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1. Introduction

Consider the following n variables unconstrained optimization problem:

min
x∈Rn

f(x), (1.1)

where f : Rn → R is smooth and its gradient g(x) is avaible. The nonlinear conjugate
gradient (CG) method for (1.1) is designed by the iterative form

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (1.2)

where xk is the kth iterative point, αk > 0 is a steplength, and dk is the search direction defined
by

dk =

⎧
⎨

⎩

−gk + βkdk−1, if k ≥ 1,

−gk, if k = 0,
(1.3)



2 International Journal of Mathematics and Mathematical Sciences

where βk ∈ R is a scalar which determines the different conjugate gradient methods [1, 2],
and gk is the gradient of f(x) at the point xk. There are many well-known formulas for
βk, such as the Fletcher-Reeves (FR) [3], Polak-Ribière-Polyak (PRP) [4], Hestenses-Stiefel
(HS) [5], Conjugate-Descent (CD) [6], Liu-Storrey (LS) [7], and Dai-Yuan (DY) [8]. The CG
method is a powerful line search method for solving optimization problems, and it remains
very popular for engineers and mathematicians who are interested in solving large-scale
problems [9–11]. This method can avoid, like steepest descent method, the computation and
storage of some matrices associated with the Hessian of objective functions. Then there are
many new formulas that have been studied by many authors (see [12–20] etc.).

The following formula for βk is the famous FR method:

βFR
k =

∥
∥gk+1

∥
∥2

∥
∥gk
∥
∥2

, (1.4)

where gk and gk+1 are the gradients ∇f(xk) and ∇f(xk+1) of f(x) at the point xk and xk+1,
respectively, ‖·‖ denotes the Euclidian norm of vectors. Throughout this paper, we also denote
f(xk) by fk. Under the exact line search, Powell [21] analyzed the small-stepsize property
of the FR conjugate gradient method and its global convergence, Zoutendijk [22] proved
its global convergence for nonconvex function. Al-Baali [23] proved the sufficient descent
condition and the global convergence of the FR conjugate gradient method with the SWP
line search by restricting the parameter σ < 1/2. Liu et al. [24] extended the result to the the
parameter σ = 1/2. Wei et al. (WYL) [17] proposed a new conjugate gradient formula:

βWYL
k =

gTk+1

(
gk+1 −

(∥
∥gk+1

∥
∥/
∥
∥gk
∥
∥
)
gk
)

∥
∥gk
∥
∥2

. (1.5)

The numerical results show that this method is competitive to the PRP method, the global
convergence of this method with the exact line search and Grippo-Lucidi line search
conditions is proved. Huang et al. [25] proved that by restricting the parameter σ < 1/4,
under the SWP line search rule, this method has the sufficient descent property. Then it is
an interesting task to extend the bound of the parameter σ and get the sufficient descent
condition.

The sufficient descent condition

gTk dk ≤ −c
∥
∥gk
∥
∥2
, ∀k ≥ 0, (1.6)

where c > 0 is a constant, is crucial to insure the global convergence of the nonlinear
conjugate gradient method [23, 26–28]. In order to get some better results of the conjugate
gradient methods, Andrei [29, 30] proposed the hybrid conjugate gradient algorithms as
convex combination of some other conjugate gradient algorithms. Motivated by the ideas
of Andrei [29, 30] and the above observations, we will give a hybrid method combining
the FR method and the WYL method. The proposed method, relaxing the parameter σ < 1,
under the SWP line search technique, possesses the sufficient descent condition (1.6). The
global convergence with the SWP line search and the WWP line search of our method is
established for the nonconvex functions. Numerical results show that the presented method
is competitive to the FR and the WYL method.
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In the following section, the algorithm is stated. The properties and the global
convergence of the new method are proved in Section 3. Numerical results are reported in
Section 4 and one conclusion is given in Section 5.

2. Algorithm

Now we describe our algorithm as follows.

