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1. Introduction

If f, g are real functions such that 0 < [ f?(x)dx < oo and 0 < [’ g*(x)dx < oo, then we have
(see [1])

f f“"f( 80 4 g < { f s f . (x)dx}l/Z, .

Xty

where the constant factor o is the best possible. Inequality (1.1) is the well-known Hilbert’s
inequality. Inequality (1.1) had been generalized by Hardy-Riesz (see [2]) in 1925 as if f, g
are real functions such that 0 < [ fP(x)dx < o0 and 0 < [ g9(x)dx < oo, then

f fmf(x)Jrg](/y) dy<$ﬂ/p){f fF (x)dx}l/p{fqu(x)dx}l/q, (12)

where the constant factor ¢ = r/sin(or/p) is the best possible. When p = g = 2, (1.2)
reduces to (1.1). Inequality (1.2) is named after Hardy-Hilbert’s integral inequality, which
is important in the analysis and its applications (see [3]), it has been studied and generalized
in many directions by a number of mathematicians (see [4-8]).
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Under the same condition of (1.2), we have Hardy-Hilbert’s type inequality (see [1,
Theorems 341 and 342]):

Jo on dy <4{I fz(x)dxf g(x)dx}l/z,

max{x,y}
(1.3)

—[:ofwwf(x g(y)dxdy < x* {f f (x)dxf g (x)dx}l/zl

0 X

where the constant factors 4 and 2 are both the best possible.
Recently, Li et al. [9], by introducing the function |In x —Iny|/(x+y +|x—y]|), establish
new inequalities similar to Hilbert-type inequality for integrals.

Theorem 1.1. If f(x), g(x) >0, 0 < [ f2(x)dx < o0, 0 < [;°g*(x)dx < oo. Then, one has

J‘ J'°° x|Jlrnyx+ lin ylylf(x g(y)dxdy < 4<f:of2(x)dx>1/2 (J‘:ng(x)dx)l/zl -,

where the constant factor 4 is the best possible.

In this paper, we give further analogs of Hilbert-type inequality and its applications.
The main result unifies and generalizes the classical results as follows.

Assume thatr >0, s > -min{1,r},t > 0,p,g>1,and 1/p+1/qg=1.1f f,g > 0, such
that 0 < [ fP(x)dx < o0, 0 < [7g%(x)dx < oo, then

fj [Inx—Iny] f(x)g(y)dxdy<K1(ijP(X)dx>l/p<f:°gq(x)dx>l/q, (1.5)

0 X+71Yy+5s|x -yl
where the constant factor

®  |inuf -1/
K= —_— id 1.6
! fo 1+ru+s|1—u|u " (16)

is the best possible.

2. Some lemmas

Our results will be based on the following results. In the following lemmas, assume that
r>0,s> -min{l,r},t>0,p,g>1,and 1/p+1/g=1.
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Lemma 2.1. Define the following weight functions:

=

w1 (x) =J‘°° |lnx—lny|t (

1/q
> dy, x>0,
0 X+1y+5s|x -y

y

(" |lnx—lny|t Yy p
w2 (y) _.[0 —x+ry+s|x—y|<;> dx, y>0.

Then, wy = wy = K1, where K1 is defined by (1.1).

Proof. For wy(x), let u = y/x, and we have

* Inul
w1 = #u‘l/qdu = Kj.
o 1+ru+s|l—u

For wy(y), first let v = x/y, and then let u = 1/v. Thus, we have

* Inol * Inul
wy = J B L v VPdy = J _ nul wVidu = K;.

0o 1+rv+slv-1] o 1+ru+s|l—u

Hence, the lemma is proved.

