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1. Introduction

Abelian group notation and terminology are standard [1, 2]. N denotes the nonnegative
integers and N

+ the positive integers. Z denotes the ring of all integers. Let P = Z
N =

∏
N
Z,

the group of all integer sequences, known as the Baer-Specker group [3, 4]. For purposes of
matrix vector multiplication, an element x of P is viewed as a column vector, the ith entry of
which is denoted xi.

2. Infinite Integral Matrices and Their Operations

To prove the results claimed, some properties of infinite integral matrices are needed. These
properties are stated without proof, as they are known or easily proved.

The group of all infinite integral matrices is denoted by M, with addition being
defined in the usual way. Matrix rows and columns are indexed by N. Column operations
(multiplying a column by −1, interchanging two columns, adding an integral multiple of one
column to another) are carried out in the usual way.

F ∈ M is said to be row finite if, for each i ∈ N, Fij = 0 for all but finitely many j ∈ N;
that is, if for each i, there exists ki ∈ N such that Fij = 0 unless j ≤ ki. A column finite matrix
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is defined analogously. The additive group of all row finite matrices in M is denoted by F.
T ∈ M is said to be lower triangular if Tij = 0 unless i ≥ j. The additive group of all lower
triangular matrices inM is denoted by T. Obviously T ⊂ F.

Recall that multiplication of two infinite matrices may not be well defined and, even
when defined, may not be associative. For examples of pathologies of infinite matrices, see
Section 5. However, for F ∈ F and G ∈ M, the product of F and G, denoted FG ∈ M, is
defined as

FGij =
∑

k∈N

FikGkj , i, j ∈ N. (2.1)

Because F is row finite, the sum reduces to
∑

k≤ni
FikGkj where ni ∈ N. Under multiplication

thus defined, F and T are rings with identity I satisfying Iij = δij , the Kronecker delta.
F ∈ F is said to be invertible if there exists G ∈ F satisfying FG = I = GF. It clear

that such a G is a unique two-sided inverse, so that F−1 = G is well defined [5, pages
21–25]. The set of invertible matrices in F is denoted GL and forms a group under matrix
multiplication.

Proposition 2.1. If F ′ ∈ F is obtained from F ∈ F through a column operation, then F ′ = FE where
E is obtained by performing the same operation on I. E is both row and column finite and invertible.

This corollary is immediate.

Corollary 2.2. If F ′ ∈ F is obtained from F ∈ F through a finite sequence of column operations, then
F ′ = FE where E is obtained by performing the same sequence of operations on I. E is both row and
column finite and invertible.

LetU = {uj : j ∈ N} be a subset of P. If each expression
∑

j∈N
bjuj , bj ∈ Z, represents an

element of P, then the set of all such elements forms a subgroup of P, denoted
∏

j∈N
〈uj〉 and

called a product in P [2, page 164]. Such a subset U forms a product if and only if the matrix
with columns uj is row finite. If the representations are unique, then the uj are independent
andU is said to be a basis of the product. One of the objectives of this paper is to characterize
products and product bases in term of endomorphisms of P.

For F ∈ F and x ∈ P, the matrix vector product of F and x, denoted simply Fx, is
defined as Fx ∈ P, with Fxi =

∑
k∈N

Fikxk, i ∈ N. As with matrix multiplication, because F
is row finite, the sum reduces to

∑
k≤ni

Fikxk where ni ∈ N. Each such F naturally induces an
endomorphism of P, via matrix vector multiplication. Indeed, a product in P,

∏
j∈N

〈uj〉, is
simply the image of such an endomorphism, where the matrix F is constructed with columns
uj , j ∈ N.

All endomorphisms of P are determined by their values on Σ, the free subgroup of P
consisting of sequences which are 0 after awhile [2, Lemma 94.1]. The standard group basis
of Σ is {ej : (ej)i = δij , i, j ∈ N}, and the ej also form the standard product basis of P. In
particular, all endomorphisms of P are determined by their values on this standard basis. As
a result, with each element f in the endomorphism ring of P, End(P), is associated a unique
matrix Mf ∈ M, given by M

f

ij = f(ej)i, i, j ∈ N. The immediate goal is to prove that each
suchMf is row finite, so that every endomorphism of P is effectively multiplication by a row
finite matrix.
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3. Endomorphisms and Product Bases

The main theorem follows.

Theorem 3.1. Every endomorphism of P is induced by the action of a row finite, infinite, integral
matrix.

