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Let Aρ denote the set of functions analytic in |z| < ρ but not on |z| = ρ (1 < ρ < ∞). Walsh proved
that the difference of the Lagrange polynomial interpolant of f(z) ∈ Aρ and the partial sum of
the Taylor polynomial of f converges to zero on a larger set than the domain of definition of f . In
1980, Cavaretta et al. have studied the extension of Lagrange interpolation, Hermite interpolation,
and Hermite-Birkhoff interpolation processes in a similar manner. In this paper, we apply a certain
matrix transformation on the sequences of operators given in the above-mentioned interpolation
processes to prove the convergence in larger disks.
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1. Introduction

If x = (xk) is a complex number sequence and A = [ank] is an infinite matrix, then Ax is the
sequence whose nth term is given by

(Ax)n =
∞∑

k=0

ankxk. (1.1)

A matrix A is called X − Y matrix if Ax is in the set Y whenever x is in X. For 0 ≤ α < ∞, let

Gα =
{
x : lim sup |xk|1/k ≤ α

}
. (1.2)

For various values of α, this sequence space has been studied extensively by several authors
[1–5]. In particular, Jacob Jr. [2, page 186] proved the following result.
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Theorem 1.1. An infinite matrix A is a Gu − Gv matrix if and only if for each number w such that
0 < w < 1/v, there exist numbers B and s such that 0 < s < 1/u and

|ank|wn ≤ Bsk (1.3)

for all n and k.

Let Aρ denote the collection of functions analytic in the disk Dρ = {z ∈ C : |z| < ρ}
for some 1 < ρ < ∞ and having a singularity on the circle |z| = ρ. In Section 2, we state the
results proved by Cavaretta Jr. et al. [6] on the Lagrange interpolation, Hermite interpolation,
and Hermite-Birkhoff interpolation of f(z) ∈ Aρ in the nth roots of unity, which will be
required. Main results are given in Section 3 and deal with the application of a certain matrix
to the various polynomial interpolants in the above results. Interestingly, we are able to show
that under the matrix transformation the difference of the interpolant polynomials and the
corresponding Taylor polynomials converges to zero in a larger region.

2. Preliminaries

Throughout the paper, we assume that f(z) ∈ Aρ with 1 < ρ < ∞ and f(z) has the Taylor
series expansion

f(z) =
∞∑

k=0

akz
k. (2.1)

For each integer n ≥ 0, let Ln(z; f) denote the unique Lagrange interpolation polynomial of
degree n which interpolates f(z) in the (n + 1)st roots of unity, that is,

Ln(ω; f) = f(ω), (2.2)

where ω is any (n + 1)st root of unity. Setting Sn(z; f) =
∑n+1

k=0akz
k, the well-known Walsh

equiconvergence theorem [7] states that

lim
n→∞

[Ln(z; f) − Sn(z; f)] = 0, ∀|z| < ρ2, (2.3)

with the convergence being uniform and geometric on any closed subset of |z| < ρ2. This
theorem has been extended in various ways by several authors [6, 8–10]. In all that follows,
we state some of the results of [6]which are needed for our main results.

Under Lagrange interpolation, letting

Sn,j(z; f) =
n∑

k=0

ak+j(n+1)z
k, j = 0, 1, . . . , (2.4)

the authors [6, Theorem 1, page 156] have proved the following result.
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Theorem 2.1. For each positive integer l,

lim
n→∞

{
Ln(z; f) −

l−1∑

j=0

Sn,j(z; f)

}
= 0, ∀|z| < ρl+1 (2.5)

and this result is best possible.

In the proof of Theorem 2.1, it has been shown by the authors that

Ln(z; f) −
l−1∑

j=0

Sn,j(z; f) =
1

2πi

∫

Γ

f(t)(tn+1 − zn+1)
(t − z)(tn+1 − 1)tl(n+1)

dt, (2.6)

where Γ is any circle |t| = R with 1 < R < ρ.
In [6] the authors have studied the Hermite interpolation also in a similar way. For a

fixed positive integer r ≥ 2, let hr(n+1)−1(z; f) be the unique Hermite polynomial interpolant
to f, f ′, . . . , f (r−1) in the (n + 1)st roots of unity, that is,

h
(j)
r(n+1)−1(ω; f) = f (j)(ω), j = 0, 1, . . . , r − 1, (2.7)

where ω is any (n + 1)st root of unity.
Setting

Hr(n+1)−1,0(z; f) =
r(n+1)−1∑

k=0

akz
k,

Hr(n+1)−1,j(z; f) = βj(z)
n∑

k=0

ak+(n+1)(r+j−1) · zk, j = 1, 2, . . . ,

(2.8)

where

βj(z) =
r−1∑

k=0

(
r + j − 1

k

)
(zn+1 − 1)

k
, j = 1, 2, . . . , (2.9)

in [6, Theorem 3, page 162] the authors proved the following result.