Lemma 2.2. Assume that € > 0, then

“ | In u|t —(1+e)/q
B e du=K 1 0").
,[01+ru+s|1—u|u " +o(l) (e—07)

Proof. Since

ul/Zp

limu'/?|Inu| =0, lim - = +oo,
u—0 u*+°°|lnu|

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

it follows that there exists 6; € (0,1), such that if u € (0,8;), then u™/% > |Inu|'. Moreover,
there exists 6, € (1, +o0), such that if u € (65, +o0), then 1/ > |Inul". Using the expression
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of K1, if s <0, then

© t
J‘ | lnu| u—(1+5)/qdu -K;
o 1+ru+s|l—u

w© t
_ J' %(w(m)/q_u—l/q)du
o 1+ru+s|l-u|

o1 1
(L gt
0 5,/ 1+ru+s|l—ul

o Inul! 62 Inul
< | | (u—(1+s)/q _ u—l/q)du + | | |u—(1+s)/q _ u—l/qldu
g 1+s 5 1+ru+s|l-u

w© t
+ J’ M(u—l/q /) gy

5 (r+su
61,,-1/2p 62 Inult
u nu
< I (u0+9/9 — V) dy + J‘ _ [nuf | #)/9 — 3714 dy
o 1+s 5 1+ru+s|l-u

® 1/29
+I (u—l/q _u—(1+e)/q)du
5 (r+s)u

_ 1 < 1 sl/2-(+e)/a _ 1 61—1/2p—1/q>
T+s\1-1/2p-(1+¢)/q * 1-1/2p-1/q "

o2 [In | 1 2
~(1+e)/q _ ,,~1/q d 2 -1/2q _ q —(1+25)/2q>
+,[5ll+ru+s|1—u||u u| u+r+s<q62 1+2562
=0(1) (e—0%).
(2.6)

Therefore, Lemma 2.2 is proved for s < 0. If s > 0, then we can replace the right-hand side of
the first strict inequality above with

6 t 6 t
Y Inu| (u_(1+5)/‘7 B u_l/q)du . 2 | In 1| |u—(1+5)/q _ u—l/qldu
o 1 5 1+ru+s[l-ul

2.7)

© t
+ J‘ M (u_l/q — u_(1+5)/q)du.
6, Tu

By the same way, we can show that the lemma is valid for s > 0. Hence, the lemma is proved.

O
Lemma 2.3. Assume that € > 0, then
“ e, (7 |nuf .
J' x” *fde' — gy = 0(1) (e—0%). (2.8)
1 o 1+ru+s|l-uj
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Proof. Using 6, introduced in the proof of Lemma 2.2, if s < 0, then

o = t
o 1+ru+s|l- u|

© t
x—l sdxj | In u| —(1+s)/qdu
1 o 1+ru+s(l-u)

{oe]

< X ng |lnu| u1+9/a 4y,

1

1/6 © x1 t
f ' f ) 717‘€de‘ | In u| u—(1+5)/qdu
1 1/6, o l+s

1/6 1
' —1 edx<J‘ ' J‘ >|lnu| (1+g)/qdu_’_J‘Oc x—l—ede‘ |lnu| u 1+£)/qdu
1 5 / 1+s 1/6, 1+s

1/6 1/6
! —1 ~“£dx f lllnul —(1+s)/qdu+J‘ ! —1 ~€dx ’[ |lnu| —(1+e)/qdu
1 1 61 s

f
J
(
J
J

(o)
+I ,1 “€dyx J‘ |1nu| 1+s)/qdu
1/6, 1+s s

1/61 61 ,,-1/2p 1/61 !l
u nu
< f x‘l"gde‘ u/agy +J‘ x‘l‘sdxf B N | w9 /agy
61 s

1 o 1+s 1

-1

¢’ X u—l/Zp
+ f x‘l‘gdxf =y agy
1+s

1/61 0

i 1-1/2p—(1+€)/q 1/6 - t
___(-8)g B RSN LU
e(1+s)(1-1/2p-(1+£)/q) 5 L1+s

2}76 (1+2¢)/2p

T w201 +9)(1-1/2p - (1+£)/q)
=0(1) (e—0%).

