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If (W,S) is a right-angled Coxeter system, then Aut(W) is a semidirect product of the group
Aut◦(W) of symmetric automorphisms by the automorphism group of a certain groupoid. We
show that, under mild conditions, Aut◦(W) is a semidirect product of Inn(W) by the quotient
Out◦(W) = Aut◦(W)/Inn(W). We also give sufficient conditions for the compatibility of the two
semidirect products. When this occurs there is an induced splitting of the sequence 1 → Inn(W) →
Aut(W) → Out(W) → 1 and consequently, all group extensions 1 →W → G→ Q → 1 are trivial.
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1. Introduction

A Coxeter group W is determined by its diagram Γ. It is known that in certain cases, W
determines Γ as well (see, e.g., [1, 2]). This is the case for right-angled Coxeter groups [3, 4],
where the only relations are s2 = 1 for all generators s and st = ts for some pairs of generators
s and t. For right-angled Coxeter groups, it is convenient to consider the Coxeter diagram
(rather than the classical Coxeter graph): the presence of an edge with endpoints s and t
means that s and t commute in W.

The properties of a right-angled Coxeter group W depend almost exclusively on the
combinatorics of the diagram Γ. This is especially evident in the study of Aut(W). For
example, the groupoid F(Γ) consisting of the vertex sets of complete subgraphs of Γ plays
an important role in [5] where Tits exhibits a split exact sequence

1 −→ Aut◦(W) −→ Aut(W) −→ Aut
(
F(Γ)

) −→ 1. (1.1)

Tits also defines W to have propriété I if the complementary graph ΓC has no triangles. He
goes on to show that if W has propriété I, then Aut◦(W) is isomorphic to Inn(W).

In the present article, we focus on the set M(Γ) whose members are the vertex sets
of maximal complete subgraphs. We say that Γ has condition C if there exist Z ∈ M(Γ) and
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a collection T1, . . . , Tn ∈ M(Γ) − {Z} such that

(C1) Ti ∩ Z/=∅ for 1 ≤ i ≤ n,
(C2) for each v ∈ Z, the cardinality of the set {i | v /∈ Ti} is odd.

When Γ has condition C, the subgraph spanned by Z ∪ T1 ∪ · · · ∪ Tn has propriété I. Thus, our
condition C is a “local version” of Tits’ propriété I.

Motivated by the results of Tits regarding sequence (1.1), we consider the sequence

1 −→ Inn(W) −→ Aut(W) −→ Out(W) −→ 1. (1.2)

A splitting of this sequence implies that all extensions of the form

1 −→W −→ G −→ Q −→ 1 (1.3)

are trivial (cf. [6]). Clearly (1.2) does not always split. For example, Z2 is a right-angled
Coxeter group and

0 −→ Z2 −→ Z4 −→ Z2 −→ 0 (1.4)

is a nontrivial extension. On the other hand, if W has no center, then finding nontrivial
extensions of W is surprisingly difficult. Whether (1.2) splits for all W with trivial center
is currently an open question.

The group Aut◦(W) has been studied extensively in [5, 7] and is called the group
of symmetric automorphisms of W. We approach the problem of whether (1.2) splits by
considering the following.

(a) Does the sequence

1 −→ Inn(W) −→ Aut◦(W) −→ Au t◦(W)/Inn (W) −→ 1 (1.5)

split?

(b) Are the splittings of (1.1) and (1.5) compatible?

A positive answer to both (a) and (b) implies that (1.2) is a split extension. We show in
Theorem 5.4 that if Γ has condition C, then (1.5) splits. To obtain a splitting of (1.2), we show
that the action of Aut(F(Γ)) on Aut◦(W) is compatible if Γ is not “too symmetrical.” More
precisely, our main result is the following.

Theorem 1.1. If Γ has condition C and each α ∈ Aut(F(Γ)) leaves all vertices of Z invariant, then
(1.2) is a split exact sequence.

It was recently shown [8] that (1.5) always splits. However, this result does not lead
to a generalization of Theorem 1.1 as the splitting given there is not, in general, compatible
with (1.1).
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2. Right-angled Coxeter groups

Coxeter groups are typically defined by presentations, and there are various conventions for
representing such presentations diagramatically. In this section, we review some definitions
and important properties, focusing exclusively on the right-angled case. See [9] or [10] for a
comprehensive treatment.

If X is any set, let P2(X) denote the set of subsets of X with cardinality 2.

