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Let {X,Xn;n ∈ Zd
+} be a sequence of i.i.d. real-valued random variables, and Sn =

∑
k≤n Xk , n ∈ Zd

+ .
Convergence rates of moderate deviations are derived; that is, the rates of convergence to zero of
certain tail probabilities of the partial sums are determined. For example, we obtain equivalent
conditions for the convergence of the series

∑
n b(n)ψ

2(a(n))P{|Sn| ≥ a(n)φ(a(n))}, where a(n) =
n1/α11 · · ·n1/αd

d
, b(n) = n

β1
1 · · ·nβd

d
, φ and ψ are taken from a broad class of functions. These results

generalize and improve some results of Li et al. (1992) and some previous work of Gut (1980).
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1. Introduction

Let Zd
+ be the set of all positive integer d–dimensional lattice points with coordinate-wise

partial ordering, ≤; that is, for every m = (m1, . . . , md), n = (n1, . . . , nd) ∈ Zd
+ , m ≤ n if and

only if mi ≤ ni, i = 1, 2, . . . , d, where d ≥ 1 is a fixed integer. |n| denote∏d
i=1ni and n → ∞

means ni → ∞, i = 1, 2, . . . , d. Throughout the paper, {X,Xn,Xn;n ∈ Z+, n ∈ Zd
+} are i.i.d.

random variables with EX = 0 and EX2 = σ2. Let Sn =
∑n

k=1Xk, and Sn =
∑

k≤n Xk. we define

a(n) = n1/α11 · · ·n1/αdd , b(n) = nβ11 · · ·nβdd , (1.1)

where α1, . . . , αd; β1, . . . , βd are real numbers with 0 < αi ≤ 2, βi ≥ −1, i = 1, 2, . . . , d. Further,
set α = max{αi; 1 ≤ i ≤ d}, s = max{αi(βi + 1); 1 ≤ i ≤ d}, r = max{αi(βi + 2); 1 ≤ i ≤ d}, q =
card{i : αi(βi + 2) = r}, and p = card{i : αi(βi + 2) = 1}.
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Hartman and Wintner [1] studied the fundamental strong laws of classic Probability
Theory for i.i.d random variables {X,Xn;n ∈ Z+} and obtained the following Hartman-
Wintner law of the iterated logarithm (LIL).

Theorem 1.1. EX = 0 and EX2 = σ2 <∞ if and only if

lim sup
n→∞

Sn
(
2n log logn

)1/2 = −lim inf
n→∞

Sn
(
2n log logn

)1/2 = σ a.s. (1.2)

Afterward, the study of the estimate of the convergence rate in the above relation (1.2)
has been attracting the attention of various researchers over the last few decades. Darling
and Robbins [2], Davis [3], Gafurov [4], and Li [5] have obtained some good results on the
estimate of convergence rate in (1.2). The best result is probably the one given by Li et al. [6].
For easy reference, we restate their result in Theorem 1.2.

Theorem 1.2. Let φ(t) and ψ(t) be two positive real-valued functions on [1,∞) such that φ(t) is
nondecreasing, limt→∞φ(t) = ∞, and ψ(t) = O(φ(t)) as t → ∞. For t ≥ 0, let σ2(t) = EX2I{|X| <√
t} − (EXI{|X| < √

t})2, and σ2
n

Δ= σ2(nφ2(n)). Then the following results are equivalent:

∑

n≥1

ψ2(n)
n

P
{
|Sn| ≥ n1/2φ(n)

}
<∞, (1.3)

∑

n≥1

ψ2(n)
nφ(n)

exp

(

−φ
2(n)

2σ2
n

)

<∞. (1.4)

If, in addition, EX2I{|X| > t} = O(1/ log log t) as t → ∞, then (1.3) is equivalent to the following:

∑

n≥1

ψ2(n)
nφ(n)

exp
(

−1
2
φ2(n)

)

<∞. (1.5)

Note that the above result is the best possible for n.
Further Strassen [7] introduced an almost sure invariance principle for the Brownian

motion and obtained Strassen law of the iterated logarithm. In [8], Wichura generalized
Strassen laws of the iterated logarithm for the stochastic processes with multidimensional
indices and derived the following version of LIL for multidimensionally indexed i.i.d.
random variables {X,Xn;n ∈ Zd

+}, which is called the Wichura LIL.