Proof. Let f ∈ End(P), and let Mf ∈ M be the matrix associated with f , Mf

ij = f(ej)i, i, j ∈ N.
Suppose that Mf is not row finite; that is, suppose there are i and distinct jk ∈ N such that
M

f

ijk /= 0 for all k ∈ N. Let πi denote the canonical projection of the ith row of elements of P
onto Z. Then πif would be a homomorphism of P into Z, which is nonzero at all ejk , k ∈ N,

an impossibility [4, Satz III]. Hence it is not possible that an infinite number of the M
f

ij are
nonzero; that is, Mf must be row finite.

To see that Mf acts on P to produce f , it suffices to check agreement on the standard

basis of Σ. For i, j ∈ N, (Mfej)i =
∑

k∈N
M

f

ik(ej)k =
∑

k∈N
f(ek)iδjk = f(ej)i.

Corollary 3.2. (i) The endomorphism ring of P, End(P), is isomorphic to the ring of row finite,
infinite, integral matrices F. (ii) The automorphism group of P, Aut(P), is isomorphic to the
multiplicative group of invertible matrices in F, GL.

Proof. For f ∈ End(P), f → Mf is a ring isomorphism with F, which maps Aut(P)
isomorphically onto GL. The row finiteness of the elements of F ensures that all sums are
finite and that matrix multiplication is associative.

Corollary 3.3. There is a one-to-one correspondence between the matrices ofGL and the product bases
of P.

Proof. Let {uj : j ∈ N} be a product basis for P, and let A ∈ Aut(P) be defined by A(x)i = ai

for x ∈ P, when x =
∑

j∈N
ajuj , aj ∈ Z. The uniqueness of expression of the elements of P

in terms of the product basis guarantees that A is an automorphism. By Corollary 3.2(ii), A
corresponds to a unique element of GL. The converse is clear.

4. Products in P

Topological techniques are helpful in studying the endomorphisms of P. Backgroundmaterial
may be found in [6–8] and the references cited therein. For x/= y ∈ P, the distance between
them, d(x,y), is defined to be 2−n, where n is the first place at which xn /=yn. Of course,
d(x, x) = 0. It is easy to check that d is a metric on P, which comports with the product
topology on P, when Z is discrete.

P is a separable metric space having Σ as a countable dense subset. Finally,
P is a complete metric space in which Cauchy sequences eventually become constant
pointwise.

The important aspect of this topology is that all endomorphisms of P are continuous.
Similarly, M is a complete separable metric space with the distance between distinct

matrices F and G defined as 2−n, where n = min{i, j : Fij /=Gij}.

Theorem 4.1. Every product in P can be generated by a lower triangular matrix, the columns of
which form a basis of the product.
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Proof. Let F ∈ F generate the product FP. The proof proceeds by transforming F via column
operations into a lower triangular matrix T satisfying TP = FP. Since F = 0 is trivial, assume
F /= 0. Let y ∈ FP, 0/= y = (y0, y1, . . . )

t, where t denotes transpose, and suppose y = Fx for
x = (x0, x1, . . . )

t ∈ P.
If row 0 of F consists entirely of 0’s, simply set T1 = F, E1 = I, and x1 = x and proceed

to the next step. Otherwise, perform column operations on the nonzero entries of row 0 of
F to obtain a new matrix T1 in which T1

0j = 0 for all j > 0. This is tantamount to finding the
gcd of the entries in row 0, columns j ≥ 0 of F. Perform the same column operations on I
to produce E1, so that T1 = FE1 with E1 an invertible row and column finite matrix. Let G1

denote the inverse of E1. Since F = T1G1, y = Fx = T1(G1x). Set x1 = G1x = (x1
0, x

1
1, . . . )

t so
that y = T1x1.

If T1
1j = 0 for all j ≥ 1, simply set T2 = T1, x2 = x1, and E2 = I and proceed. Otherwise,

perform column operations on the nonzero entries of row 1 in columns j ≥ 1 of T1 to obtain
a new matrix T2 in which T2

1j = 0 for all j > 1. As before, this is tantamount to finding the gcd
of the entries in row 1, columns j ≥ 1 of T1. Note that T2

i0 = T1
i0 for all i; that is, column 0 of T2

is the same as column 0 of T1.
Perform the same column operations on I to obtain E2, so that T2 = T1E2 with E2

an invertible row and column finite matrix. Note that since no operation was performed on
column 0 of T1, none was performed on column 0 of I. Moreover, rows 0 of T1 and I remained
unchanged (because of 0 entries), so that E2

00 = 1 and the rest of the row 0 and column 0
entries of E2 are 0. Thus the same is true of G2, the inverse of E2. Since F = T2G2G1, y = Fx =
T2G2(G1x) = T2(G2x1). Set x2 = G2x1 so that y = T2x2. Because row 0 ofG2 is 1, 0, . . ., it follows
that x2

0 = x1
0.