Definition 2.1. Given a finite set S and E ⊆ P2(S), let Γ = (S, E) denote the undirected graph
with vertex set S and edge set E (note that Γ does not have loops or parallel edges). As such
graphs are often used to represent right-angled Coxeter groups, Γ is called a Coxeter diagram.

Definition 2.2. Given T ⊆ S, set ET = E ∩ P2(T). The graph ΓT = (T, ET ) is the subgraph of Γ
spanned by T. A complete subgraph is maximal if it is not properly contained in any complete
subgraph of Γ.

Definition 2.3. The presentation

P(Γ) =
〈
S | s2, (tu)2; s ∈ S, {t, u} ∈ E〉 (2.1)

is the Coxeter presentation defined by Γ.

Definition 2.4. A group W is a right-angled Coxeter group if it has a presentation P(Γ) defined
by some Coxeter diagram Γ. In this case, one writes W = W(Γ) and calls W the right-angled
Coxeter group defined by Γ. The pair (W,S) is a right-angled Coxeter system.

Remark 2.5. The Coxeter diagram is not the same as the traditional Dynkin diagram. Indeed,
as graphs, the Coxeter and Dynkin diagrams are complementary.

Clearly, each Coxeter diagram defines a unique right-angled Coxeter group. On
the other hand, to recover the diagram from a group one must first choose a particular
Coxeter presentation. It is natural to wonder whether nonisomorphic diagrams might
define isomorphic groups. The relationship between right-angled Coxeter groups and their
diagrams is clarified by the following result.

Theorem 2.6 (Radcliffe [3]). If (W,S) and (W,S′) are right-angled Coxeter systems for W, then
there is an automorphism ρ : W →W such that ρ(S) = S′.

A similar result was also obtained by Castella in [4].

Definition 2.7. A subgroup ofW generated by a subset of S is called a special subgroup. If T ⊆ S,
it is customary to write WT for the subgroup generated by T. Finite special subgroups are
called spherical subgroups. A subgroup of W is parabolic if it is conjugate to a special subgroup.

We conclude this section with statements of some of the remarkable properties enjoyed
by special subgroups. For proofs, see [9] or [10].

Theorem 2.8. If A,B ⊂ S, thenWA ∩WB =WA∩B.

Theorem 2.9. If T ⊆ S, thenWT is the right-angled Coxeter group defined by ΓT .
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Corollary 2.10. The following are equivalent:

(a) WT is spherical;

(b) WT is an elementary abelian 2-group of rank |T |;
(c) ΓT is complete.

3. Automorphisms of right-angled Coxeter groups

For the remainder of this article, let W = W(Γ) be the right-angled Coxeter group defined
by the connected Coxeter diagram Γ = (S, E). It is easily verified that, under the operation of
symmetric difference, the set

F(Γ) =
{
T ⊆ S |WT is finite

}
(3.1)

is a commutative groupoid with identity ∅.
In [5], Tits uses the group of automorphisms of F(Γ) to exhibit Aut(W) as a semidirect

product. We sketch the construction. Let σ ∈ Aut(W). It is well known that every maximal
finite subgroup of W is parabolic (see, e.g., [11, Lemma 3.2.1]). Consequently, every finite
subgroup of W is conjugate into a spherical subgroup. It follows that, for each T ∈ F(Γ), there
is a unique minimal T ∈ F(Γ) such that σ(WT ) is conjugate into WT. The map

q : Aut(W) −→ Aut
(
F(Γ)

)
(3.2)

given by q(σ)(T) = T is an epimorphism.

Definition 3.1. Let Aut◦(W) be the kernel of q. Elements of Aut◦(W) are called symmetric
automorphisms of W.

Given α ∈ Aut(F(Γ)), consider α̂ ∈ Aut(W) defined by

α̂(s) =
∏

t∈α(s)
t (3.3)

for all s ∈ S. A main result of [5] is the following theorem.

Theorem 3.2. The mapping Aut(F(Γ)) → Aut(W) given by α �→ α̂ is a splitting of the sequence

1 −→ Aut◦(W) −→ Aut(W) −→ Aut
(
F(Γ)

) −→ 1. (3.4)

Let dΓ be the standard path metric on Γ that assigns length one to each edge. For each
s ∈ S, define

s∗ =
{
t ∈ S | dΓ(s, t) ≤ 1

}
,

s⊥ =
{
t ∈ S | dΓ(s, t) ≥ 2

}
.