Theorem 2.2. For each positive integer l,

lim
n→∞

{
hr(n+1)−1(z; f) −

l−1∑

j=0

Hr(n+1)−1,j(z; f)

}
= 0, ∀|z| < ρ1+l/r (2.10)

and this result is best possible.
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In the proof of Theorem 2.2, it was shown by the authors in [6, page 165] that

hr(n+1)−1(z; f) −
l−1∑

j=0

Hr(n+1)−1,j(z; f) =
1

2πi

∫

Γ

f(t)
(t − z)

K(t, z)dt, (2.11)

where Γ is any circle |t| = R with 1 < R < ρ and

|K(t, z)| ≤ M

(
Rn+1 + |z|n+1)(|z| + 1)r−1

R(r+l)(n+1)
. (2.12)

Under Hermite-Birkhoff interpolation, the authors in [6] established several results for
different cases. We consider here only the (0, m) case. Let n andm be integers with n ≥ m ≥ 0.
Let b(0,m)

2n+1 (z; f) be the unique Hermite-Birkhoff polynomial of degree 2n+1 which interpolates
f in the (n + 1)st roots of unity and whose mth derivative interpolates f (m) in the (n + 1)st
roots of unity, that is,

b
(0,m)
2n+1 (ω; f) = f(ω),

(
b
(0,m)
2n+1 (ω; f)

)(m)
= f (m)(ω), (2.13)

where ω is any (n + 1)st root of unity.
Setting

B
(0,m)
2n+1,0(z; f) =

2n+1∑

k=0

akz
k,

B
(0,m)
2n+1,ν(z; f) =

n∑

j=0

aj+(ν+1)(n+1) · zjqj,ν(z), ν = 1, 2 . . . ,

(2.14)

where qj,ν(z) is a polynomial of degree (n + 1) given by

qj,ν(z) = zn+1 +
((ν + 1)(n + 1) + j)m − (n + 1 + j)m

(n + 1 + j)m − (j)m
(zn+1 − 1), j = 0, 1, . . . , n, (2.15)

with the following conventional notation

(j)m =

⎧
⎨

⎩

j(j − 1) · · · (j −m + 1), if m ≤ j,

0, if m > j,
(2.16)

in [6, Theorem 4, page 170] the authors proved the following result.
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Theorem 2.3. For each positive integer l,

lim
n→∞

{
b
(0,m)
2n+1 (z; f) −

l−1∑

j=0

B
(0,m)
2n+1,j(z; f)

}
= 0, for |z| < ρ1+l/2 (2.17)

and this result is best possible.

In the proof, it was shown in [6, Theorem 4, page 171] that

b
(0,m)
2n+1 (z; f) −

l−1∑

j=0

B
(0,m)
2n+1,j(z; f) =

1
2πi

∫

Γ
f(t)Kn,l(t, z)dt, (2.18)

where Γ is any circle |t| = Rwith 1 < R < ρ and |Kn,l(t, z)| is bounded on the circle |t| = R < |z|
by

|Kn,l(t, z)| ≤
|z|n+1(|t|n+1 + |z|n+1)

|t − z||t|(l+1)(n+1)|tn+1 − 1| +
(|z|n+1 + 1

)(|z|n+1 + Rn+1)

(|z| − R)R(l+2)(n+1)
. (2.19)

3. Main results

Our aim in this section is to apply a Gu −Gv matrix to the polynomial sequences of operators
in each of the above three theorems given in Section 2 and prove that the difference of
transformed sequences in each case converges to zero in a lager disk Dρ̂ . To simplify, let
us denote Ln(z; f) and

∑l−1
j=0Sn,j(z; f) in Theorem 2.1 by Ln and Sn,l, respectively.