Suppose that after n > 1 iterations, row finite matrices T1, . . . , Tn and invertible row
and column finite matrices E1, . . . , En with inverses G1, . . . , Gn and x1, . . . , xn ∈ P have been
obtained, such that

(a) Tn
ij = 0 for all j > i, 0 ≤ i ≤ n − 1; that is, the matrices Tn are becoming increasingly

lower triangular;

(b) column j of Tn is identical to column j of Tn−1 for 0 ≤ j < n − 1; that is, after the nth
iteration, rows and columns < n do not change;

(c) Tn = Tn−1En = FE1 · · ·En;

(d) En
ij = δij = Gn

ij , 0 ≤ i, j < n − 1; that is, the En’s and their inverses are becoming
increasingly diagonal with 1’s down the diagonal, tending toward the identity
matrix;

(e) xn = Gnxn−1, y = Tnxn; that is, y is always in the image of Tn;

(f) xn
i = xn−1

i , 0 ≤ i < n − 1; that is, after the nth iteration, the entries < n of the xn’s do
not change.

As before, if Tn
nj = 0 for all j ≥ n, simply set Tn+1 = Tn, En+1 = I, and xn+1 = xn and

continue. Otherwise, perform column operations on the nonzero entries of the nth row in
columns j ≥ n of Tn to obtain a new matrix Tn+1 in which Tn+1

nj = 0 for all j > n. Because no
operation is performed on columns 0 through (n − 1), Tn+1

ij = Tn
ij , i ∈ N, j = 0, . . . , n − 1; that is,

columns 0 through (n − 1) of Tn+1 are the same as columns 0 through (n − 1) of Tn.
Perform the same column operations on I to produce En+1, so that Tn+1 = TnEn+1

with En+1 an invertible row and column finite matrix having inverse Gn+1. Note that since
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no operation was performed on columns 0 − (n − 1) of Tn, none was performed on columns
0 − (n − 1) of I. Moreover, rows 0 − (n − 1) of Tn were not changed (because of 0’s), and
the same is true of I and Gn+1. (i) As a result, En+1

ij = δij = Gn+1
ij , i, j < n. Since Tn+1 =

TnEn+1 = (FE1 · · ·En)En+1, F = Tn+1Gn+1 · · ·G1, y = Fx = Tn+1Gn+1 · · ·G1x = Tn+1(Gn+1xn).
(ii) Set xn+1 = Gn+1xn so that y = Fn+1xn+1. (i) and (ii) imply that xn+1

i = xn
i , i = 0, . . . , n − 1.

The Cauchy sequence xn converges to some x′ ∈ P because P is a completemetric space.
Since all endomorphisms of P are continuous, the sequence Tnxj converges to Tn(x′) for each
n. Because of (b) and (f), the convergence is uniform. The Cauchy sequence of matrices Tn

thus obtained converges to a lower triangular matrix T and Tx′ = y so that TP ⊇ FP. From
(b) it follows that TP ⊆ FP and so TP = FP.

It may, of course, happen that some of the diagonal terms of T are 0 so that the first
nonzero entry in a column may be below the diagonal. Should that occur, the first nonzero
entry in the next column will be in a lower row. If T has only finitely many nonzero columns,
the result is elementary. If all columns of T are nonzero, it is clear that an infinite linear
combination of its columns can be 0 only if all coefficients are 0, so that the columns of T
form a product basis.

Remark 4.2. From the results in Section 3, a matrix ∈ F can be classified as epic or monic if
the endomorphism of P which it induces is epic or monic, respectively. (1) If F ∈ F has a 0
row i, it cannot be epic because ei cannot be reached. If it has a 0 column j, it cannot be monic
because ej is in the kernel. Here E = {ei : i ∈ N} denotes the usual basis of Σ ⊂ P. (2) Similarly,
if a row (column) of F is a multiple of another row (column), then F cannot be epic (monic).
(3) T ∈ T is invertible (2 sided) over the rationals if and only if each diagonal entry is nonzero
[5, pages 19-20 ]. (4) T is integrally invertible if and only if each diagonal entry = ±1.