(3.5)

The subgraph Γs⊥ spanned by the elements of s⊥ gives rise to certain generators of Aut◦(W)
as follows. If K is the vertex set of a connected component of Γs⊥ , then the map σ : S → W
given by

σ(t) =

⎧
⎨

⎩

sts, t ∈ K,
t, t /∈K,

(3.6)

extends to a unique involution σsK ∈ Aut◦(W). The following is easily deduced from [7].
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Theorem 3.3. For each s ∈ S, let Ks
1, . . . , K

s
ms

be the vertex sets of the components of Γs⊥ . Then
Aut◦(W) is generated by the set {σsKs

i
| s ∈ S, 1 ≤ i ≤ ms}.

Remark 3.4. In [7], Mühlherr gives a complete presentation for Aut◦(W) based on a slightly
different set of generators.

4. Symmetric automorphisms

The subsets of S that generate maximal spherical subgroups of W play a key role in the
subsequent development. As such, we define

M(Γ) =
{
T ⊆ S |WT is a maximal finite subgroup

}
. (4.1)

Note that M(Γ) is in one-to-one correspondence with the family of maximal complete
subgraphs of Γ. The global behavior of a symmetric automorphism is governed by the
following observation: if φ ∈ Aut◦(W) and T ∈ M(Γ), then there exists an element aT =
aT (φ) ∈W such that φ(x) = aTxa−1

T for all x ∈WT.

Remark 4.1. When T ∈ M(Γ), WT is its own centralizer. Thus, the element aT above
is determined up to right multiplication by any member of WT (i.e., up to choice of
representative for the coset aTWT ).

If T,U ∈ M(Γ) and T ∩ U/=∅, then aTxa
−1
T = aUxa

−1
U for all x ∈ WT ∩WU = WT∩U.

Consequently, a−1
T aU lies in the centralizer of WT∩U.

Definition 4.2. With φ, T, U as above, let γTU = γTU(φ) = a−1
T aU.A representative of the double

coset WTγTUWU is called a φ-transition from WT to WU.

Remark 4.3. If T,U, V ∈ M(Γ) have pairwise nonempty intersection, then γTT = 1, γVU =
(γUV )

−1, and γTUγUV = γTV . As the terminology suggests, the transitions are in some sense a
group-theoretic analogue of the change-of-coordinate maps on a manifold.

For the remainder of this article we fix an elementZ ∈ M(Γ). For much of what follows,
Z may be chosen arbitrarily; in Section 5 we show that a preferred choice may exist.

Given x ∈ W, let ψx be the inner automorphism of W given by w �→ xwx−1 for all
w ∈W. Restricting our attention to Z we define

Inn(Z) =
{
ψs ∈ Inn(W) | s ∈WZ

}
,

Fix◦(Z) =
{
φ ∈ Aut◦(W) | φ(x) = x ∀x ∈ Z}.

(4.2)

In other words, Fix◦(Z) is the pointwise stabilizer of WZ under the action of Aut◦(W) on W.
Observe that, since the subgraph ΓZ spanned by Z is complete, Inn(Z) is Abelian.

Clearly, Inn(Z) is a subgroup of Fix◦(Z). Let π be the restriction to Fix◦(Z) of the
natural map Aut◦(W) → Out◦(W) and choose a class [φ] ∈ Out◦(W) with representative
φ ∈ Aut◦(W). If f is the restriction of φ to WZ, then f(x) = aZxa

−1
Z for all x ∈ WZ. Since

[f−1φ] = [φ] and f−1φ ∈ Fix◦(Z), it follows that π is onto. We have established the following.

Theorem 4.4. The sequence

0 −→ Inn(Z) i−−→ Fix◦(Z) π−−−→ Out◦(W) −→ 1 (4.3)

is a central extension.
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Figure 1

In Section 5, we construct a retraction of the mapping Inn(Z) i−→ Fix◦(Z). We now
describe the key ingredient used in this construction. For each T ∈ F(Γ), let

C(T) =
⋂

v∈T
v∗. (4.4)

It follows at once that WC(T∩Z) is the centralizer of WT∩Z in W (cf. [5, page 350]). The function

πT : C(T ∩ Z) −→ Z − T (4.5)

given by

πT (s) =

⎧
⎨

⎩

1, s /∈Z − T,
s, s ∈ Z − T,

(4.6)

extends uniquely to a retraction WC(T∩Z) →WZ−T , which we also denote by πT .

5. Splittings

As in Section 4, we assume that Z is a fixed element of M(Γ).

Definition 5.1. One says that Z satisfies condition C if there exist elements T1, T2, . . . , Tn ∈
M(Γ) − {Z} such that the following conditions hold.

