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1. Introduction

The wavelet transform of f with respect to the wavelet ψ is defined by

(
Wψf

)
(b, a) = a−1/2

∫∞

−∞
f(t)ψ

(
t − b
a

)
dt, b ∈ R, a > 0, (1.1)

provided that the integral exists [1]. Using Fourier transform it can also be expressed as

(
Wψf

)
(b, a) =

√
a

2π

∫∞

−∞
eibωf̂(ω)ψ̂(aω)dω, (1.2)

where

f̂(ω) =
∫∞

−∞
e−ixωf(x)dx. (1.3)
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Asymptotic expansion with explicit error term for Mellin convolution

I(λ) =
∫∞

0
f(t)h(λt)dt, (1.4)

as λ → +∞, was obtained by Wong [2, pages 740–756]. Let us recall basic results from Wong
[2], which will be used in the present investigation.

Assume that

f(t) ∼
∞∑

s=0

ast
s+α−1, as t −→ 0,

=
n−1∑

s=0

ast
s+α−1 + fn(t),

(1.5)

where 0 < α ≤ 1 and

h(t) ∼ eict
∞∑

s=0

bst
−s−β, as t −→ +∞, (1.6)

where c is real and 0 < β ≤ 1.
Also assume that

f(t) = O
(
t−ρ1
)
, as t −→ +∞, (1.7)

where β + ρ1 > 1.

h(t) = O(tρ2), as t −→ 0, (1.8)

where α + ρ2 > 0.
Asymptotic expansion of (1.4) is given by the following [2, Theorem 3, page 752].

Theorem 1.1. Assume that (i)f (n)(t) is continuous on (0,∞), where n is a nonnegative integer;
(ii)f(t) has an expansion of the form (1.5), and the expansion can be differentiated n times; (iii) as
t → ∞, f (j)(t) is O(t−1−η) for j = 0, 1, . . . , n and for some η > 0; (iv)fn(t) has the meaning as given
in (1.5); (v)h(t) satisfies (1.8) and (1.6) with c /= 0. Then we have

I(λ) =
n−1∑

s=0

asM[h; s + α]λ−s−α + δn(λ), (1.9)
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where

M[h; s + α] =
∫∞

0
ts+α−1h(t)dt, (1.10)

and the remainder satisfies

δn(λ) =
(−1)n
λn

∫∞

0
f
(n)
n (t)h(−n)(λt)dt. (1.11)

As an application of the above theorem, Wong [2, page 753] has derived the following
asymptotic expansion for the Fourier transform for large values of λ:

∫∞

0
f(t)eiλtdt =

n−1∑

s=0

ase
iπ(s+α)/2Γ(s + α)λ−s−α +

(
i

λ

)n∫∞

0
f
(n)
n (t)eiλtdt. (1.12)

The asymptotic expansion of the wavelet transform (1.2) for large values of dilation
parameter a has already been obtained in [3].

The aim of the present paper is to derive asymptotic expansion of the wavelet
transform given by (1.2) for large and small values of b. In Section 2 we assume that f̂(ω)
and ψ̂(ω) possess asymptotic expansions of the form (1.5) as ω → 0+ and derive asymptotic
expansion of (W+

ψf)(b, a) as b → ∞ using formula (1.12). Asymptotic expansions of certain
special forms of the wavelet transform are obtained in Sections 3–5. In Section 6 we assume
that asymptotic expansions of f̂(ω) and ψ̂(ω) are known as ω → ∞ and derive asymptotic
expansion of (W+

ψf)(b, a) as b → 0+, using Theorem 6.1 due to Wong [4, Theorem 14, page
323]. In Section 7 we assume the asymptotic expansions of f(t) and ψ(t) as t → 0+ and
derive asymptotic expansions of f̂(ω) and ψ̂(ω) as ω → ∞, using (1.12). These asymptotic
expansions of f̂(ω) and ψ̂(ω) give rise to the asymptotic expansion of (W+

ψf)(b, a) as b → 0+,
using Theorem 6.1.