Theorem 3.1. Let f(z) ∈ Aρ and let Γ be any circle |t| = R with 1 < R < ρ. For any ρ̂ > ρ, choose
u > ρ̂/R and 0 < v < 1. Let A be a Gu −Gv matrix and define

λn(z) =
∞∑

k=0

ankLk, σn,l(z) =
∞∑

k=0

ankSk,l (3.1)

for n = 0, 1, . . . . Then, for each l,

lim
n→∞

[λn(z) − σn,l(z)] = 0, ∀z ∈ Dρ̂. (3.2)

Proof. Using the integral representation given in (2.6), for each l = 1, 2, . . . ,we have

λn(z) − σn,l(z) =
∞∑

k=0

ank(Lk − Sk,l)

=
∞∑

k=0

ank
1

2πi

∫

Γ

f(t)(tk+1 − zk+1)
(t − z)(tk+1 − 1)tl(k+1)

dt

=
∞∑

k=0

ank
1

2πi

∫

Γ

f(t)
(t − z)tl(k+1)

[
1 −

(
z

t

)k+1] tk+1

tk+1 − 1
dt.

(3.3)
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Since |t| = R > 1, we have

λn(z) − σn,l(z) =
∞∑

k=0

ank
1

2πi

∫

Γ

f(t)
(t − z)tl(k+1)

[
1 −

(
z

t

)k+1] ∞∑

q=0

(
1

tk+1

)q

dt

=
1

2πi

∫

Γ

f(t)
(t − z)

∞∑

q=0

1
tl+q

∞∑

k=0

ank

[
1 −

(
z

t

)k+1]( 1
tl+q

)k

dt.

(3.4)

The interchange of the integral and the summations is justified by showing that the series

∞∑

k=0

ank

(
1
tl+q

)k

,
∞∑

k=0

ank

(
z

t

)k( 1
tl+q

)k

(3.5)

converge absolutely for each q as follows. From (1.3), for any 1 < w < 1/v we have that
|ank|wn ≤ Bsk, where s < 1/u < R/ρ̂ < 1. Thus, for each q, l, and n, we have

∞∑

k=0

|ank|
(

1
|t|l+q

)k

≤ B

wn

∞∑

k=0

(
s

Rl+q

)k

=
B

wn

Rl+q

(Rl+q − s)
, (3.6)

because s/Rl+q < R/ρ̂Rl+q < 1 and similarly for |z| < ρ̂

∞∑

k=0

|ank|
∣∣∣∣
z

t

∣∣∣∣
k+1( 1

|t|l+q
)k

≤ Bρ̂

wnR

∞∑

k=0

(
sρ̂

Rl+q+1

)k

=
Bρ̂

wnR

Rl+q+1

Rl+q+1 − sρ̂
, (3.7)

because sρ̂/Rl+q+1 < R/Rl+q+1 < 1. Therefore, from (3.6) and (3.7), identities (3.4) become

|λn(z) − σn,l(z)| ≤ B

2πwn

∫

Γ

|f(t)|
|t − z|

∞∑

q=0

1
Rl+q

[
Rl+q

Rl+q − s
+

ρ̂Rl+q

Rl+q+1 − sρ̂

]
dt

=
B

2πwn

∫

Γ

|f(t)|
|t − z|

∞∑

q=0

[
1

Rl+q − s
+

ρ̂

Rl+q+1 − sρ̂

]
dt.

(3.8)

It can be easily proved that the two series on the right side of the above expression converge
by using the ratio test. Assuming that f(t) is bounded on Γ, w > 1 implies that

lim
n→∞

[λn(z) − σn,l(z)] = 0, ∀|z| < ρ̂. (3.9)

Next, we prove a similar result of convergence on a larger disk in the case of the
Hermite interpolation. To simplify, let us denote

hr(n+1)−1(z; f),
l−1∑

j=0

Hr(n+1)−1,j(z; f) (3.10)

in Theorem 2.2 by hn and Hn,l, respectively.
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Theorem 3.2. Let f(z) ∈ Aρ and let Γ be any circle |t| = R with 1 < R < ρ. For any ρ̂ > ρ, choose
u > ρ̂/R and 0 < v < 1. Let A be a Gu −Gv matrix and define

λn(z) =
∞∑

k=0

ankhk, σn,l(z) =
∞∑

k=0

ankHk,l (3.11)

for n = 0, 1, . . . . Then, for each l,

lim
n→∞

[λn(z) − σn,l(z)] = 0, ∀z ∈ Dρ̂. (3.12)