Theorem 1.3. EX = 0, EX2 = σ2, and EX2(log+|X|)d−1 < +∞ if and only if

lim sup
|n|→∞

Sn
(
2σ2|n| log log|n|)1/2

=
√
d a.s. (1.6)
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However the analogue of Theorem 1.2 is not yet available in the situation, where the i.i.d.
random variables are multidimensionally indexed. This motivates us to consider the estimate
of convergence rate in the relation (1.6). Towards this end, we consider the equivalence of the
following statements:

∑

n

ψ2(|n|)
|n| P

{|Sn| ≥ |n|φ(|n|)} <∞, (1.7)

∑

n

ψ2(|n|)
|n|φ(|n|) exp

⎛

⎝−φ
2(|n|)
2σ2

|n|

⎞

⎠ <∞, (1.8)

∑

n

ψ2(|n|)
|n|φ(|n|) exp

(

−1
2
φ2(|n|)

)

<∞, (1.9)

where φ(t) and ψ(t) are the same as those in Theorem 1.1.
Gut [9] has obtained some equivalent conditions of (1.7) for special functions

φ(|n|) = ε(log |n|)1/2, and ψ(|n|) = (log |n|). For φ(|n|) = log log |n|, and ψ(|n|) = log |n|,
he also obtained sufficient conditions of (1.7). Recently, many researchers focus on the
precise asymptotics in some strong limit theorems for multidimensionally indexed random
variables (see Gut and Spătaru [10], Jiang et al. [11], Jiang and Yang [12], and Su [13]).
However for the general form of functions φ(x) and ψ(x) there is no discussion on the
equivalences of (1.7) and (1.8) or (1.7) and (1.9) for the multidimensionally indexed random
variables.

Therefore the aim of the present paper is to discuss the equivalences of (1.7) and (1.8)
or of (1.7) and (1.9). In addition, for general φ and ψ, we will also consider the equivalence
of the following statements:

∑

n

b(n)ψ2(a(n))P
{|Sn| ≥ a(n)φ(a(n))

}
<∞, (1.10)

∑

n

b(n)ψ2(a(n))|n|1/2
a(n)φ(a(n))

exp

(

−a
2(n)φ2(a(n))

2|n|σ2
a(n)

)

<∞, (1.11)

∑

n

b(n)ψ2(a(n))|n|1/2
a(n)φ(a(n))

exp

(

−a
2(n)φ2(a(n))

2|n|

)

<∞. (1.12)

The equivalence of (1.7) and (1.8) (or (1.7) and (1.9) ) follows from that of (1.10) and (1.11)
(or (1.10) and (1.12) ). Thus the main results of this paper not only generalize the result
of Li et al. [6], but also improve the theorems of Gut [9]. The remainder of the paper is
organized as follows. In Section 2, themain results are stated; proofs of which are presented in
Section 4. In Section 3, we give some auxiliary results needed in the proofs of the theorems in
Section 2.
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2. Main Results

Let {X,Xn;n ∈ Zd
+} be a sequence of real-valued random variables with EX = 0, EX2 = 1,

and let Sn =
∑

k≤n Xk, where n ∈ Zd
+ . φ(t), ψ(t) and σ2(t) are the same as in Theorem 1.1.

For convenience, we use the symbols σ2
n

to denote σ2(|n|φ2(|n|)) and σ2
a(n) to denote

σ2(a(n)φ2(a(n))). Let Lx = L1x = log max(e, x) and Lkx = L(Lk−1x) for k ≥ 2. We
use Lx and logx interchangeably. We do the same for L2x and log logx. log+x stands for
max{1, logx}.

The following is a general result, which improves a number of existing results in the
literature.

Theorem 2.1. If E|X|r(log+|X|)q−1+p < ∞ and α = 2, then (1.10) and (1.11) are equivalent. If,
in addition, EX2I{|X| > a(n)φ(a(n))} = O(|n|/(a2(n)φ2(a(n)))), then (1.10) and (1.12) are
equivalent.

By taking a(n) = |n|1/2 and b(n) = |n|−1 from Theorem 2.1, respectively, we obtain the
following Theorems 2.2 and 2.3.