Algorithm 2.1 (the hybrid method).

Step 1. Choose an initial point x0 ∈ Rn, ε ∈ (0, 1), λ1 ≥ 0, λ2 ≥ 0. Set d0 = −g0 = −∇f(x0),
k := 0.

Step 2. If ‖gk‖ ≤ ε, then stop; otherwise go to the next step.

Step 3. Compute step size αk by some line search rules.

Step 4. Let xk+1 = xk + αkdk. If ‖gk+1‖ ≤ ε, then stop.

Step 5. Calculate the search direction

dk+1 = −gk+1 + βHk dk, (2.1)

where βH
k

= λ1β
WYL
k

+ λ2β
FR
k
.

Step 6. Set k := k + 1, and go to Step 3.

3. The Properties and the Global Convergence

In the following, we assume that gk /= 0 for all k, otherwise a stationary point has been
found. The following assumptions are often used to prove the convergence of the nonlinear
conjugate gradient methods (see [3, 8, 16, 17, 27]).

Assumption 3.1. (i) The function f(x) has a lower bound on the level set Ω = {x ∈ Rn | f(x) ≤
f(x0)}, where x0 is a given point.

(ii) In an open convex, setΩ0 that containsΩ, f is differentiable, and its gradient g is Lipschitz
continuous, namely, there exists a constants L > 0 such that

∥
∥g(x) − g

(
y
)∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ Ω0. (3.1)

3.1. The Properties with the Strong Wolfe-Powell Line Search

The strong Wolfe-Powell (SWP) search rule is to find a step length αk such that

f(xk + αkdk) ≤ fk + δαkgTk dk, (3.2)
∣
∣
∣g(xk + αkdk)

Tdk
∣
∣
∣ ≤ σ

∣
∣gT

k
dk
∣
∣, (3.3)

where δ ∈ (0, 1/2), σ ∈ (0, 1).
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The following theorem shows that the hybrid algorithm with the SWP line search
possesses the sufficient condition (1.6) only under the parameter σ ∈ (δ, 1).

Theorem 3.2. Let the sequences {gk} and {dk} be generated by Algorithm 2.1, and let the stepsize
αk be determined by the SWP line search (3.2) and (3.3), if σ ∈ (0, 1), 2λ1 +λ2 ∈ (0, 1/2σ), then the
sufficient descent condition (1.6) holds.

Proof. By the definition λ1, λ2 and the formulae (1.4) and (1.5), we have

βHk = λ1β
WYL
k + λ2β

FR
k

≥
λ1

(∥
∥gk+1

∥
∥2 −

(∥
∥gk+1

∥
∥/
∥
∥gk
∥
∥
)∥
∥gk+1

∥
∥
∥
∥gk
∥
∥
)

∥
∥gk
∥
∥2

+
λ2
∥
∥gk+1

∥
∥2

∥
∥gk
∥
∥2

= λ2

∥
∥gk+1

∥
∥2

∥
∥gk
∥
∥2

,

(3.4)

∣
∣
∣βHk

∣
∣
∣ =
∣
∣
∣λ1β

WYL
k + λ2β

FR
k

∣
∣
∣

≤
λ1

(∥
∥gk+1

∥
∥2 +

(∥
∥gk+1

∥
∥/
∥
∥gk
∥
∥
)∥
∥gk+1

∥
∥
∥
∥gk
∥
∥
)

∥
∥gk
∥
∥2

+ λ2

∥
∥gk+1

∥
∥2

∥
∥gk
∥
∥2

=
(2λ1 + λ2)

∥
∥gk+1

∥
∥2

∥
∥gk
∥
∥2

.