(C1) Ti ∩ Z/=∅ for each 1 ≤ i ≤ n.
(C2) For each v ∈ Z, the cardinality of the set {i | v /∈ Ti} is odd.

If Γ contains a maximal complete subgraph Ω whose vertex set Z satisfies condition C, then
one says that Γ has condition C. When Γ has condition C, then for each 1 ≤ i ≤ n above let Δi

denote the maximal complete subgraph of Γ spanned by Ti.

Note that, since Γ is connected, when n = 0 our hypotheses imply that Γ is complete.
In this case, W is Abelian and the results below are trivial. Thus, we may assume that n is a
positive integer.

Example 5.2. We illustrate condition C with some examples.

(a) If Γ contains a maximal complete subgraph Ω with an even number of vertices each
of which meets exactly one other complete subgraph of Γ, then Γ has condition C.
For example, any Coxeter diagram Γ that contains Figure 1(a) as a subgraph (where
Ω, Δ1, and Δ2 are maximal complete subgraphs of Γ) has condition C.
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(b) Suppose n is odd and Γ has maximal complete subgraphs Ω,Δ1, . . . ,Δn. If the
vertex set of Ω is Z = {v1, . . . , vn} and the vertex set of Δi contains every element
of Z but vi, then Γ has condition C. For example, any Coxeter diagram Γ that
contains Figure 1(b) as a subgraph (where Ω, Δ1,Δ2, and Δ3 are maximal complete
subgraphs of Γ) has condition C.

Remark 5.3. In [5], Tits says that a right-angled Coxeter group with Coxeter diagram Γ has
“propriété I” if the complementary graph ΓC has no triangles. In this case, the inclusion
Inn(W) → Aut◦(W) is an isomorphism. If Γ has condition C, then the union Δ1 ∪ · · · ∪Δn ∪Ω
defines a right-angled Coxeter group that has propriété I. Thus, condition C is in some sense
a “local” version of Tits’ propriété I.

Assume Γ satisfies condition C and let φ ∈ Fix◦(Z). In this case, we can choose aZ(φ) =
1. Then, for each T ∈ M(Γ) with T ∩ Z/=∅, the transition γZT (φ) = aT (φ) is an element of the
coset aTWT. It must be emphasized that no left multiplication by elements ofWZ is permitted.

Theorem 5.4. If Γ has condition C, then the sequence

1 −→ Inn(W) −→ Aut◦(W) −→ Out◦(W) −→ 1 (5.1)

splits.

Proof. LetZ, T1, . . . , Tn ∈ M(Γ) satisfying (C1) and (C2) of Definition 5.1. For each φ ∈ Fix◦(Z),
define an inner automorphism r(φ) = ψx where

x =
n∏

i=1

πTi
(
γZTi(φ)

)
=

n∏

i=1

πTi
(
aTi(φ)

)
(5.2)

(recall that ψx is the inner automorphism that conjugates each element of W by x). By
definition, πTi(γZTi(φ)) = πTi(aTi(φ)) lies in WZ−Ti ⊆ WZ. Consequently, the terms in the
product (5.2) commute and so the mapping

r : Fix◦(Z) −→ Inn(Z) (5.3)

is well defined. To see that r is a homomorphism, choose φ, κ ∈ Fix◦(Z). Then, for each Ti we
have

aTi(φκ) = φ
(
aTi(κ)

) ·aTi(φ). (5.4)

Since aTi(κ) lies in the centralizer of WTi∩Z, any reduced expression for aTi(κ) is of the form
aTi(κ) = v1 · · ·vm, where each vj ∈ C(Ti ∩ Z). Observe that

πTi
(
φ
(
vj
))

=

⎧
⎨

⎩

vj , ifvj ∈ Z − Ti,
1, ifvj /∈Z − Ti,

= πTi
(
vj
)

(5.5)

and so πTi(φ(aTi(κ))) = πTi(aTi(κ)). It follows from (5.4) that

πTi
(
aTi(φκ)

)
= πTi

(
aTi(κ)

) ·πTi
(
aTi(φ)

)
. (5.6)
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Now, using the fact that the image of each πTi lies in the Abelian subgroup WZ, we have that
r(φκ) = r(φ)r(κ).