Theorem 2.2. Let E|X|2(β+2)(log+|X|)q1−1 < ∞, where β = max{βi, 1 ≤ i ≤ d} > −1, and q1 =
card{i : βi = β}. Then the following results are equivalent:

∑

n

b(n)ψ2(|n|)P
{
|Sn| ≥ |n|1/2φ(|n|)

}
<∞, (2.1)

∑

n

b(n)ψ2(|n|)
φ(|n|) exp

⎛

⎝−φ
2(|n|)

2σ2
|n|1/2

⎞

⎠ <∞. (2.2)

Moreover, if EX2I{|X| > |n|1/2φ(|n|)} = O(φ−2(|n|)), then (2.1) is equivalent to

∑

n

b(n)ψ2(|n|)
φ(|n|) exp

(

−1
2
φ2(|n|)

)

<∞. (2.3)

Theorem 2.3. Suppose that α = 2 and E|X|2(log+|X|)q2−1 < +∞, where q2 = card{i : αi = 2}, then
the following are equivalent:

∑

n

|n|−1ψ2(a(n))P
{|Sn| ≥ a(n)φ(a(n))

}
<∞, (2.4)

∑

n

ψ2(a(n))|n|−1/2
a(n)φ(a(n))

exp

(

−a
2(n)φ2(a(n))

2|n|σ2
a(n)

)

<∞. (2.5)
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If, in addition, EX2I{|X| ≥ a(n)φ(a(n))} = O(|n|/a2(n)φ2(a(n))), then (2.4) is equivalent to

∑

n

ψ2(a(n))|n|−1/2
a(n)φ(a(n))

exp

(

−a
2(n)φ2(a(n))

2|n|

)

<∞. (2.6)

In particular, we obtain the equivalence of (1.7) and (1.9).

Theorem 2.4. Let E|X|2(log+|X|)d−1 <∞ and d ≥ 2. Then, (1.7) and (1.9) are equivalent.

Remarks. (i)If r = 2, then the condition that EX2I{|X| > a(n)φ(a(n))} = O(|n|/
(a2(n)φ2(a(n)))) can be replaced by EX2I{|X| > a(n)φ(a(n))} = O(|n|/(a2(n) log loga(n)))
in Theorem 2.1. This leads to the equivalence of the following two results:

∑

n

b(n)ψ2(a(n))|n|1/2
a(n)φ(a(n))

exp

(

−a(n)φ
2(a(n))

2|n|σ2
a(n)

)

<∞, (2.7)

∑

n

b(n)ψ2
1(a(n))|n|1/2

a(n)φ1(a(n))
exp

(

−a(n)φ
2
1(a(n))

2|n|σ2
a(n)

)

<∞, (2.8)

where

φ1(t) =

⎧
⎨

⎩

2(d + 1)
(
log2t

)1/2
, ifφ(t) ≥ 2(d + 1)

(
log2t

)1/2
,

φ(t), otherwise,

ψ1(t) =

⎧
⎨

⎩

2(d + 1)
(
log2t

)1/2
, ifψ(t) ≥ 2(d + 1)

(
log2t

)1/2
,

ψ(t), otherwise.

(2.9)

To see this, we note that

∑

n

b(n)
(
2(d + 1)log2a(n)

)1/2|n|1/2
a(n)

exp

(

−a(n)2(d + 1)log2a(n)

2|n|σ2
a(n)

)

<∞. (2.10)

The equivalence of (2.7) and (2.8) follows immediately from (2.10) and σ2
a(n) →

1, φ1(t) ≤ φ(t), and ψ1(t) ≤ ψ(t). Equation (2.10) does not converge if r > 2. Therefore,
the assumption EX2I{|X| > |n|1/2φ(n)} = O(φ−2(|n|)) in Theorem 2.2 cannot be relaxed.
Under the assumption that φ(t) = O(t−(β+1)/2β), EX2I{|X| ≥ a(n)φ(a(n))} = O(φ−2(|n|)) can
be removed. Similarly, EX2I{|X| ≥ a(n)φ(a(n))} = O(|n|/a2(n)φ2(a(n))) can be replaced by
EX2I{|X| ≥ a(n)φ(a(n))} = O(|n|/(a2(n)log2a(n))) in Theorem 2.3.

(ii) In Theorem 2.4, EX2(log+|X|)d−1 < +∞ implies EX2I{|X| ≥ √
t} = O(1/(log log t ).

From (i), EX2I{|X| > |n|1/2φ(|n|)} = O(φ−2(|n|)) may be discarded.
(iii) If d = 1, we can obtain Theorem 2.1 of Li et al. [6] from Theorem 2.1.
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In the previous theorems, we assumed that ψ(t) = O(φ(t)). Now we relax this
assumption and obtain the following better result.

