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1. Introduction

Denote for x,m ∈ N,

Sm(x) =
∑

0≤n<x, n≡ 0 (modm)

(−1)s(n), (1.1)

where s(n) is the number of 1’s in the binary expansion of n. Sum (1.1) is aNewman digit sum.
From the fundamental paper of Gelfond [1], it follows that

Sm(x) = O
(
xλ), λ =

ln 3
ln 4

. (1.2)

The case m = 3 was studied in detail in [2–4].
So, from Coquet’s theorem [3, 5] it follows that

−1
3
+

2√
3
xλ ≤ S3(3x) ≤ 1

3
+
55
3

(
3
65

)λ

xλ (1.3)
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with a microscopic improvement [4]:

2√
3
xλ ≤ S3(3x) ≤ 55

3

(
3
65

)λ

xλ, x ≥ 2, (1.4)

and, moreover,

⌊
2
(
x

6

)λ
⌋
≤ S3(x) ≤

⌈
55
3

(
x

65

)λ
⌉
. (1.5)

These estimates give the most exact modern limits of the so-calledNewman phenomena.
Note that Drmota and Skałba [6], using a close function (S(m)

m (x)), proved that if m is a
multiple of 3, then for sufficiently large x,

Sm(x) > 0, x ≥ x0(m). (1.6)

In this paper, we study a general case for m ≥ 5 (in the cases of m = 2 and m = 4, we
have |Sm(n)| ≤ 1).

To formulate our results, put for m ≥ 5,

λm = 1 + log2bm, (1.7)

μm =
2

2bm − 1
, (1.8)

where

b2m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
(
π

3

(
1 +

3
m

))(√
3 − sin

(
π

3

(
1 +

3
m

)))
, if m ≡ 0 (mod 3),

sin
(
π

3

(
1 − 1

m

))(√
3 − sin

(
π

3

(
1 − 1

m

)))
, if m ≡ 1 (mod 3),

sin
(
π

3

(
1 +

1
m

))(√
3 − sin

(
π

3

(
1 +

1
m

)))
, if m ≡ 2 (mod 3).

(1.9)

Directly, one can see that

√
3
2

> bm ≥
⎧
⎨

⎩
0.86184088 · · · , if (m, 3) = 1,

0.85559967 · · · , if (m, 3) = 3,
(1.10)
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and thus,

λm < λ,

2.73205080 · · · < μm ≤
⎧
⎨

⎩
2.76364572 · · · , if (m, 3) = 1,

2.81215109 · · · , if (m, 3) = 3.

(1.11)

Below, we prove the following results.

Theorem 1.1. If (m, 3) = 1, then

∣∣Sm(x)
∣∣ ≤ 1 + μmx

λm. (1.12)

Theorem 1.2 (Generalized Newman phenomena). Ifm > 3 is a multiple of 3, then

∣∣∣∣Sm(x) − 3
m
S3(x)

∣∣∣∣ ≤ 1 + μmx
λm. (1.13)

Using Theorem 1.2 and (1.5), one can estimate x0(m) in (1.6). For example, one can
prove that x0(21) < e909.

2. Explicit formula for Sm(N)

We have

Sm(N) =
N−1∑

n=0, m|n
(−1)s(n)

=
1
m

m−1∑

t=0

N−1∑

n=0

(−1)s(n)e2πi(nt/m)

=
1
m

m−1∑

t=0

N−1∑

n=0

e 2πi((t/m)n+(1/2)s(n)).

(2.1)

Note that the interior sum has the form

Fα(N) =
N−1∑

n=0

e 2πi(αn+(1/2)s(n)), 0 ≤ α < 1. (2.2)

Lemma 2.1. IfN= 2ν0 + 2ν1 + · · · + 2νr , ν0 > ν1 > · · · > νr ≥ 0, then

Fα(N) =
r∑

h=0

e 2πi(α
∑h−1

j=0 2
νj +h/2)

νh−1∏

k=0

(
1 + e 2πi(α2k+1/2)

)
, (2.3)

where as usual
∑−1

j=0 = 0,
∏−1

k=0 = 1.
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Proof. Let r = 0, then by (2.2),

Fα(N) =
N−1∑

n=0

(−1)s(n)e2πiαn

= 1 −
ν0−1∑

j=0

e2πiα2
j

+
∑

0≤j1<j2≤ν0−1
e2πiα(2

j1+2j2 ) − · · ·

=
ν0−1∏

k=0

(
1 − e2πiα2

k)
,

(2.4)

which corresponds to (2.3) for r = 0.
Assuming that (2.3) is valid for every N with s(N) = r + 1, let us consider N1= 2νr a +

2νr+1 where a is odd, s(a) = r + 1, and νr+1 < νr . Let

N= 2νr a= 2ν0 + · · · + 2νr ;

N1= 2ν0 + · · · + 2νr + 2νr+1 .
(2.5)

Notice that for n ∈ [0, 2νr+1), we have

s(N + n) = s(N) + s(n). (2.6)

Therefore,

Fα

(
N1
)
= Fα(N) +

N1−1∑

n=N

e2πi(αn+(1/2)s(n))

= Fα(N) +
2νr+1−1∑

n=0

e2πi(αn+αN+(1/2)(s(N)+s(n)))

= Fα(N) + e2πi(αN+(1/2)s(N))
2νr+1−1∑

n=0

e2πi(αn+(1/2)s(n)).