(3.5)

Using (3.3) and the above inequality, we get

∣
∣
∣βHk g

T
k+1dk

∣
∣
∣ ≤

(2λ1 + λ2)
∥
∥gk+1

∥
∥2

∥
∥gk
∥
∥2

σ
∣
∣
∣gTk dk

∣
∣
∣. (3.6)

By (2.1), we have

gT
k+1dk+1
∥
∥gk+1

∥
∥2

= −1 + βHk
gT
k+1dk
∥
∥gk+1

∥
∥2
. (3.7)

We prove the descent property of {dk} by induction. Since gT0 d0 = −‖g0‖2 < 0, if g0 /= 0, now
we suppose that di, i = 1, 2, . . . , k, are all descent directions, for example, dTi gi < 0.

By (3.6), we get

∣
∣
∣βHk g

T
k+1dk

∣
∣
∣ ≤

σ(2λ1 + λ2)
∥
∥gk+1

∥
∥2

∥
∥gk
∥
∥2

(
−gTk dk

)
, (3.8)
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that is,

∥
∥gk+1

∥
∥2

∥
∥gk
∥
∥2 (2λ1 + λ2)σgTk dk ≤ β

H
k g

T
k+1dk ≤ −

∥
∥gk+1

∥
∥2

∥
∥gk
∥
∥2 (2λ1 + λ2)σgTk dk. (3.9)

However, from (3.7) together with (3.9), we deduce

−1 + (2λ1 + λ2)σ
gTk dk
∥
∥gk
∥
∥2
≤
gTk+1dk+1
∥
∥gk+1

∥
∥2
≤ −1 − (2λ1 + λ2)σ

gTk dk
∥
∥gk
∥
∥2
. (3.10)

Repeating this process and using the fact dT0 g0 = −‖g0‖2 imply

−
k∑

i=0
[(2λ1 + λ2)σ]

i ≤
gT
k+1dk+1
∥
∥gk+1

∥
∥2
≤ −2 +

k∑

i=0
[(2λ1 + λ2)σ]

i. (3.11)

By the restriction σ ∈ (0, 1) and 2λ1 + λ2 ∈ (0, 1/2σ), we have (2λ1 + λ2)σ ∈ (0, 1/2). So

k∑

i=0
[(2λ1 + λ2)σ]

i <
∞∑

i=0
[(2λ1 + λ2)σ]

i =
1

1 − 4λ1σ
. (3.12)

Then (3.11) can be rewritten as

− 1
1 − (2λ1 + λ2)σ

≤
gTk+1dk+1
∥
∥gk+1

∥
∥2
≤ −2 +

1
1 − (2λ1 + λ2)σ

. (3.13)

Thus, by induction, gTk dk < 0 holds for all k ≥ 0.
Denote c = 2 − 1/(1 − (2λ1 + λ2)σ), then c ∈ (0, 1) and (3.13) turns out to be

c − 2 ≤
gT
k
dk

∥
∥gk
∥
∥2
≤ −c, (3.14)

this implies that (1.6) holds. The proof is complete.

Lemma 3.3. Suppose that Assumption 3.1 holds. Let the sequences {gk} and {dk} be generated by
Algorithm 2.1, let the stepsize αk be determined by the SWP line search (3.2) and (3.3), and let the
conditions in Theorem 3.2 hold. Then the Zoutendijk condition [22]

∞∑

k=0

(
gT
k
dk
)2

‖dk‖2
< +∞ (3.15)

holds.
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By the same way, if Assumption 3.1 and the condition gTk dk < 0 (for all k) hold, (3.15)
also holds for the exact line search, the Armijo-Goldstein line search, and the weak Wolfe-
Powell line search. The proofs can be seen in [31, 32]. Now, we prove the global convergence
theorem of Algorithm 2.1 with the SWP line search.