2. Asymptotic Expansion for Large b

Let us rewrite (1.2) in the following form:

(
Wψf

)
(b, a) =

√
a

2π

{∫∞

0
eibωψ̂(aω)f̂(ω)dω +

∫∞

0
e−ibωψ̂(−aω)f̂(−ω)dω

}

=
(
W+

ψf
)
(b, a) +

(
W−

ψf
)
(b, a)

(
say
)
,

(2.1)
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where for definiteness we take b ∈ R+ and a ∈ R+. Now, we consider

(
W+

ψf
)
(b, a) =

√
a

2π

∫∞

0
eibωψ̂(aω)f̂(ω)dω. (2.2)

Assume that

ψ̂(ω) ∼
∞∑

s=0

asω
s+α−1, as ω −→ 0, (2.3)

then for arbitrary but fixed a ∈ R+, we have

ψ̂(aω) ∼
∞∑

s=0

a′s ω
s+α−1, as ω −→ 0, (2.4)

where a′s = asa
s+α−1.

Next, assume that

f̂(ω) ∼
∞∑

r=0

brω
r+β−1, as ω −→ 0. (2.5)

Then

ψ̂(aω)f̂(ω) ∼
∞∑

s=0

a′s ω
s+α−1

∞∑

r=0

brω
r+β−1 = ωα+β−2

∞∑

r=0

crω
r, (2.6)

where

cr = a′0br + · · · + a′rb0 =
r∑

m=0

a′mbr−m =
r∑

m=0

ama
m+α−1br−m. (2.7)

Now, for fixed a ∈ R+, write

φ(ω) := ψ̂(aω)f̂(ω) ∼
∞∑

r=0

crω
r+γ−1, (2.8)

where γ = α + β − 1.
Let us set

φ(ω) =
n−1∑

r=0

crω
r+γ−1 + φn(ω), as ω −→ 0, (2.9)

and assume that (i) φ(n)(t) is continuous on (0,∞), where n is a nonnegative integer; (ii)
the expansion (2.9) can be differentiated n times; (iii) as ω → ∞, φ(j)(ω) = O(ω−1−η) for
j = 0, 1, . . . , n and for some η > 0.
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Then, by (1.12), for 1 < α + β ≤ 2,

∫∞

0
eibωψ̂(aω)f̂(ω)dω =

∫∞

0
eibωφ(ω)dω

=
n−1∑

r=0

cre
iπ(r+γ)/2Γ

(
r + γ

)
b−r−γ +

(
i

b

)n∫∞

0
eibωφ

(n)
n (ω)dω.

(2.10)

Similarly, we get

∫∞

0
e−ibωψ̂(−aω)f̂(−ω)dω = −

n−1∑

r=0

cre
iπ(r+γ)/2Γ

(
r + γ

)
b−r−γ +

(
i

b

)n∫∞

0
e−ibωφ(n)

n (−ω)dω.

(2.11)

Notice that the series expansions in (2.10) and (2.11) are the same but opposite in sign.
Therefore, we find asymptotic expansion of (W+

ψf)(b, a) only. From (2.2) and (2.10), we have

(
W+

ψf
)
(b, a) =

√
a

2π

{
n−1∑

r=0

crΓ
(
r + α + β − 1

)
eiπ(r+α+β−1)/2b−r−α−β+1 +

(
i

b

)n∫∞

0
eibωφ

(n)
n (ω)dω

}

=
√
a

2π

{
n−1∑

r=0

r∑

m=0

ambr−maα+m−1Γ
(
r + α + β − 1

)
b−r−α−β+1

×eiπ(r+α+β−1)/2 +
(
i

b

)n∫∞

0
eibωφ

(n)
n (ω)dω

}

.