(2.7)

Thus, by (2.3) and (2.4),

Fα

(
N1
)
=

r∑

h=0

e2πi(α
∑h−1

j=0 2
νj +h/2)

νh−1∏

k=0

(
1 + e2πi(α2

k+1/2)

+ e2πi(α
∑r

j=02
νj +(r+1)/2)

νr+1−1∏

k=0

(
1 + e2πi(α2

k+1/2)
)

=
r+1∑

h=0

e2πi(α
∑h−1

j=0 2
νj +h/2)

νh−1∏

k−0

(
1 + e2πi(α2

k+1/2)
)
.

(2.8)
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Formulas (2.1)–(2.3) give an explicit expression for Sm(N) as a linear combination of
the products of the form

νh−1∏

k=0

(
1 + e2πi(α2

k+1/2)
)
, α =

t

m
, 0 ≤ t ≤ m − 1. (2.9)

Remark 2.2. On can extract (2.3) from a very complicated general Gelfond formula [1],
however, we prefer to give an independent proof.

3. Proof of Theorem 1.1

Note that in (2.3)

r ≤ ν0 =
⌊
lnN
ln 2

⌋
. (3.1)

By Lemma 2.1, we have

∣∣Fα(N)
∣∣ ≤

∑

νh=ν0,ν1,...,νr

∣∣∣∣∣

νh∏

k=1

(
1 + e2πi(α2

k−1+1/2)
)∣∣∣∣∣

≤
ν0∑

h=0

∣∣∣∣∣

h∏

k=1

(
1 + e2πi(α2

k−1+1/2)
)∣∣∣∣∣.

(3.2)

Furthermore,

1 + e2πi(2
k−1α+1/2) = 2 sin

(
2k−1απ

)(
sin
(
2k−1απ

) − icos
(
2k−1απ

))
(3.3)

and, therefore,

∣∣∣1 + e2πi(2
k−1α+1/2)

∣∣∣ ≤ 2
∣∣ sin

(
2k−1απ

)∣∣. (3.4)

According to (3.2), let us estimate the product

h∏

k=1

(
2
∣∣ sin

(
2k−1απ

)∣∣) = 2h
h∏

k=1

∣∣ sin
(
2k−1απ

)∣∣, (3.5)

where by (2.1),

α =
t

m
, 0 ≤ t ≤ m − 1. (3.6)
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Repeating arguments of [1], put

∣∣ sin
(
2k−1απ

)∣∣ = tk. (3.7)

Considering the function

ρ(x) = 2x
√
1 − x2, 0 ≤ x ≤ 1, (3.8)

we have

tk = 2tk−1
√
1 − t2

k−1 = ρ
(
tk−1
)
. (3.9)

Note that

ρ′(x) = 2

(√
1 − x2 − x2

√
1 − x2

)
≤ −1 (3.10)

for x0 ≤ x ≤ 1, where

x0 =
√
3
2

(3.11)

is the only positive root of the equation ρ(x) = x.
Show that either

tk ≤ sin
(
π

m

⌊
m

3

⌋)
= sin

(
π

m

⌈
2m
3

⌉)
= gm <

√
3
2

(3.12)

or, simultaneously, tk > gm, and

tktk+1 ≤ max
0≤l≤m−1

(∣∣∣∣ sin
lπ

m

∣∣∣∣
(√

3 −
∣∣∣∣ sin

lπ

m

∣∣∣∣
))

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
sin
(
π

m

⌊
m

3

⌋))(√
3 − sin

(
π

m

⌊
m

3

⌋))
, if m ≡ 1 (mod 3)

(
sin
(
π

m

⌈
m

3

⌉))(√
3 − sin

(
π

m

⌈
m

3

⌉))
, if m ≡ 2 (mod 3)

= hm <
3
4
.

(3.13)

Indeed, let for a fixed values of t ∈ [0, m − 1] and k ∈ [1, n],

t2k−1 ≡ l(modm), 0 ≤ l ≤ m − 1. (3.14)
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Then,

tk =
∣∣∣∣ sin

lπ

m

∣∣∣∣. (3.15)

Now, distinguish two cases: (1) tk ≤ √
3/2, (2) tk >

√
3/2.