Theorem 3.4. Suppose that Assumption 3.1 holds. Let the sequence {gk} and {dk} be generated
by Algorithm 2.1, let the stepsize αk be determined by the SWP line search (3.2) and (3.3), let the
conditions in Theorem 3.2 hold, and let the parameter 2λ1 + λ2 ≤ 1. Then

lim
k→∞

inf
∥
∥gk
∥
∥ = 0. (3.16)

Proof. By (1.6), (3.3), and the Zoutendijk condition (3.15), we get

∞∑

k=0

∥
∥gk
∥
∥4

‖dk‖2
< +∞. (3.17)

Denote

tk =
‖dk‖2

∥
∥gk
∥
∥4
, (3.18)

so (3.17) can be rewritten as

∞∑

k=0

1
tk
< +∞. (3.19)

We prove the result of this theorem by contradiction. Assume that this theorem is not true,
then there exists a positive constant γ > 0 such that

∥
∥gk
∥
∥ ≥ γ, ∀k ≥ 0. (3.20)

Squaring both sides of (2.1), we obtain

‖dk‖2 =
∥
∥gk
∥
∥2 − 2βHk−1g

T
k dk−1 +

(
βHk−1‖dk−1‖

)2
. (3.21)

Dividing both sides by ‖gk‖4, applying (3.4), (3.18), and the parameter 2λ1 + λ2 ≤ 1, we get

tk ≤ tk−1 +
1

∥
∥gk
∥
∥2

(

1 +
2
∣
∣gT

k
dk−1

∣
∣

∥
∥gk−1

∥
∥2

)

. (3.22)
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Using (3.3) and (1.6), we have

tk ≤ tk−1 +
1

∥
∥gk
∥
∥2

(

1 +
2σ
∣
∣gT

k−1dk−1
∣
∣

∥
∥gk−1

∥
∥2

)

≤ tk−1 + [1 + 2σ(2 − c)] 1
∥
∥gk
∥
∥2
. (3.23)

Repeating this process and using the fact t0 = 1/‖g0‖2, we get

tk ≤ [1 + 2σ(2 − c)]
∞∑

i=1

1
∥
∥gi
∥
∥2
. (3.24)

Now, combining (3.24) and (3.20), we get another formula

tk ≤ [1 + 2σ(2 − c)]k + 1
γ2

. (3.25)

Thus

∞∑

k=0

1
tk

= +∞, (3.26)

this contradicts the condition (3.19). However, the conclusion of this theorem is correct.The
following theorem will show that Algorithm 2.1 with the SWP line search, only under the
descent condition

gTk dk < 0, ∀k ≥ 0, (3.27)

is global convergence too.

Theorem 3.5. Suppose that Assumption 3.1 holds. Let the sequence {gk, dk} be generated by
Algorithm 2.1, let the stepsize αk be determined by the SWP line search (3.2) and (3.3), let the
parameter 2λ1 + λ2 ≤ 1, and let (3.27) hold. Then, for all k ≥ 0, the following inequalities holds:

min{rk, rk+1} ≥
1
2
, (3.28)

where

rk = −
gT
k
dk

∥
∥gk
∥
∥2
, (3.29)

furthermore, (3.16) holds
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Proof. By (2.1), (3.3), (3.27), and 2λ1 +λ2 ≤ 1, we can deduce that (3.10) holds for all σ < 1 and
σ∗ = (2λ1 + λ2)σ < 1. According to the second inequality of (3.10), we have

σ∗rk + rk+1 ≥ 1. (3.30)

Similar to the way of [31], it is not difficult to get (3.28).
Secondly, using (3.30) and the Cauchy-Schwarz inequality implies that (or see [31])

r2
k + r

2
k+1 ≥

(
1 + σ2

∗

)−1
. (3.31)

Moreover, repeating the process of the first inequality of (3.10) and using r0 = 1, we get

rk+1 < (1 − σ∗)−1. (3.32)

By (3.3), (3.22), and the above inequality, we have

tk+1 ≤
1 + σ∗
1 − σ∗

k+1∑

i=0

1
∥
∥gi
∥
∥2
. (3.33)

Thus, using (3.20), we have

tk+1 ≤ b1(k + 2), (3.34)

where b1 = 1 + σ∗/(1 − σ∗)γ2. By Zoutendijk condition (3.15), (3.31), and (3.34), we obtain

+∞ >
∞∑

k=0

(
gTk dk

)2

‖dk‖2
=
∞∑

k=0

r2
k

tk
=
∞∑

k=0

(
r2

2k−1

t2k−1
+
r2

2k

t2k

)

≥
∞∑

k=0

r2
2k−1 + r

2
2k

2b1(k + 1)
≥
∞∑

k=0

1
2b1
(
1 + σ2

∗
)
(k + 1)

= +∞.