(2.9)

Therefore, Lemma 2.3 is proved for s < 0. If s > 0, then we can replace the right-hand side of
the second strict inequality mentioned above with

) x! t
1 o 1

By the same way, we can show that the lemma is valid for s > 0. Therefore, the lemma is
proved. O
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3. Integral case

In this section, we will state our main results.

Proposition 3.1. Assume that r > 0, s > —min{1,r},t > 0,p,g > 1,and 1/p+1/q = 1. If
f,8 >0, such that 0 < [ fP(x)dx < o0, 0 < [;"g(x)dx < oo, then

fj lnx—Inyf |f(x)g(y)dxdy<1<1(f fP(x)dx)l/p<f:ogq(x)dx>1/q, (3.1)

o X+ry+slx-y

where the constant factor

. | Inul’ -1/
Ki=| ———u i 3.2
! _[0 1+ru+s|1—u|u " (32)

is the best possible.

Proof. Using Holder’s inequality, we have

1 1
ff | Inx - ny| ———f(x)g(y)dx dy

0 X +1Yy+5s|x —y|

J IO xLlr:;Jr SIECM y <_>1/qu( )] [< )UMg(y ]dxdy
R ) )

[Inx —Iny/ y)“”q )
(I J X+71y+slx— y|<_ 8'(y)dxdy

_ (fo " (x)f’”(x)dx>1/p (jo m(y)gq(y)dy)l/q

([ o) ([eom)

If (3.3) takes the form of equality, then there are constants a and b, such that they are
not all zero, and

(3.3)
1/q

Inx-Inyl x\ /4 Inx-Inyl 1p
| vl (;) f"’(ﬂ:bJ(%) 21(y),

X+ry+s|x -yl x+ry+slx -yl (3.4)

a.e.in (0, 00) x (0, o0).
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Hence,
ax fP(x) =bygi(y), ae.in (0,00) x (0, 0). (3.5)
Therefore, there is a constant ¢, such that
axfP(x) =bygi(y) =c, a.e.in (0,00) x (0, o). (3.6)

We claim that a = 0. In fact, if a#0, then fP(x) = ¢/ax, a.e., in (0, o), which contradicts the
fact that 0 < [ fP(x)dx < oo. In the same way, we claim that b = 0. This is a contradiction.
Hence, by (3.3), we have (3.1).

If the constant factor K; in (3.1) is not the best possible factor, then there exists a
positive constant H (with H < Kj), such that (3.1) is still valid if we replace K; with H.
For € > 0 sufficiently small, construct the following functions:

x€(0,1),
fs(x) { —(1+¢)/ P, x € (0,+o0),
(3.7)
x€(0,1),
ge(x) { —(1+e)/ 1, x e (0,+),
Thus, we obtain
o 1/p o 1/q H
([ o) ([ gwax) -2,
0
|Inx - Iny]|
L= J _[0 X+71y+s|x— ylfg(x)gg(y)dxdy
(3.8)
I
1
© e} t
= f x‘(1+f>/"dxf [Inx~Iny| y(agy,
1 1 X+ry+sjx—y|
Setting u = y/x, we have
o o t
I= f x‘l‘fdxf %u—(lﬂ)/qdu
1 l+ru+s|l—u
&) 9] t o x! t
= f xilfsde‘ Lu*(lﬂg)/qdu _ f xflfgde‘ Luf(lﬁe)/qdu

1 o 1+ru+s|l—-uy 1 o 1+ru+sll-u|

- %(K1 +0(1)) +O(1) (e—0%).
(3.9)
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Since
I< E, (3.10)
£
it follows that
Ki+o0(l)<H (¢—0%). (3.11)
Hence,
K; < H. (3.12)

This contradicts the fact that H < Kj. So the constant factor K; in (3.1) is the best possible.
Then Proposition 3.1 is proved. O

Proposition 3.2. Under the same assumptions of Proposition 3.1, one has

j U |Inx - Inyl| |f(x)dx] dy<KpJ P (x)dx, (3.13)

g X+ry+slx-y

where the constant factor K? is the best possible. Inequalities (3.1) and (3.13) are equivalent.