(2.12)

3. Mexican Hat Wavelet Transform

In this section we choose ψ to be Mexican hat wavelet and derive asymptotic expansion of
the corresponding wavelet transform. The Mexican hat wavelet is defined by

ψ(t) =
(
1 − t2

)
e−t

2/2, (3.1)

then from [1, page 372],

ψ̂(ω) =
√
2πω2e−ω

2/2. (3.2)
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Now, in view of (2.5), we have

φ(ω) := f̂(ω)ψ̂(aω)

∼
∞∑

r=0

brω
r+β−1√2πa2ω2e−a

2ω2/2

=
√
2πa2

∞∑

r=0

brω
r+β−1ω2

∞∑

s=0

(

−a
2

2

)s
ω2s

s!

=
√
2πa2ωβ+1

∞∑

r=0

∞∑

s=0

br

(

−a
2

2

)s
ω2s+r

s!

=
√
2πa2ωβ+1

∞∑

r=0

[r/2]∑

j=0

br−2j
j!

(

−a
2

2

)j

ωr

=
∞∑

r=0

crω
r+β+1,

(3.3)

where

cr =
√
2πa2

[r/2]∑

j=0

br−2j
j!

(

−a
2

2

)j

, (3.4)

where [r/2] stands for the greatest positive integer ≤ r/2. To ensure that (W+
ψf)(b, a) exists

for large values of b we also impose the condition that f̂(u) = O(eσu
2
) for some real number

σ > 0 as u → +∞. Also, from (3.3) and (2.8) we conclude that in the present case α = 3.
Therefore, from (2.12), using (3.4) we get

(
W+

ψf
)
(b, a) =

√
a

2π

⎧
⎨

⎩

√
2πa2

n−1∑

r=0

[r/2]∑

j=0

(

−a
2

2

)j
br−2j
j!

Γ
(
r + β + 2

)
b−r−β−2

×eiπ(r+β+2)/2 +
(
i

b

)n∫∞

0
eibωφ

(n)
n (ω)dω

}
.

(3.5)

4. Morlet Wavelet Transform

In this section we choose

ψ(t) = eiω0t−t2/2. (4.1)

Then from [1, page 373],

ψ̂(ω) =
√
2πe−(ω−ω0)2/2. (4.2)
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Now,

ψ̂(aω) =
√
2πe−ω

2
o/2eaω0ωe−a

2ω2/2

=
√
2πe−ω

2
o/2

∞∑

r=0

(aω0ω)r

r!

∞∑

s=0

(

−a
2

2

)s
ω2s

s!

=
√
2πe−ω

2
o/2

∞∑

r=0

∞∑

s=0

(

−a
2

2

)s
(aω0)rωr+2s

r!s!

=
√
2πe−ω

2
o/2

∞∑

r=0

[r/2]∑

j=0

(

−a
2

2

)s
(aω0)r−2jωr

j!
(
r − 2j

)
!

=
∞∑

r=0

Arω
r,

(4.3)

where

Ar =
√
2πe−ω

2
o/2

[r/2]∑

j=0

(

−a
2

2

)s
(aω0)r−2j

j!
(
r − 2j

)
!
. (4.4)

Hence

φ(ω) := f̂(ω)ψ̂(aω)

∼
∞∑

r=0

brω
r+β−1

∞∑

p=0

Apω
p

= ωβ−1
∞∑

r=0

brω
r

∞∑

p=0

Apω
p

=
∞∑

r=0

⎛

⎝
r∑

p=0

Apbr−p

⎞

⎠ωr+β−1

=
∞∑

r=0

crω
r+β−1,

(4.5)

where

cr =
r∑

p=0

Apbr−p. (4.6)
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Also, from (2.8) and (4.5) it follows that α = 1. Therefore, from (2.12), using (4.6)we get

(
W+

ψf
)
(b, a) =

√
a

2π

⎧
⎨

⎩

n−1∑

r=0

r∑

p=0

Apbr−pΓ
(
r + β

)
b−r−βeiπ(r+β)/2

+
(
i

b

)n∫∞

0
φ
(n)
n (ω)eibωdω

}

.