(3.35)

This contradiction shows that (3.16) is true.

3.2. The Properties with the Weak Wolfe-Powell (WWP) Line Search

The weak Wolfe-Powell line search is to find a step length αk satisfying (3.2) and

g(xk + αkdk)
Tdk ≥ σgTk dk, (3.36)

where δ ∈ (0, 1/2), σ ∈ (δ, 1).
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From the computation point of view, one of the well-known formulas for βk is the
PRP method. The global convergence with the exact line search had been proved by Polak
and Ribière [4] when the objective function is convex. Powell [33] gave a counter example
to show that there exist nonconvex functions on which the PRP method does not converge
globally even if the exact line search is used. He suggested that βk should not be less than
zero. Considering this suggestion, under the assumption of the sufficient descent condition,
Gilbert and Nocedal [27] proved that the modified PRP method β+k = max{0, βPRP

k } is globally
convergent with the WWP line search technique. For the new formula βHk , we know that it is
always larger than zero. Then we can also get the global convergence of the hybrid method
with the WWP line search.

Lemma 3.6 (see [31, Lemma 3.3.1]). Let Assumption 3.1 hold and let the sequences {gk, dk} be
generated by Algorithm 2.1. The stepsize αk is determined by (3.2) and (3.36). Suppose that (3.20) is
true, and the sufficient descent condition (1.6) holds. Then we have dk /= 0 and

∞∑

k=0

‖uk+1 − uk‖2 <∞, (3.37)

where uk = dk/‖dk‖.

The following Property 1 was introduced by Gilbert and Nocedal [27], which pertains
to the PRP method under the sufficient descent condition. The WYL also has this property.
Now we will prove that this Property 1 pertains to the new method.

Property 1. Suppose that

0 < γ1 ≤
∥
∥gk
∥
∥ ≤ γ2. (3.38)

We say that the method has Property 1 if for all k, there exists constants b > 1 and λ > 0 such
that |βk| ≤ b and

‖sk‖ ≤ λ =⇒
∣
∣βk
∣
∣ ≤ 1

2b
. (3.39)

Lemma 3.7. Let Assumption 3.1 hold, let the sufficient descent condition (1.6) hold, and let the
sequences {gk, dk} be generated by Algorithm 2.1. Suppose that there exists a constant M > 0 such
that ‖dk‖ ≤M for all k. Then this method possesses Property 1.

Proof. By (3.36), (1.6), (3.1), and (3.38), we have

γ1c(1 − σ)
∥
∥gk
∥
∥

≤ c(1 − σ)
∥
∥gk
∥
∥2 ≤ −(1 − σ)gTk dk ≤

(
gk+1 − gk

)T
dk ≤ L‖sk‖‖dk‖ ≤ LM‖sk‖.

(3.40)

Then we get

∥
∥gk
∥
∥ ≤ LM

γ1c(1 − σ)
‖sk‖. (3.41)
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By (3.1) again, we obtain

∥
∥gk+1

∥
∥ −
∥
∥gk
∥
∥ ≤
∥
∥gk+1 − gk

∥
∥ ≤ L‖sk‖. (3.42)

Combing the above inequality and (3.41) implies that

∥
∥gk+1

∥
∥ ≤
∥
∥gk
∥
∥ + L‖sk‖ ≤

(
LM

γ1c(1 − σ)
+ L
)

‖sk‖. (3.43)