Theorem 2.5. Let φ(t) and ψ(t) be slowly varying functions, and let φ(t) be nondecreasing with
φ(t) → ∞ (t → ∞). Then the following are equivalent:

E(H(|X|))r(log+H(|X|))q−1+pψ(H(|X|)) <∞,

∑

n

b(n)ψ(a(n))|n|1/2
a(n)φ(a(n))

exp

(

−a
2(n)φ2(a(n))

2|n|σ2
a(n)

)

<∞,
(2.11)

∑

n

b(n)ψ(a(n))P
{|Sn| ≥ a(n)φ(a(n))

}
<∞. (2.12)

If, in addition, EX2I{|X| > a(n)φ(a(n))} = O(|n|/a2(n)φ2(a(n))), then (2.12) is equivalent to the
following:

E(H(|X|))r(log+H(|X|))q−1+pψ(H(|X|)) <∞,

∑

n

b(n)ψ(a(n))|n|1/2
a(n)φ(a(n))

exp

(

−a
2(n)φ2(a(n))

2|n|

)

<∞,
(2.13)

whereH(X) is the reverse function of tφ(t) and α, r, q, and p are the same as in Theorem 2.1.

Similar to Theorems 2.2 and 2.3, by choosing specific φ(n) and ψ(n), we get the
convergence rate for the LIL of random variables with multidimensional indices.

Corollary 2.6. Under the conditions of Theorem 2.5, if r = 2 and q > 1, then the following are
equivalent:

EX2(log+|X|)q−1(log+log+|X|)γ−1 <∞,

EX = 0, EX2 = 1,
(2.14)

∑

n

b(n)
(
log2a(n)

)γ
P

{

|Sn| ≥ a(n)
√
δlog2a(n)

}

<∞ for δ > 2q3, (2.15)

where q3 = card{i : βi = 1}. In particular, for d > 1, the following are equivalent:

EX2(log+|X|)d−1(log+ log+|X|)γ−1 <∞,

EX = 0, EX2 = 1,
(2.16)

∑

n

|n|−1(log2|n|
)γ
P

{

|Sn| ≥
√
2(d + ε)|n|log2|n|

}

<∞ for each ε > 0. (2.17)
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Let φ1, . . . , φd;ψ1, . . . , ψd be functions satisfying the previous assumptions. We now
consider the equivalence of the following statements:

∑

n

(
d∏

i=1

ψ2
i (ni)
ni

)

P
{
|Sn| ≥ |n|1/2φ1(n1) · · ·φd(nd)

}
<∞, (2.18)

∑

n

(
d∏

i=1

ψ2
i (ni)

niφi(ni)

)

exp

(

− 1
2σ2

n

d∏

i=1

φ2
i (ni)

)

<∞, (2.19)

∑

n

(
d∏

i=1

ψ2
i (ni)

niφi(ni)

)

exp

(

−1
2

d∏

i=1

φ2
i (ni)

)

<∞ (2.20)

and obtain the following theorem.

Theorem 2.7. If EX2(log+|X|)δ < ∞ for δ > d − 1, then (2.18) and (2.19) are equivalent. If, in
addition, EX2I{|X| ≥ |n|1/2∏d

i=1φi(ni)} = O(
∏d

i=1φ
−2(ni)), then (2.18) and (2.20) are equivalent.

3. Auxiliary Results

In this section we give some lemmas that will be of use later. Again {X,Xn;n ∈ Zd
+} are i.i.d.

random variables with mean zero. C denotes a generic positive constant which varies from
line to line. The notation � between sums and/or integrals will be used to denote that the
quantities on either of the sign converge simultaneously and f(x) ≈ g(x) means that there
are constants C1 and C2 such that for every x greater than some x0, C1g(x) ≤ f(x) ≤ C2g(x).

Lemma 3.1. Let {αi; 1 ≤ i ≤ d}, {τi; 1 ≤ i ≤ d} be real numbers with αi ≥ 0, and let
a(n) = n1/α11 · · ·n1/αd

d
, t(n) = nτ11 · · ·nτd

d
, and s(x) be a nondecreasing varying function. Define

α = max{αi; 1 ≤ i ≤ d}, r = max{αi(τi + 1); 1 ≤ i ≤ d}, q = card{i : αi(τi + 1) = r}, p =
card{i : (τi + 1) = 0}, and τ = max{τi; 1 ≤ i ≤ d}. For each x ≥ 0, define

g1(x) =
∑

a(n)≥x
t(n), g2(x) =

∑

a(n)≥x
t(n)s(|n|),

f1(x) =
∑

a(n)≤x
t(n), f2(x) =

∑

a(n)≤x
t(n)s(|n|).