In case (1),

tk =
√
3
2

� lπ

m
=

rπ

3
, (r, 3) = 1, (3.16)

and since 0 ≤ l ≤ m − 1, then

m =
3l
r
, r = 1, 2. (3.17)

Because of the condition (m, 3) = 1, we have tk <
√
3/2.

Thus, in (3.15),

l ∈
[
0,
⌊
m

3

⌋]
∪
[⌈

2m
3

⌉
, m

]
, (3.18)

and (3.12) follows.
In case (2), let tk >

√
3/2 = x0. For ε > 0, put

1 + ε =
tk
x0

=
2√
3

∣∣ sin
(
π2k−1α

)∣∣ (3.19)

such that

1 − ε = 2 − 2√
3

∣∣ sin
(
π2k−1α

)∣∣, (3.20)

1 − ε2 =
4
3
∣∣ sin

(
π2k−1α

)∣∣
(√

3 − ∣∣ sin (π2k−1α)∣∣
)
. (3.21)

By (3.9) and (3.19), we have

tk+1 = ρ
(
tk
)
= ρ
((
1 + ε

)
x0
)
= ρ
(
x0
)
+ εx0ρ

′(c), (3.22)

where c ∈ (x0, (1 + ε)x0).
Thus, according to (3.10) and taking into account that ρ(x0) = x0, we find

tk+1 ≤ x0(1 + ε), (3.23)
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while by (3.19)

tk = x0(1 + ε). (3.24)

Now, in view of (3.21) and (3.11),

tktk+1 ≤
∣∣ sinπ2k−1α

∣∣(√3 − ∣∣ sin (π2k−1α)∣∣), (3.25)

and according to (3.14), (3.15), we obtain that

tktk+1 ≤ hm, (3.26)

where hm is defined by (3.13).
Notice that from simple arguments and according to (1.9),

gm ≤
√
hm = bm. (3.27)

Therefore,

h∏

k=1

∣∣ sin
(
π2k−1α

)∣∣ ≤ (b	h/2
m

)2 ≤ bh−1m . (3.28)

Now, by (3.2)-(3.4), for α = t/m, t = 0, 1, . . . , m − 1, we have

∣∣Ft/m(N)
∣∣ ≤

ν0∑

h=0

∣∣∣∣∣

h∏

k=1

(
1 + e2πi(α2

k−1+1/2)
)∣∣∣∣∣

≤
ν0∑

h=0

2h
h∏

k=1

∣∣ sin
(
2k−1απ

)∣∣

≤ 1 + 2
ν0∑

h=1

(
2bm
)h−1

≤ 1 + 2

(
2bm
)ν0

2bm − 1
.

(3.29)

Note that, according to (1.7) and (3.1),

(2bm)
ν0= 2λmν0 ≤ 2λmlog2N = Nλm. (3.30)

Thus, by (1.8)

|Ft/m(N)| ≤ 1 +
2

2bm − 1
Nλm = 1 + μmN

λm. (3.31)
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Thus, the theorem follows from (2.1).

4. Proof of Theorem 1.2

Select in (2.1) the summands which correspond to t = 0, m/3, 2m/3.
We have

mSm(N) =
N−1∑

n=0

(
eπis(n) + e2πi(n/3+(1/2)s(n)) + e2πi(2n/3+(1/2)s(n))

)

+
m−1∑

t=1, t /= m/3, 2m/3

N−1∑

n=0

e2πi((t/m)n+(1/2)s(n)).

(4.1)

Since the chosen summands do not depend on m and, for m = 3, the latter sum is
empty, then we find

mSm(N) = 3S3(N) +
m−1∑

t=1, t /= m/3, 2m/3

N−1∑

n=0

e2πi((t/m)n+(1/2)s(n)). (4.2)

Further, the last double sum is estimated by the same way as in Section 3 such that

∣∣∣∣Sm(N) − 3
m
S3(N)

∣∣∣∣ ≤ μmN
λm. (4.3)

Remark 4.1. Notice that from elementary arguments it follows that if m ≥ 5 is a multiple of 3,
then

(
sin

π

m

⌊
m − 1
3

⌋)(√
3 − sin

π

m

⌊
m − 1
3

⌋)
≤
(
sin

π

m

⌈
m + 1
3

⌉)(√
3 − sin

π

m

⌈
m + 1
3

⌉)
. (4.4)

The latter expression is the value of b2m in this case (see (1.9)).