By (3.5) and (3.38), we have

∣
∣
∣βHk

∣
∣
∣ =

(2λ1 + λ2)
∥
∥gk+1

∥
∥2

∥
∥gk
∥
∥2

≤
(2λ1 + λ2)γ2

2

γ2
1

, (3.44)

let b = max{2, (2λ1 + λ2)γ2
2/γ

2
1 } > 1, λ = γ2

1/2bγ2L(2λ1 +M/γ1c(1 − σ) + 1). If ‖sk‖ ≤ λ, using
(3.1), (3.38), (3.43), and the above equation, we obtain

∣
∣
∣βHk

∣
∣
∣ ≤
∥
∥gk+1

∥
∥
λ1
∥
∥gk+1 −

(∥
∥gk+1

∥
∥/
∥
∥gk
∥
∥
)
gk
∥
∥ + λ2

∥
∥gk+1

∥
∥

∥
∥gk
∥
∥2

= γ2
λ1
∥
∥gk+1 − gk + gk −

(∥
∥gk+1

∥
∥/
∥
∥gk
∥
∥
)
gk
∥
∥ + λ2

∥
∥gk+1

∥
∥

∥
∥gk
∥
∥2

≤ γ2
λ1
∥
∥gk+1 − gk

∥
∥ + λ1

∣
∣
∥
∥gk
∥
∥ −
∥
∥gk+1

∥
∥
∣
∣ + λ2

∥
∥gk+1

∥
∥

∥
∥gk
∥
∥2

≤ γ2
2λ1L‖sk‖ +

(
LM/γ1c(1 − σ) + L

)
‖sk‖

∥
∥gk
∥
∥2

≤
γ2L
(
2λ1 +M/γ1c(1 − σ) + 1

)

γ2
1

λ =
1

2b
.

(3.45)

Therefore, the conclusion of this lemma holds.

Lemma 3.8 (see [31, Lemma 3.3.2]). Let the sequences {gk} and {dk} be generated by
Algorithm 2.1 and the conditions in Lemma 3.7 hold. If βH

k
≥ 0 and has Property 1, then there exists

λ > 0 such that for any Δ ∈N and any index k0, there is an index k > k0 satisfying

∣
∣
∣κλk,Δ

∣
∣
∣ >

λ

2
, (3.46)

where κλ
k,Δ = {i ∈ N : k ≤ i ≤ k + Δ − 1, ‖si‖ > λ},N denotes the set of positive integers, |κλ

k,Δ|
denotes the numbers of elements in κλ

k,Δ.
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Finally, by Lemmas 3.6 and 3.8, we present the global convergence theorem of
Algorithm 2.1 with the WWP line search. Similar to [31, Theorem 3.3.3], it is not difficult
to prove the result, so we omit it.

Theorem 3.9. Let the sequences {gk} and {dk} be generated by Algorithm 2.1 with the weak Wolfe-
Powell line search and the conditions in Lemma 3.7 hold. Then (3.16) holds.

4. Numerical Results

In this section, we report some results of the numerical experiments. It is well known that
there exist many new conjugate gradient methods (see [1, 13–16, 18, 19, 29, 30]) which have
good properties and good numerical performances. Since the given formula is the hybrid
of the FR formula and the WYL formula, we only test Algorithm 2.1 under the WWP line
search on problems in [34] with the given initial points and dimensions, and compare its
performance with those of the FR [3] and the WYL [17] methods. The parameters are chosen
as follows: δ = 0.1, σ = 0.2, λ1 = λ2 = 0.5. The following Himmeblau stop rule is used as
follows.

If |f(xk)| > e1, let stop1 = |f(xk) − f(xk+1)|/|f(xk)|; otherwise, let stop1 = |f(xk) −
f(xk+1)|.

If ‖g(x)‖ < ε or stop1 < e2 was satisfied, we will stop the program, where e1 =
e2 = 10−6. We also stop the program if the iteration number is more than one thousand.
All codes were written in MATLAB and run on PC with 2.60 GHz CPU processor and
256 MB memory and Windows XP operation system. The detail numerical results are listed
at http://210.36.18.9:8018/publication.asp?id=36990.