Proof. Setting

o) 1 -1 t p-1
g(y)=U lnx—nyllf(x)dx] , y€(0,0m), (3.14)

o X+ry+slx—y

by (3.1), we have

fg"(y)dy f U [In:x—Iny/ f(x)dxrdy

0 X+1Yy+5s|x -y

|Inx — lny|
J‘J‘ X+ 71y +8lx - y|f(x)g(y)dxdy (3.15)

< Kl(fo f”(x)dx)l/p <f0 g"(x)dx)l/q.

As a result,

(f:og"(x)dxy/p <Ky <J‘:o fv(x)dx>1/p. (3.16)
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Hence,
Iw g7(x)dx < Kffw fP(x)dx. (3.17)
0 0

Then, we have (3.13).
Conversely, by Holder’s inequality, we have

1 1
ff inxIngl e xdy

g X+T1Yy+5s|x—y|

[T i o] stay

o LJo x+ry+slx—-y|

<I Uo x |+hrl;+ SIEC]A y|f(x)dxrdy>1/p <f:°gq(x)dx>1/q

<K; (I:f’”(x)dx> w (Jjg"(x)dx) 1/t7‘

Then, by (3.13), we have (3.1). Hence inequalities (3.1) and (3.13) are equivalent.

If the constant factor Kf in (3.13) is not the best possible, then by (3.18) we can get a
contradiction that the constant factor K; in (3.1) is not the best possible. Hence Proposition 3.2
is proved. O

(3.18)

Remark 3.3. In (3.1),letr =1, s=0,t =0, p = g =2, and we have Hilbert’s integral inequality

f foof( )8(y) dxdy < Jr{f;ofz(x)dxf;ogZ(x)dx}l/z. (3.19)

Xty

Letr=1,s=1,t=0, p =g =2; we have Hardy-Hilbert’s classical inequality

f AR, <2{f f (x)dxf 2 x)dx}l/z. (3.20)

o 2max{x,y}

Letr=1,5s=1/3,t=0, p = g =2, and we can combine the above two inequalities as follows:

fg(y) * ° 1/2
.[ jo (2/3)(x +y + max{x, y})dXdy <K1{fo f (X)dx.[o g (x)dx} : (3.21)
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Letr =1, s =-1/3, t =0, and we can get the following inequality:

“( f(x)g(y) ° © 1/2
4[0 .[o (2/3)(x+y+min{x,y})dxdy<Kl{jof (x)dxjog (x)dx} : (3.22)

4. Discrete case

We also give results for the discrete case.

Proposition 4.1. Assume that r >0, s € (—min{1,r}, min{1,r}], p,g>1and 1/p+1/q=1.If
Ay, by > 0, such that

0< D ap<oo, 0<> by<oo, (4.1)

m=1 n=1

then one has

1/p 1/q
s ambn © 00
Z Zm+rn+5|m n| < K1<Z afn) (Z bZ> , (4.2)

n=1 m=1 m=1 n=1
n <K , 43
;I:mz_:lm+rn+s|m—n|:| 1%%‘ (4.3)
where the constant factor
Ky = OO;u’l/qdu (4.4)
o 1+ru+s|l—u

is the best possible, and inequalities (4.2) and (4.3) are equivalent.

Proof. Define the following weight functions:

0 m 1/q
wy(m) = m=1,2,...
1 nzm+rn+s|m n|< > ! T

1 n\?
<—> , n=12,...,
m+rn+sim—n|\m

(4.5)

@y (n) =

M

then,

wy(m) <wi(m) = Ky, wy(n) <wq(n) = Ky, (4.6)
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where w1, w; are defined in Lemma 2.1. By Holder’s inequality, we have

i i amby,
m+rn+slm—n|
~ i i 1 1/an n 1/qu
B m+rn+slm—n| "I I\m "
ii 1 < 1/q i <n>]/pbq 1/q
m+rn+slm-n| n m+rn+s|m n| "

1 m=1

IN

Il
/[\4\ O\
8
3
2
Q
§‘E
~_
<
7~
Ms
3
2
=
\_/

(4.7)

The last strict inequality holds because both series {a,,} and {b,} have positive terms. Thus,
we have (4.2).