(3.1)

One has the following conclusions.

(i) If τ + 1 ≤ 0, then f1(x) ≈ (log+x)p, f2(x) ≈ s(x)(log+x)p.
(ii) If τ + 1 > 0, then f1(x) ≈ xr(log+x)p+q−1, f2(x) ≈ xr(log+x)q+p−1s(x).
(iii) If τ + 1 < 0, then g1(x) ≈ xr(log+x)q−1, g2(x) ≈ xr(log+x)q−1s(x).

This lemma extends Lemma 1.1 of Giang [14]. Since the proof is similar to that of
Lemma 1.1 in Giang [14], the details are omitted.

Lemma 3.2. Let τi ≤ −1, (1 ≤ i ≤ d), t(n) = nτ11 · · ·nτd
d
, and k = card{i : τi = −1}. Then

∑
n t(n)(log |n|)−β converges if β > k and diverges if β ≤ k.



8 International Journal of Mathematics and Mathematical Sciences

Proof. Without loss of generality, let τ1 = · · · = τk = −1, and τk+1 < −1, . . . , τd < −1. For large
|n|,we have

(
logn1 · · ·nk

)−β(lognk+1 · · ·nd
)−β ≤ (log|n|)−β ≤ (logn1 · · ·nk

)−β
. (3.2)

Thus,

∑

n

t(n)
(
log|n|)−β ≈

∑

n1···nk
(n1 · · ·nk)−1

(
logn1 · · ·nk

)−β
. (3.3)

The lemma follows from Lemma 5.1 of Gut [9].

Remark 3.3. From Lemma 3.2, one may show that
∑

n t(n)(log |n|)−β(log2|n|)r converges for
−∞ < r <∞ if β > k.

The following lemma gives the estimate of the remainder term in the central limit
theorem [15, page 125, Theorem 15]which plays an important role in the proofs of theorems
in this paper.

Lemma 3.4. Let {X,Xn;n ≥ 1} be i.i.d. random variables with EX = 0, EX2 = 1, and E|X|3 < +∞.
Then for all x,

|Fn(x) −Φ(x)| ≤ C E|X|3
√
n
(
1 + |x|3

) , (3.4)

where Fn(x) = P((1/
√
n)
∑n

i=1Xi ≤ x),Φ(x) = (1/
√
2π)
∫x
−∞e

−t2/2dt.

4. Proofs of Main Results

Proof of Theorem 2.1. We first show that

∑

n

b(n)ψ2(a(n))

∣
∣
∣
∣
∣
P
{
Sn ≥ a(n)φ(a(n))} −Φ

(

−a(n)φ(a(n))
|n|1/2σa(n)

)∣
∣
∣
∣
∣
<∞, (4.1)

where σ2
a(n) = σ

2(a2(n)φ2(a(n))) = EX2I{|X| ≤ a(n)φ(a(n))} − (EXI{|X| ≤ a(n)φ(a(n))})2.
For convenience, letH(n) = a(n)φ(a(n)). For k ≤ n, define

X′
k = XkI{|Xk| < H(n)}. (4.2)
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We have that

∣
∣
∣
∣
∣
∣
P{Sn > H(n)} − P

⎧
⎨

⎩

∑

k≤n
X′
k
> H(n)

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
≤ |n|P{|X| ≥ H(n)}. (4.3)

Now, putMn = EXI{|X| < H(n)}. Then we easily yield that

|Mn|3 ≤ E|X|3I{|X| < H(n)},

|n|−1/2Mn = −|n|EXI{|X| ≥ H(n)} −→ 0 (|n| −→ ∞),

1 ≥ σ2
a(n) −→ 1 (|n| −→ ∞).

(4.4)

By using Lemma 3.4, we have that

∣
∣
∣
∣
∣
P{Sn > H(n)} −Φ

{

− H(n)

|n|1/2σa(n)

}∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣
P{Sn > H(n)} − P

⎧
⎨

⎩

∑

k≤n
X′
k
> H(n)

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
P

{

−
∑

k≤n
(
Xk −Mk

)

|n|1/2σa(n)
< −H(n) − |n|Mn

|n|1/2σa(n)

}

−Φ

(

−H(n) − |n|Mn

|n|1/2σa(n)

)∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
Φ

(

−H(n) − |n|Mn

|n|1/2σa(n)

)

−Φ

(

− H(n)

|n|1/2σa(n)