(4.7)

5. Haar Wavelet Transform

The Haar wavelet is defined by

ψ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, 0 ≤ t < 1/2,

−1, 1/2 ≤ t < 1,

0, otherwise,

(5.1)

whose Fourier transform [1, page 368] is

ψ̂(ω) =
i
(
2e−iω/2 − 1 − e−iω)

ω
. (5.2)

Therefore, Haar wavelet transform on half-line is given by

(
W+

ψf
)
(b, a) =

i√
a2π

∫∞

0
eibωf̂(ω)

(
1
ω

+
eiaω

ω
− 2eiaω/2

ω

)

dω

=
i√
a2π

{∫∞

0
eibω

f̂(ω)
ω

dω +
∫∞

0
eib(ω+a)

f̂(ω)
ω

dω − 2
∫∞

0
eib(ω+a/2)

f̂(ω)
ω

dω

}

.

(5.3)

For f̂(ω) possessing asymptotic behavior (2.5), we have

f̂(ω)
ω

∼
∞∑

r=0

arω
r+β−2. (5.4)

Then, from (5.3) and (5.4) using formula [2, page 753]

M
[
eit; z

]
= eizπ/2Γ(z), (5.5)
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we get, for β ≥ 1 and b → ∞,

(
W+

ψf
)
(b, a)

=
i√
a2π

∞∑

r=0

arΓ
(
r + β − 1

)
eiπ(r+β−1)/2 ×

(
b−r−β+1 + (b + a)−r−β+1 − 2(b + a/2)−r−β+1

)

=
i√
a2π

∞∑

r=0

arΓ
(
r + β − 1

)
eiπ(r+β−1)/2

×
{

b−r−β+1 +
∞∑

s=0

(−r − β + 1

s

)

a−sb−r−β−s+1 − 2
∞∑

s=0

(−r − β + 1

s

)(a
2

)−s
b−r−β−s+1

}

.

(5.6)

6. Asymptotic Expansion for Small b

In this section we assume that asymptotic expansions of f̂(ω) and ψ̂(ω) asω → ∞ are known
and then derive asymptotic expansion of (W+

ψf)(b, a) as b → 0+ for fixed a > 0, using the
following [4, Therorem 14, page 323].

Theorem 6.1. Let f be a locally integrable function on (0,∞) and let f(t) possess an asymptotic
expansion of the form

f(t) ∼
n−1∑

s=0

a∗st
−s−α + fn(t), as t −→ ∞, (6.1)

where 0 < α < 1. Then for small values of ω,

∫∞

0
f(t)eitωdt = e−iαπ/2

n−1∑

s=0
(−i)s−1a∗sΓ(1 − s − α)ωs+α−1 −

n∑

s=1

c∗s(−iω)s−1 + Rn(ω), (6.2)

where

c∗s =
(−1)s
(s − 1)!

M
[
f ; s
]
,

Rn(ω) = (−iω)n
∫∞

0
eiωtfn,n(t)dt

(6.3)

with

fn,n(t) =
(−1)n
(n − 1)!

∫∞

t

(τ − t)n−1fn(τ)dτ. (6.4)
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Let

f̂(ω) ∼
∞∑

s=0

bsω
−s−α as ω −→ ∞,

ψ̂(ω) ∼
∞∑

r=0

asω
−r−β as ω −→ ∞.

(6.5)

Then, writing a′r = a
−r−α ar , we have

ψ̂(aω)f̂(ω) ∼
∞∑

r=0

a′rω
−r−α

∞∑

s=0

bsω
−s−β = ω−α−β

∞∑

r=0

crω
−r , (6.6)

where

cr = a′0br + · · · + a′rb0 =
r∑

m=0

a′mbr−m =
r∑

m=0

ama
−m−αbr−m. (6.7)

Now, for fixed a ∈ R+, write

φ(ω) := ψ̂(aω)f̂(ω)

∼
∞∑

r=0

crω
−r−α−β, ω −→ ∞

=
n−1∑

r=0

crω
−r−α−β + φn(ω),

(6.8)

where 0 < α + β < 1.
Then, using (2.2), (6.2), and (6.8), we find asymptotic expansion of wavelet transform

for small value of b:

(
W+

ψf
)
(b, a) = e−iπ(α+β)/2

n−1∑

s=0
(−i)s−1csΓ

(
1 − s − α − β)bs+α+β−1 −

n∑

s=1

D∗
s(−ib)s−1 + R∗

n(b),

(6.9)

where

D∗
s =

(−1)s
(s − 1)!