Example 4.2. Let us find some x0 such that S21(x) > 0 for x ≥ x0.
Supposing that x is multiple of 3 and using (1.4), we obtain that

S3(x) ≥ 2
3λ+1/2

xλ. (4.5)

Therefore, putting m = 21 in Theorem 1.2, we have

S21(x) ≥ 1
7
S3(x) − μ21x

λ21 − 1 ≥ 2
7 · 3λ+1/2x

λ − μ21x
λ21 − 1. (4.6)

Now, calculating λ and λm by (1.2) and (1.8), we find a required x0:

x0 =
(
3.5 · 3λ+1/2μ21

)1/(λ−λ21) = e908.379.... (4.7)
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Corollary 4.3. For m which is not a multiple of 3, denote Um(x) the set of the positive integers not
exceeding x which are multiples of m and not multiples of 3. Then,

∑

n∈Um(x)

(−1)s(n) = − 1
m
S3(x) +O

(
xλm
)
. (4.8)

In particular, for sufficiently large x, we have

∑

n∈Um(x)

(−1)s(n) < 0. (4.9)

Proof. Since

∣∣Um(x)
∣∣ = Sm(x) − S3m(x), (4.10)

then the corollary immediately follows from Theorems 1.1, 1.2.

5. On Newman sum over primes

In [7], we put the following binary digit conjectures on primes.

Conjecture 5.1. For all n ∈ N, n /= 5, 6,

∑

p≤n
(−1)s(p) ≤ 0, (5.1)

where the summing is over all primes not exceeding n.

More precisely, by the observations,
∑

p≤n(−1)s(p) < 0 beginning with n = 31. Moreover,
the following conjecture holds.

Conjecture 5.2.

lim
n→∞

ln
(
−∑p≤n(−1)s(p)

)

lnn
=

ln 3
ln 4

. (5.2)

A heuristic proof of Conjecture 5.2 was given in [8]. For a prime p, denote Vp(x) the
set of positive integers not exceeding x for which p is the least prime divisor. Show that
the correctness of Conjectures 5.1 (for n ≥ n0) follows from the following very plausible
statement, especially in view of the above estimates.

Conjecture 5.3. For sufficiently large n, we have

∣∣∣∣∣
∑

5≤p≤√n

∑

j∈Vp(n), j>p

(−1)s(j)
∣∣∣∣∣ <

∑

j∈V3(n)

(−1)s(j)

= S3(n) − S6(n).

(5.3)
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Indeed, in the “worst case” (really is not satisfied), in which for all n ≥ p2

∑

j∈Vp(n), j>p

(−1)s(j) < 0, p ≥ 5, (5.4)

we have a decreasing but positive sequence of sums:

∑

j∈V3(n), j>3

(−1)s(j),
∑

j∈V3(n), j>3

(−1)s(j) +
∑

j∈V5(n), j>5

(−1)s(j), . . . ,

∑

j∈V3(n), j>3

(−1)s(j) +
∑

5≤p<√n

∑

j∈Vp(n), j>p

(−1)s(j) > 0.
(5.5)

Hence, the “balance condition” for odd numbers [8]

∣∣∣∣∣
∑

j≤n, j is odd

(−1)s(j)
∣∣∣∣∣ ≤ 1 (5.6)

must be ensured permanently by the excess of the odious primes. This explains
Conjecture 5.1.

It is very interesting that for some primes p the inequality (5.4), indeed, is satisfied for
all n ≥ p2. Such primes we call “resonance primes.” Our numerous observations show that
all resonance primes not exceeding 1000 are

11, 19, 41, 67, 107, 173, 179, 181, 307, 313, 421, 431, 433, 587,

601, 631, 641, 647, 727, 787.
(5.7)

In conclusion, note that for p ≥ 3, we have

lim
n→∞

∣∣Vp(n)
∣∣

n
=

1
p

∏

2≤q<p

(
1 − 1

q

)
(5.8)

such that

lim
n→∞

(
∑

p≥3

∣∣Vp(n)
∣∣

n

)
=

1
2
. (5.9)

Thus, using Theorems 1.1, 1.2 in the form

Sm(n) =

⎧
⎪⎨

⎪⎩

o(S3(n)), (m, 3) = 1,

3
m
S3(n)

(
1 + o(1)

)
, 3 | m,

(5.10)
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and inclusion-exclusion for p ≥ 5, we find

∑

j∈Vp(n)

(−1)σ(j) = − 3
3p

∏

2≤q<p, q /= 3

(
1 − 1

q

)
S3(n)(1 + o(1))

= − 3
2p

∏

2≤q<p

(
1 − 1

q

)
S3(n)

(
1 + o(1)

)
.

(5.11)

Now, in view of (1.5), we obtain the following absolute result as an approximation of
Conjectures 5.1, 5.2.

Theorem 5.4. For every prime number p ≥ 5 and sufficiently large n ≥ np, we have

∑

j∈Vp(n)

(−1)s(j) < 0 (5.12)

and, moreover,

lim
n→∞

ln
(
−∑j∈Vp(n)(−1)s(j)

)

lnn
=

ln 3
ln 4

. (5.13)
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