Dolan and Moré [35] gave a new tool to analyze the efficiency of Algorithms. They
introduced the notion of a performance profile as a means to evaluate and compare the
performance of the set of solvers S on a test set P. Assuming that there exist ns solvers and np
problems, for each problem p and solver s, they defined:

tp,s = computing time (the number of function evaluations or others) required to solve
problem p by solver s.

Requiring a baseline for comparisons, they compared the performance on problem
p by solver s with the best performance by any solver on this problem; that is, using the
performance ratio

rp,s =
tp,s

min
{
tp,s : s ∈ S

} . (4.1)

Suppose that a parameter rM ≥ rp,s for all p, s is chosen, and rp,s = rM if and only if solver s
does not solve problem p.

The performance of solver s on any given problem might be of interest, but we would
like to obtain an overall assessment of the performance of the solver, then they defined

ρs(t) =
1
np

size
{
p ∈ P : rp,s ≤ t

}
, (4.2)

thus ρs(t) was the probability for solver s ∈ S that a performance ratio rp,s was within a
factor t ∈ R of the best possible ratio. Then function ρs was the (cumulative) distribution
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Figure 1: Performance profiles of these three methods (NI).

function for the performance ratio. The performance profile ρs : R �→ [0, 1] for a solver was
a nondecreasing, piecewise constant function, continuous from the right at each breakpoint.
The value of ρs(1) was the probability that the solver would win over the rest of the solvers.

According to the above rules, we know that one solver whose performance profile plot
is on top right will win over the rest of the solvers.

Figures 1-2 show that the performances of these methods are relative to the iteration
number (NI) and the number of the function and gradient (NFN), where the “FR” denotes
the FR formula with WWP rule, the “WYL” denotes the WYL formula with WWP rule, and
Algorithm 2.1 denotes the new method with WWP rule, respectively.

From Figures 1-2, it is easy to see that Algorithm 2.1 is the best among the three
methods, and the WYL method is much better than FR methods. Notice that the global
convergence of the FR method with the WWP line search has not been established yet. In
other words, the given method is competitive to the other two normal methods and the
hybrid formula is notable.

5. Conclusions

This paper gives a hybrid conjugate gradient method for solving unconstrained optimization
problems. Under the SWP line search, this method possesses the sufficient descent condition
only with the parameter σ < 1. The global convergence with the SWP line search and the
WWP line search is established for the nonconvex functions. Numerical results show that the
given method is competitive to other two conjugate gradient methods.

For further research, we should study the new method with the nonmonotone line
search technique. Moreover, more numerical experiments for large practical problems (such
as the problems [36]) should be done, and the given method should be compared with other
famous formulas in the future. How to choose the parameters λ1 and λ2 in the algorithm is
another aspect of future investigation.



International Journal of Mathematics and Mathematical Sciences 13

12108642

t

Algorithm 1
FR method
WYL method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
p

:r
(p
,s
)
≤
t

Figure 2: Performance profiles of these three methods (NFN).

Acknowledgments

The authors are very grateful to the anonymous referees and the editors for their valuable
suggestions and comments, which improved our paper greatly. This work is supported by
China NSF grants 10761001 and the Scientific Research Foundation of Guangxi University
(Grant no. X081082).

References

[1] G. H. Yu, Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems, Doctorial
thesis, Sun Yat-Sen University, Guangzhou, China, 2007.

[2] G. Yuan and Z. Wei, “New line search methods for unconstrained optimization,” Journal of the Korean
Statistical Society, vol. 38, no. 1, pp. 29–39, 2009.

[3] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” The Computer Journal,
vol. 7, pp. 149–154, 1964.

[4] E. Polak and G. Ribière, “Note sur la convergence de méthodes de directions conjuguées,” Revue
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