I and ∃ui ∈ Bi, vi ∈ Ai satisfying ui ∈ Di(x, y), vi ∈ Ti(x, y) and
φi(xi, y, ui) − φi(x, y) ∈ − intCi(x).

Then, there exists (x, y) = (xi, xi, y
i, yi) in X × Y such that for each i ∈ I,

xi ∈ Di

(
x, y

)
, yi ∈ Ti

(
x, y

)
: φi

(
xi, y, zi

)
− φi

(
x, y

)
/∈ − intCi(x), ∀zi ∈ Di

(
x, y

)
.

(4.1)

That is, the solution set of the (G-Debreu VEP) is nonempty.

Proof. For each i ∈ I, we define a trifunction fi : X × Y ×Xi as

fi
(
x, y, ui

)
= φi

(
xi, y, ui

)
− φi

(
x, y

)
, ∀(x, y, ui

) ∈ X × Y ×Xi. (4.2)

Since φi(xi, y, ·) is natural Pi quasi-function, by [19, Remark 2], for all ui1 , ui2 ∈ Xi and for all
λ ∈ [0, 1], ∃α ∈ [0, 1] such that

φi

(
xi, y, λui1 + (1 − λ)ui2

)
∈ αφi

(
xi, y, ui1

)
+ (1 − α)φi

(
xi, y, ui2

)
− Pi, (4.3)

Hence

fi
(
x, y, λui1 + (1 − λ)ui2

) ∈ αfi
(
x, y, ui1

)
+ (1 − α)fi

(
x, y, ui2

) − Pi. (4.4)

Hence, for all (x, y) ∈ X × Y , fi(x, y, ·) is natural Pi quasifunction.
By condition (iii), we know that for all zi ∈ Xi, the map (x, y) �→ fi(x, y, zi) is

continuous on X × Y . So it follows from Remark 3.2 that condition (iii) of Theorem 3.1 holds.
It is easy to verify that the other conditions of Theorem 3.1 are satisfied. By Theorem 3.1, we
know that the conclusion holds.

Similarly, by Theorem 3.3, Corollaries 3.4 and 3.5, respectively, we have the following
results.

Theorem 4.2. Let I be any index set. For each i ∈ I, let Zi be a topological vector space, let Ei and
Fi be two locally convex Hausdorff topological vector spaces, let Xi ⊆ Ei and Yi ⊆ Fi be nonempty,
closed and convex subsets, let Ci : X → 2Zi be a set-valued map such that Ci(x) is a proper, closed
and convex cone with apex at the origin and intCi(x)/= ∅ for each x ∈ X and Pi = ∩x∈XCi(x),
Di : X × Y → 2Xi and Ti : X × Y → 2Yi be set-valued maps with nonempty convex values
and open lower sections, the set Wi = {(x, y) ∈ X × Y : xi ∈ Di(x, y) and yi ∈ Ti(x, y)} be
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closed in X × Y and ϕi : X × Y → Zi be a vector-valued function. Assume that the set-valued map
D×T = (

∏
i∈IDi×

∏
i∈ITi) : X×Y → 2X×Y defined as (D×T)(x, y) = ∏

i∈IDi(x, y)×
∏

i∈ITi(x, y),
∀(x, y) ∈ X × Y , is Φ-condensing and (i), (ii), and (iii) of Theorem 4.1 hold. Then, the solution set of
the (G-Debreu VEP) is nonempty.

Theorem 4.3. Let I be any index set. For each i ∈ I, let Xi ⊆ Ei and Yi ⊆ Fi be nonempty and convex
subsets, letDi : X×Y → 2Xi and Ti : X×Y → 2Yi be set-valued maps with nonempty convex values
and open lower sections, the setWi = {(x, y) ∈ X ×Y : xi ∈ Di(x, y) and yi ∈ Ti(x, y)} be closed in
X × Y and φi be a bifunction from X × Y into R. For each i ∈ I, assume that

(i) for all xi ∈ Xi and y ∈ Y , zi �→ φi(xi, y, zi) is quasiconvex;

(ii) φi is continuous on X × Y ;

(iii) there exist nonempty and compact subsets N ⊆ X and K ⊆ Y and nonempty, compact
and convex subsets Bi ⊆ Xi, Ai ⊆ Yi for each i ∈ I such that ∀(x, y) = (xi, xi, y) ∈
X × Y \N ×K ∃i ∈ I and ∃ui ∈ Bi, vi ∈ Ai satisfying ui ∈ Di(x, y), vi ∈ Ti(x, y) and
φi(xi, y, ui) < φi(x, y).

Then, there exists (x, y) = (xi, xi, y
i, yi) in X × Y such that for each i ∈ I,

xi ∈ Di

(
x, y

)
, yi ∈ Ti

(
x, y

)
: φi

(
xi, y, zi

)
≥ φi

(
x, y

)
, ∀zi ∈ Di

(
x, y

)
. (4.5)

That is, the solution set of the (G-Debreu EP) is nonempty.

Theorem 4.4. Let I be any index set. For each i ∈ I, let Ei and Fi be two locally convex Hausdorff
topological vector spaces, Xi ⊆ Ei and Yi ⊆ Fi be nonempty, closed and convex subsets, let Di :
X ×Y → 2Xi and Ti : X ×Y → 2Yi be set-valued maps with nonempty convex values and open lower
sections, the set Wi = {(x, y) ∈ X × Y : xi ∈ Di(x, y) and yi ∈ Ti(x, y)} be closed in X × Y and
ϕi : X×Y → R be a function. Assume that the set-valued mapD×T = (

∏
i∈IDi×

∏
i∈ITi) : X×Y →

2X×Y defined as (D×T)(x, y) = ∏
i∈IDi(x, y)×

∏
i∈ITi(x, y), ∀(x, y) ∈ X×Y , isΦ-condensing and

(i), and (ii) of Theorem 4.3 hold. Then, the solution set of the (G-Debreu EP) is nonempty.

Remark 4.5. Theorem 4.1 extends and generalizes [19, Theorem 5] and [20, Theorems 3.1,
3.6 and Corollaries 3.2, 3.3, and 3.5]. Theorem 4.2 extends and generalizes [19, Theorem
6]. Theorems 4.3 and 4.4 are generalizations of [20, Corollaries 3.5 and 3.7] and the
corresponding results in [21–24].
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