)∣
∣
∣
∣
∣

≤ |n|P{|X| ≥ H(n)} + C E|X|3I{|X| < H(n)} + |Mn|3

|n|1/2
(

1 +
∣
∣
∣(H(n) − |n|Mn)/|n|1/2σa(n)

∣
∣
∣
3
)

+ C
|n||Mn|

|n|1/2σa(n)
exp

{

− H
2(n)

|n|σ2
a(n)

}

≤ |n|P{|X| ≥ H(n)} + C |n|
H3(n)

E|X|3I{|X| < H(n)} + C |n|
H(n)

E|X|I{|X| ≥ H(n)}

≤ C |n|
H3(n)

E|X|3I{|X| < H(n)} + C |n|
H(n)

E|X|I{|X| ≥ H(n)}.
(4.5)
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Hence,

∑

n

b(n)ψ2(a(n))

∣
∣
∣
∣
∣
P
{
Sn ≥ a(n)φ(a(n))} −Φ

(

−a(n)φ(a(n))
|n|1/2σa(n)

)∣
∣
∣
∣
∣

≤ C
∑

n

b(n)ψ2(a(n))|n|
H(n)

E|X|I{|X| ≥ H(n)} + C
∑

n

b(n)ψ2(a(n))|n|
H3(n)

E|X|3I{|X| < H(n)}

≡ I1 + I2.
(4.6)

By Lemma 3.1 and max(βi + 1 − 1/αi + 1) ≥ r/2 − 1/2 ≥ 1/2 > 0, we set

I1 = C
∑

n

b(n)ψ2(a(n))|n|
a(n)φ(a(n))

E|X|I{|X| ≥ a(n)φ(a(n))}

≤ C
∑

n

b(n)φ(a(n))|n|
a(n)

E|X|I{|X| ≥ a(n)φ(a(n))}

≤ C
∞∑

i=0

⎛

⎝
∑

i≤a(n)<i+1

b(n)φ(a(n))|n|
a(n)

⎞

⎠E|X|I{|X| ≥ iφ(i)}

≤ C
∑

n

⎛

⎝
∑

i≤a(n)<i+1

b(n)φ(a(n))|n|
a(n)

⎞

⎠
∞∑

j=i

E|X|I{jφ(j) ≤ |X| < (j + 1
)
φ
(
j + 1
)}

≤ C
∞∑

j=0

j∑

i=0

⎛

⎝
∑

i≤a(n)<i+1

b(n)φ(a(n))|n|
a(n)

⎞

⎠E|X|I{jφ(j) ≤ |X| < (j + 1
)
φ
(
j + 1
)}

≤ C
∞∑

j=0

⎛

⎝
∑

0≤a(n)<j+1

b(n)φ(a(n))|n|
a(n)

⎞

⎠E|X|I{jφ(j) ≤ |X| < (j + 1
)
φ
(
j + 1
)}

≤ C
∞∑

j=0

φ
(
j + 1
)
⎛

⎝
∑

0≤a(n)≤j+1

b(n)|n|
a(n)

⎞

⎠E|X|I{jφ(j) ≤ |X| < (j + 1
)
φ
(
j + 1
)}

≤ C
∞∑

j=0

φ
(
j + 1
)(
j + 1
)r−1(log j + 1

)p+q−1
E|X|I{jφ(j) ≤ |X| < (j + 1

)
φ
(
j + 1
)}

≤ C
∞∑

j=0

φ2(j + 1
)(
j + 1
)r(log j + 1

)p+q−1
P
{
jφ
(
j
) ≤ |X| < (j + 1

)
φ
(
j + 1
)}

≤ C
∞∑

j=0

(
φ
(
j + 1
)(
j + 1
))r(log

(
j + 1
)
φ
(
j + 1
))p+q−1

P
{
jφ
(
j
) ≤ |X| < (j + 1

)
φ
(
j + 1
)}
.

(4.7)
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Because lim supx→∞φ(x + 1)/φ(x) < +∞ and φ(x) → ∞, the last expression is finite if and
only if E|X|r(log+|X|)p+q−1 < +∞.