To see that r is a retraction, let v ∈ Z and let k be a number of Ti’s that do not contain
v. If ψv is the inner automorphism of W that conjugates by v, then aTi(ψv) = v for every
1 ≤ i ≤ n. From (5.2) we have that r(ψv) conjugates every element by

n∏

i=1

πTi(aTi(ψv)) =
n∏

i=1

πTi(v) = v
k. (5.7)

Since k is odd, vk = v and so r(ψv) = ψv.
Since r is a retraction and the sequence (4.3) is central, the mapping

Fix◦(Z) −→ Inn(Z) × ker(r) (5.8)

defined by

φ �→ (r(φ), r(φ)−1φ) (5.9)

is an isomorphism. Consequently, j = π |ker(r) is an isomorphism from ker(r) onto Out◦(W).A
section Out◦(W) → Aut◦(W) is given by the composition h◦j−1,where h : ker(r) → Aut◦(W)
is the inclusion

ker(r) ⊆ Fix◦(Z) ⊆ Aut◦(W). (5.10)

As noted in the introduction, to obtain a splitting of sequence (1.2), Γ must satisfy an
“asymmetry” condition. This is obtained by imposing a restriction on the action of Aut(F(Γ)),
and motivates the following definition.

Definition 5.5. Let α ∈ Aut(F(Γ)) and T ∈ M(Γ). One says that α fixes T if α({t}) = {t} for
every t ∈ T.

Note that if α fixes T, then α(T ′) = T ′ for every T ′ ⊆ T.

Theorem 5.6. If Γ has condition C and each α ∈ Aut(F(Γ)) fixes Z, then

1 −→ Inn(W) −→ Aut(W) −→ Out(W) −→ 1 (5.11)

splits.

Proof. Let Fix(Z) = {β ∈ Aut(W) | β(z) = z for all z ∈ Z}. Since each α ∈ Aut(F(Γ)) fixes Z, it
follows that α̂ (as defined in (3.3) above) lies in Fix(Z) and the mapping α �→ α̂ is a splitting
of the sequence

1 −→ Fix◦(Z) −→ Fix(Z)
q−−−→ Aut(F(Γ)) −→ 1 (5.12)

(where q is the restriction of the mapping q given in (3.2) above). As in the proof of
Theorem 4.4, the projection Fix(Z) → Out(W) is onto and its kernel is

Inn(Z) ∩ Fix(Z) = Inn
(
C(Z)

)
. (5.13)
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Z

Figure 2

But Z ∈ M(Γ) and so C(Z) = Z. Thus, we have an extension

0 −→ Inn(Z) −→ Fix(Z) −→ Out(W) −→ 1 (5.14)

which is easily seen to be central.
If φ ∈ Fix◦(Z) and α ∈ Aut(F(Γ)), then α̂φα̂−1 ∈ Fix◦(Z) and, because Inn(Z) is Abelian,

r
(
α̂φα̂−1) = r(φ). (5.15)

Since (5.12) splits, every element f ∈ Fix(Z) has a unique expression f = φ · α̂, where φ ∈
Fix◦(Z) and α ∈ Aut(F(Γ)). Consequently, we may define

r ′ : Fix(Z) −→ Inn(Z) (5.16)

by r ′(f) = r(φ) for all f ∈ Fix(Z). If g ∈ Fix(Z) is written as ψ · β̂, then, by (5.15),

r ′(fg) = r ′
(
φα̂ψα̂−1α̂β

)

= r
(
φα̂ψα̂−1)

= r(φ)r
(
α̂ψα̂−1)

= r(φ)r(ψ)

= r ′(f)r ′(g).

(5.17)

Thus, r ′ is a homomorphism and is easily verified to be a retraction. The proof is completed
in a manner similar to the conclusion of the proof of Theorem 5.4, replacing Out◦(W) with
Out(W), and so on.

As an immediate consequence we obtain the following corollary (cf. [6]).

Corollary 5.7. If W is a right-angled Coxeter group satisfying the hypotheses of Theorem 5.6, then
every extension

1 −→W −→ G −→ Q −→ 1 (5.18)

splits.

Example 5.8. The graph in Figure 2 clearly satisfies the hypothesis of Theorem 5.6. On the
other hand, Theorem 5.6 does not apply to either of the graphs given in Figure 1.

Remark 5.9. As noted in the introduction, it is currently unknown whether, for W with trivial
center, the sequence

1 −→ Inn(W) −→ Aut(W) −→ Out(W) −→ 1 (5.19)

always splits. However, it was recently shown in [8] that sequence (1.5) always splits, but the
splitting found there is not, in general, compatible with (1.1). In particular, one cannot obtain
generalizations of Theorem 5.6 and Corollary 5.7 from [8].
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