Lemma 4.3. T ∈ T is epic if and only if each diagonal entry is ±1.

Proof. If each diagonal entry of T is ±1, then T ∈ GL and so is epic. Conversely let y =
(y0, y1, . . . )

t be a nonzero element of P. To solve Tx = T(x0, x1, . . . )
t = y, induct on n. Let

Tn denote the finite matrix (Tij : i, j = 0, 1, . . . , n). If n = 0 and T00 /= ± 1, then T00x0 = y0 is not
solvable in general. If T00 = ±1, then x0 is uniquely determined. Suppose that the diagonals
Tkk = ±1 for k = 0, 1, . . . , n, and suppose further that Tn(x0, . . . , xn)

t = (y0, . . . , yn)
t is uniquely

solvable, (x0, . . . , xn)
t = Sn(y0, . . . , yn)

t, where Sn denotes the inverse of Tn. Express

Tn+1 =

(
Tn 0

Tn+1,0 · · · Tn+1,n+1

)

(4.1)

so that

Tn+1(x0, . . . , xn, xn+1)
t =

⎛

⎜
⎜
⎝

Tn(x0, . . . , xn)
t

j=n+1∑

j=0

Tn+1,jxj

⎞

⎟
⎟
⎠, (4.2)

with some abuse of notation for the sake of simplicity. Now by the induction hypothesis,
(x0, . . . , xn)

t = Sn(y0, . . . , yn)
t uniquely. Thus the only solution to

∑j=n+1
j=0 Tn+1,jxj = yn+1 must
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come from Tn+1,n+1xn+1 = yn+1 −
∑j=n

j=0 Tn+1,jxj , which is impossible in general unless Tn+1,n+1 =
±1.

Invertible lower triangular infinite integral matrices may therefore be characterized as
follows.

Theorem 4.4. For T ∈ T the following are equivalent.

(1) T is epic.

(2) Tkk = ±1 for all k ∈ N.

(3) T ∈ GL.

By now the following result is clear.

Corollary 4.5. T ∈ T is monic if and only if Tkk /= 0 for all k ∈ N.

5. Infinite Matrix Examples and Counterexamples

The next examples and counterexamples serve to justify some of the assumptions about
matrix rings made in this paper. They illustrate some of the pitfalls and limitations of working
with infinite matrices and further illustrate results from Section 4. They are not new but
continue to be discussed in various contexts: [9, section 2]; [10, page 437]; [7, pages 189–191].

As before, the elements of P are viewed as column vectors and E = {ej : j ∈ N} denotes
the usual basis of Σ ⊂ P; E is also the standard product basis of P. The same symbol E is used
for the matrix with the ej as columns, that is, the identity matrix. The same liberty is taken
with other bases and their matrices.

Example 5.1. E1 = {e0 + e1 + · · · + ei : i ∈ N} also is a basis of Σ, having matrix

E1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 · · ·
0 1 1 1 · · ·
0 0 1 1 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.1)

Because the matrix is not row finite, E1 cannot be a product basis of P.

Example 5.2. E2 = {e0, ei − ei−1 : i ∈ N
+} also is a basis of Σ, having matrix

E2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 0 · · ·
0 1 −1 0 · · ·
0 0 1 −1 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.2)

Note that E2 is not lower triangular.
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Example 5.3. Let 1 ∈ P denote the column vector having all entries = 1 and let E3 = {e0 + e2 +
· · · + ei−1 − 1 : i ∈ N

+}. Note that E3 is not a basis of Σ; indeed, no element is even contained in
Σ. The accompanying lower triangular matrix is

E3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 · · ·
−1 0 0 0 · · ·
−1 −1 0 0 · · ·
−1 −1 −1 0 · · ·
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.3)

The following relationships hold:

E1E2 = E = E2E1, E2E3 = E. (5.4)

Observe that, although both E2 and E3 are row finite and even pure independent, E2 is not
monic (1 is in the kernel), and E3 is not epic (e0 is not attained). In particular, (E1E2)1 =
E1 = 1, but E1(E21) = E1(0) = 0, so that multiplication is not associative. Despite the fact
that E2P = P, E2 nevertheless cannot serve as a product basis for P. The problem, of course, is
that E2 is not invertible in F. Restriction to multiplicatively associative matrix rings helps to
eliminate much of this infinite matrix pathology [5, pages 19–22].