Similarly, because −1 ≤ βi < −1/2, βi + 2 − 3/αi < 0, we have that

I2 = C
∑

n

b(n)ψ2(a(n))|n|
H3(n)

E|X|3I{|X| < H(n)}

≤ C
∞∑

i=1

⎛

⎝
∑

i−1<a(n)≤i

b(n)ψ2(a(n))|n|
a3(n)φ3(a(n))

⎞

⎠E|X|3I{|X| ≤ iφ(i)}

≤ C
∞∑

i=1

⎛

⎝
∑

i−1<a(n)≤i

b(n)φ2(a(n))|n|
a3(n)φ3(a(n))

⎞

⎠
i∑

j=1

E|X|3I{(j − 1
)
φ
(
j − 1
)
< |X| ≤ jφ(j)}

≤ C
∞∑

j=1

∞∑

i=j

⎛

⎝
∑

i−1<a(n)≤i

b(n)|n|
a3(n)φ(a(n))

⎞

⎠E|X|3I{(j − 1
)
φ
(
j − 1
)
< |X| ≤ jφ(j)}

≤ C
∞∑

j=1

⎛

⎝
∑

a(n)≥j−1

b(n)|n|
a3(n)φ(a(n))

⎞

⎠E|X|3I{(j − 1
)
φ
(
j − 1
)
< |X| ≤ jφ(j)}

≤ C
∞∑

j=1

1
φ
(
j − 1
)

⎛

⎝
∑

a(n)≥j−1

b(n)|n|
a3(n)

⎞

⎠E|X|3I{(j − 1
)
φ
(
j − 1
)
< |X| ≤ jφ(j)}

≤ C
∞∑

j=1

φ3(j
)(
j − 1
)r−3(log j

)q−1
j3

φ
(
j − 1
) P

{(
j − 1
)
φ
(
j − 1

)
< |X| ≤ jφ(j)}

≤ C
∞∑

j=1

(
jφ
(
j
))r(log jφ

(
j
))p+q−1

P
{(
j − 1
)
φ
(
j − 1
)
< |X| ≤ jφ(j)}. (4.8)

The last expression is finite if and only if E|X|r(log+|X|)p+q−1 < +∞.
As above, we have that

∑

n

b(n)ψ2(a(n))

∣
∣
∣
∣
∣
P
{−Sn ≥ a(n)φ(a(n))} −Φ

(

−a(n)φ(a(n))
|n|1/2σa(n)

)∣
∣
∣
∣
∣
<∞. (4.9)

By (4.1) and (4.9), we set

∑

n

b(n)ψ2(a(n))

∣
∣
∣
∣
∣
P
{|Sn| ≥ a(n)φ(a(n))

} −Φ

(

−a(n)φ(a(n))
|n|1/2σa(n)

)∣
∣
∣
∣
∣
<∞. (4.10)
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Therefore,

∑

n

b(n)ψ2(a(n))P
{|Sn| ≥ a(n)φ(a(n))

}
<∞ (4.11)

is equivalent to

∑

n

b(n)ψ2(a(n))Φ

(

−a(n)φ(a(n))
|n|1/2σa(n)

)

<∞ (4.12)

(4.12)is also equivalent to the following:

∑

n

b(n)ψ2(a(n))|n|1/2
a(n)φ(a(n))

exp

(

−a
2(n)φ2(a(n))

2|n|σ2
a(n)

)

<∞.
(4.13)

If E|X|2I{|X| > a(n)φ(a(n))} = O(|n|/a2(n)φ2(a(n))), then (4.13) is equivalent to

∑

n

b(n)ψ2(a(n))|n|1/2
a(n)φ(a(n))

exp

(

−a
2(n)φ2(a(n))

2|n|

)

<∞. (4.14)

The theorem is proved.

The proofs of Theorems 2.2, 2.3, and 2.4 are similar to those of Theorem 2.1 and are
omitted. Before proving Theorem 2.5, we first give two lemmas.

Lemma 4.1. Let φ(t) and ψ(t) be slowly varying functions at infinity with φ(t) nondecreasing and
φ(t) → ∞. The following are equivalent:

E(H(|X|))r(log+H(|X|))q−1+pψ(H(|X|)) <∞, (4.15)

∑

n

b(n)ψ(a(n))|n|P{|X| ≥ a(n)φ(a(n))} <∞, (4.16)

whereH(x) is the reverse function of xφ(x).
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Proof. Because αi(βi + 2) ≥ αi > 0, by using Lemma 3.1, we have

∑

n

b(n)ψ(a(n))|n|P{|X| ≥ a(n)φ(a(n))}

�
∞∑

i=1

⎛

⎝
∑

i≤a(n)<i+1
b(n)ψ(a(n))|n|

⎞

⎠P
{|X| ≥ iφ(i)}

=
∞∑

i=1

⎛

⎝
∑

i≤a(n)<i+1
b(n)ψ(a(n))|n|

⎞

⎠
∞∑

j=1

P
{
jφ
(
j
) ≤ |X| < (j + 1

)
φ
(
j + 1
)}

=
∞∑

j=1

⎛

⎝
∑

1≤a(n)<j+1
b(n)ψ(a(n))|n|

⎞

⎠P
{
j ≤ H(|X|) < (j + 1

)}

�
∞∑

j=1

ψ
(
j + 1
)(
j + 1
)r(log

(
j + 1
))q−1+p

P
{
j ≤ H(|X|) < (j + 1

)}
.