M
[
φ; s
]
,

R∗
n(ω) = (−ib)n

∫∞

0
eibtφn,n(t)dt

(6.10)
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with

φn,n(t) =
(−1)n
(n − 1)!

∫∞

t

(τ − t)n−1φn(τ)dτ. (6.11)

7. Asymptotic Expansion for Small b Continued

In this section we assume that asymptotic expansions of f and ψ are known, instead of f̂(ω)
and ψ̂(ω) as in previous sections. Then as in [2, page 753] we get asymptotic expansions of
f̂(ω) and ψ̂(ω) asω → ∞. On the other hand, in (2.3) and (2.5) their behaviors near the origin
were known, that yielded the asymptotic expansion of (W+

ψf)(b, a) as b → ∞. However, in
this case, following [4, pages 321–323] we can obtain asymptotic expansion of (W+

ψf)(b, a)as
b → 0+.

Let

f(t) ∼
∞∑

s=0

b′st
s+α′−1, as t −→ 0, 0 < α′ < 1,

ψ(t) ∼
∞∑

r=0

a′r t
r+β′−1, t −→ 0.

(7.1)

Now, using (1.12)

f̂(ω) =
∫∞

0
e−itωf(t)dt

∼
∞∑

s=0

b′se
−iπ(s+α′)/2Γ

(
s + α′

)
ω−s−α′ , as ω −→ +∞.

(7.2)

Similarly,

ψ̂(ω) =
∫∞

0
e−itωψ(t)dt

∼
∞∑

r=0

a′re
−iπ(r+β′)/2Γ

(
r + β′

)
ω−r−β′ as ω −→ +∞.

(7.3)

Then

φ(ω) := f̂(ω)ψ̂(aω) ∼
∞∑

r=0

drω
−r−α′−β′ , (7.4)

where

dr = e−iπ(−r+α
′−β′)

r∑

m=0

b′ma
−(r−m)−β′a′r−me

−iπ2mΓ
(
α′ +m

)
Γ
(
β′ + r −m). (7.5)
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Let us set

φ(ω) =
n−1∑

r=0

drω
−r−α′−β′ + φn(ω), (7.6)

where 0 < α′ + β′ < 1.
Assume that φ(ω) = f̂(ω)ψ̂(aω) integrable is locally on (0,∞). Then applying (6.2) to

(2.2) with φ(ω) given by (7.6), finally we get

(
W+

ψf
)
(b, a) = e−iπ(α

′+β′)/2
n−1∑

s=0
(−i)s−1dsΓ

(
1 − s − α′ − β′)bs+α′+β′−1 −

n∑

s=1

Ds(−ib)s−1 + R∗
n(b),

(7.7)

where

Ds =
(−1)s
(s − 1)!

M
[
φ ; s

]
,

R∗
n(b) = (−ib)n

∫∞

0
eibtφn,n(t)dt

(7.8)

with

φn,n(t) =
(−1)n
(n − 1)!

∫∞

t

(τ − t)n−1φn(τ)dτ. (7.9)

Remark 7.1. We observe that if we assume the asymptotic expansions f(t) and ψ(t) as t → ∞
and derive asymptotic expansions of f̂(ω) and ψ̂(t) as ω → ∞ , then formula (1.2) gives
asymptotic expansion of (W+

ψf)(b, a) as b → 0+ for fixed a > 0. The aforesaid technique
does not yield asymptotic expansion of (W+

ψf)(b, a) as b → ∞ using (1.2). However, if one
uses the form (1.1) of the wavelet transform and applies Li and Wong-technique involving a
theory of noncommutative convolution [5], asymptotic expansion of (W+

ψf)(b, a) as b → ∞
can be obtained. This gives rise to a complicated form of the asymptotic expansion and needs
separate treatment [6].
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