If the constant factor K;j in (4.2) is not the best possible, then there exists a positive
constant H (with H < Kj), such that (4.2) is still valid if we replace K; by H. For € > 0 small
enough, construct series

Gy =m P, = (504, (4.8)

Then, we have

w ~ 7 o i , dxd
Zz‘m+rn+s|m n| II feRladne y=%(Kl+o(1))+O(1)r (4.9)

rio] 0 X+1y+5s|x -y

o U / g o 1
<Z N”m> <Z bf,) =>dn <1+ f x 1 dx =1+ = (4.10)
n=1 n=1 1

m=1

where f,(x) and g.(x) are defined in the proof of Proposition 3.1. Since
1 1
;(Kl +0(1)) +0(1) <H<1+ E)' (4.11)

it follows that

K1 +o(1) < H. (4.12)
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Hence,

K; < H. (4.13)

This contradicts with the fact that H < Kj. So the constant factor Ky in (4.2) is the best
possible one.
Setting

© p-1
=(> , n=12,..., (4.14)
1m+rn+s|m n|

we find

o [ an © o
Z[Zm+r”+5|m Tl|] qu=ZZM+rn+S|m n|’ (4.15)

n=1 Lm=1 n=1 n=1m=1

By the same argument used in the proof of Proposition 3.2, we can show that (4.3) is valid,
the constant factor K’f in (4.3) is the best possible one and inequalities (4.2) and (4.3) are
equivalent. N

Remark 4.2. Proposition 4.1 is the corresponding series form of Propositions 3.1 and 3.2 for
s € (-min{1,r},min{1,r}], t = 0, and it is also a generalization of Hilbert’s inequality. Here,
we restrict the constants s, t so that we can use the monotony of functions to obtain (4.6) and
(4.9).

Acknowledgment

This work was partially supported by the National Natural Science Foundation of China
(Grant no. 10871213).

References

[1] G. H. Hardy, J. E. Littlewood, and G. Pélya, Inequalities, Cambridge University Press, Cambridge, UK,
1934.

[2] G.H.Hardy, “Note on a theorem of Hilbert,” Mathematische Zeitschrift, vol. 6, no. 3-4, pp. 314-317, 1920.

[3] D. S. Mitrinovi¢, J. E. Pecari¢, and A. M. Fink, Inequalities Involving Functions and Their Integrals
and Derivatives, vol. 53 of Mathematics and Its Applications (East European Series), Kluwer Academic
Publishers Group, Dordrecht, The Netherlands, 1991.

[4] Y. C. Chow, “On inequalities of Hilbert and Widder,” Journal of the London Mathematical Society, vol. 14,
no. 2, pp. 151-154, 1939.

[5] M. Gao, “On Hilbert’s inequality and its applications,” Journal of Mathematical Analysis and Applications,
vol. 212, no. 1, pp. 316-323, 1997.

[6] K. Jichang, “On new extensions of Hilbert’s integral inequality,” Journal of Mathematical Analysis and
Applications, vol. 235, no. 2, pp. 608-614, 1999.

[7] B. G. Pachpatte, “Inequalities similar to the integral analogue of Hilbert’s inequality,” Tamkang Journal
of Mathematics, vol. 30, no. 2, pp. 139-146, 1999.

[8] B. C. Yang, “An extension of Hardy-Hilbert’s inequality,” Chinese Annals of Mathematics. Series A, vol.
23, no. 2, pp. 247-254, 2002 (Chinese).

[9] Y.Li, Y. Qian, and B. He, “On further analogs of Hilbert’s inequality,” International Journal of Mathematics
and Mathematical Sciences, vol. 2007, Article ID 76329, 6 pages, 2007.