(4.17)

The last expression is finite if and only if E(H(|X|))r(log+H(|X|))q−1+pψ(H(|X|)) < +∞. This
completes the proof of the lemma.

Lemma 4.2.
∑

n b(n)ψ(a(n))P{|Sn| ≥ a(n)φ(a(n))} <∞ implies (4.15).

Proof. We first prove the result for symmetric random variables. One may rearrange {Xk, k ≤
n} and obtain {Xj, 1 ≤ j ≤ |n|}. By Levy inequality, we set

P
{
maxk≤n

∣
∣Xk

∣
∣ ≥ a(n)φ(a(n))

}
= P
{

max
1≤j≤|n|

∣
∣Xj

∣
∣ ≥ a(n)φ(a(n))

}

≤ 2P

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

|n|∑

j=1

Xj

∣
∣
∣
∣
∣
∣
≥ a(n)φ(a(n))

⎫
⎬

⎭

= 2P
{|Sn| ≥ a(n)φ(a(n))

}
<∞,

(4.18)

but

P

{

max
k≤n

∣
∣Xk

∣
∣ ≥ a(n)φ(a(n))

}

= 1 − (1 − P{|X| ≥ a(n)φ(a(n))})|n|

≈ |n|P{|X| ≥ a(n)φ(a(n))}.
(4.19)

Thus for large |n|,

|n|P{|X| ≥ a(n)φ(an)} ≤ CP{|Sn| ≥ a(n)φ(a(n))
}
, (4.20)

equation (4.15) follows from Lemma 4.1.
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If {Xn, n ∈ Zd
+} are nonsymmetric random variables, then by using the standard

symmetrization method, it is easy to prove that for some constant C,

|n|P{|X| ≥ Ca(n)φ(an)} ≤ CP{|Sn| ≥ a(n)φ(a(n))
}
, (4.21)

which implies that

∑

n

b(n)ψ(a(n))|n|P{|X| ≥ Ca(n)φ(a(n))} <∞. (4.22)

That is, (4.15) holds.

Proof of Theorem 2.5. Similar to the proof of Theorem 2.2, and also by Lemma 4.1,
E(H(|X|))r(log+H(|X|))q−1+pψ(H(|X|)) <∞ implies that

∑

n

b(n)ψ(a(n))

∣
∣
∣
∣
∣
P
{
Sn ≥ a(n)φ(a(n))} −Φ

(

−a(n)φ(a(n))
|n|1/2σa(n)

)∣
∣
∣
∣
∣
<∞. (4.23)

Therefore, if E(H(|X|))r(log+H(|X|))q−1+p ψ(H(|X|)) <∞, (2.12) is equivalent to

∑

n

b(n)ψ(a(n))Φ

(

−a(n)φ(a(n))
|n|1/2σa(n)

)

<∞, (4.24)

which is equivalent to

∑

n

b(n)ψ(a(n))|n|1/2
a(n)φ(a(n))

exp

(

−a
2(n)φ2(a(n))

2|n|σ2
a(n)

)

<∞. (4.25)

On the other hand, (2.12) implies E(H(|X|))r (log+H(|X|))q−1+p ψ(H(|X|)) < ∞
by Lemma 4.2. Hence, (2.11) and (2.12) are equivalent. If, in addition, EX2I{|X| >
a(n)φ(a(n))} = O(|n|/a2(n)φ2(a(n))), (4.24) is equivalent to the following:

∑

n

b(n)ψ(a(n))|n|1/2
a(n)φ(a(n))

exp

(

−a
2(n)φ2(a(n))

2|n|

)

<∞. (4.26)

Hence, (2.12) and (2.13) are equivalent.

Proof of Theorem 2.7. Like the proof of Theorem 2.1, EX2(log+|X|)d−1 < +∞ and (2.17) imply
(2.16). On the other hand, if (2.16) holds, then EX2(log+|X|)δ <∞ implies (2.17). The proof is
complete.
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