In the proof of Theorem 4.1, although the columns of the resulting lower triangular
matrix T obviously are independent, T nevertheless may be singular, as illustrated by E3

above. Moreover, it may not be the case that the products E1 · · ·En in that proof will converge
to a row finite matrix, as further illustrated by E2. Even though E2 itself is not monic, the
resulting lower triangular matrix E, which results from column operations on E2, is monic.

6. Fuchs’ Lemma 95.1 Redux

Products in P were introduced in [2] by beginning with a countable subset {xn : n ∈ N} ⊂ P,
with no condition other than that all sums of the form x =

∑∞
n=0 snxn, sn ∈ Z, are well defined.

As mentioned, this means that the infinite matrix with columns xn must be row finite. Lemma
95.1 then was stated as follows in [2].

Let X be a product in P. There are elements an ∈ P and integers kn (n ∈ N) such
that P =

∏∞
n=0〈an〉 and X =

∏∞
n=0〈knan〉where (•) kn | kn+i if kn /= 0 for all n, i ≥ 0.

The goal was to establish a product analog of the well-known result for stacked bases
of free groups of finite rank [1, Lemma 15.4]. However, a counterexample has been produced
[11].

Perhaps another approach is to utilize the weaker definition of stacked bases found in
[12], which does not require divisibility as in (•). From Theorem 4.1, there would be no loss
of generality in assuming that the xn ∈ P form a product basis and a lower triangular matrix.

Lemma 6.1. Let
∏∞

n=0〈xn〉 be a product of infinite rank in P, let S =
∑∞

n=0〈xn〉, and let S∗ be the
pure subgroup which the xn generate. Then there exist a product basis of P =

∏∞
n=0〈an〉 and positive
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integers kn (n ∈ N) such that
∏∞

n=0〈knan〉 =
∏∞

n=0〈xn〉 if and only if there exist stacked bases of S
and S∗ such that the matrix F∗ formed by the basis of S∗ is invertible and the matrix F formed by the
basis of S satisfies FP =

∏∞
n=0〈xn〉.

Proof. If {an : n ∈ N} is a product basis of P, then the an’s are pure independent. If {kn :
n ∈ N)} are positive integers, then

∏∞
n=0〈knan〉 is a product in P and if S = ⊕∞

n=0〈knan〉, then
S∗ = ⊕∞

n=0〈an〉 so that {knan : n ∈ N} and {an : n ∈ N} are stacked bases for the respective
subgroups of P. The matrix formed by the an’s is in GL by Corollary 3.3; the matrix F formed
by the xn = knan certainly satisfies FP =

∏∞
n=0〈xn〉.

Conversely, let
∏∞

n=0〈xn〉 be a product in P, let S be the subgroup of P which the xn’s
generate, and let S∗ be the pure subgroup which they generate. Suppose there are stacked
bases {knan : kn, n ∈ N} of S and {an : n ∈ N} of S∗; because S∗/S is torsion, all kn’s must
be positive. Suppose further that the matrix formed by the an’s is invertible; then the an’s are
a product basis of P and

∏∞
n=0〈knan〉 is a product in P. Finally, if the matrix F formed by the

knan’s satisfies FP =
∏∞

n=0〈xn〉, the proof is concluded.

Remark 6.2. (1) If
∏∞

n=0〈xn〉 is a product in P and {an : n ∈ N} is a basis of the subgroup
generated by the xn’s, the matrix formed by the an’s need not be row finite. (2) As previously
noted, the lower triangular matrix T , obtained from the column operations in Theorem 4.1,
may be singular. However, Nunke [8, page 199] has shown that every endomorphic image
of P is either free of finite rank or isomorphic to P itself. In the latter case, there then exists
monic F ∈ F satisfying FP = TP. Column operations will, of course, reveal matrix rank, finite
or infinite.

All products in Pmay therefore be characterized as follows.

Theorem 6.3. Every product in P is generated by a lower triangular, infinite, integral matrix, the
columns of which form a product basis and the rank of which determines whether the product is free of
finite rank or isomorphic to P.

Generalizations

The author’s initial draft of this paper was done for higher dimensions, along the lines of [13].
At the referee’s suggestion, matrix dimension has been restricted to 2, to improve readability.
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