Proof. Using the integral representation given in (2.11), for each l = 1, 2, . . ., we have

λn(z) − σn,l(z) =
∞∑

k=0

ank(hk −Hk,l) =
∞∑

k=0

ank
1

2πi

∫

Γ

f(t)
t − z

K(t, z)dt. (3.13)

From (2.12) we obtain that

|λn(z) − σn,l(z)| ≤
∞∑

k=0

|ank| 12π
∫

Γ

|f(t)|
|t − z|

M
(
Rk+1 + |z|k+1)(|z| + 1

)r−1

R(r+l)(k+1)
dt

≤ M(|z| + 1)r+1

2π

∫

Γ

|f(t)|
|t − z|

∞∑

k=0

|ank|
(
Rk+1 + |z|k+1)

R(r+l)(k+1)
dt.

(3.14)

The interchange of the integral and the summation is justified by showing that the series

∞∑

k=0

|ank|
R(r+l−1)(k+1) ,

∞∑

k=0

|ank|
( |z|
Rr+l

)k+1

(3.15)

converge as follows. From (1.3) we have that for any 1 < w < 1/v, |ank|wn ≤ Bsk, where
s < 1/u < R/ρ̂ < 1.

Thus for any fixed positive integer r ≥ 2 and for each l and n

∞∑

k=0

|ank|
(

1
Rr+l−1

)k+1

≤ B

wnRr+l

∞∑

k=0

(
s

Rr+l−1

)k

=
B

wn(Rr+l−1 − s)
, (3.16)

because s/Rr+l−1 < 1/ρ̂Rr+l−2 < 1, and similarly for |z| < ρ̂,

∞∑

k=0

|ank|
( |z|
Rr+l

)k+l

≤ B|z|
wnRr+l

∞∑

k=0

(
s|z|
Rr+l

)k

=
B|z|
wn

1
(Rr+l − s|z|) , (3.17)

because s|z|/Rr+l < 1/Rr+l−1 < 1.
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Therefore, using (3.16) and (3.17) in (3.14)we get that

|λn(z) − σn,l(z)| ≤ MB(|z| + 1)r+1

2πwn

∫

Γ

|f(t)|
|t − z|

[
1

Rr+l−1 − s
+

|z|
Rr+l − s|z|

]
dt. (3.18)

Assuming that f(t) is bounded on Γ, w > 1 implies that

lim
n→∞

[λn(z) − σn,l(z)] = 0, for |z| < ρ̂. (3.19)

Thus in the Lagrange case, theGu−Gv matrix transformation of the sequence operators
produces new sequences such that the difference between the transformed sequences of
polynomials Ln and Sn,l converges to zero in an arbitrarily large diskDρ̂ by choosing u > ρ̂/R.
Similarly, in the Hermite case also, the domain of convergence to zero is arbitrarily large
under Gu − Gv matrix transformation by choosing u > ρ̂/R. But as we see in the following
theorem, in the case of Hermite-Birkhoff interpolation, the domain of convergence to zero of
the difference of the transformed polynomials of Theorem 2.3 is arbitrarily large only if we
choose u > ρ̂2/R.

To simplify, let us denote b
(0,m)
2n+1 (z; f) and

∑l−1
j=0B

(0,m)
2n+1,j(z; f) of Theorem 2.3 by bn and

Bn,l, respectively.

Theorem 3.3. Let f(z) ∈ Aρ and let Γ be any circle |t| = R with 1 < R < ρ. For any ρ̂ > ρ, choose
u > ρ̂2/R and 0 < v < 1. Let A be a Gu −Gv matrix and define

λn(z) =
∞∑

k=0

ankbk, σn,l(z) =
∞∑

k=0

ankBk,l (3.20)

for n = 0, 1, . . . . Then, for each l,

lim
n→∞

[λn(z) − σn,l(z)] = 0, ∀z ∈ Dρ̂. (3.21)

Proof. Using the integral representation given in (2.18), for each l = 1, 2, . . . , we have

λn(z) − σn,l(z) =
∞∑

k=0

ank
1

2πi

∫

Γ
f(t)Kk,l(t, z)dt. (3.22)

From (2.19) we obtain that

|λn(z) − σn,l(z)| ≤
∞∑

k=0

|ank| 12π
∫

Γ
|f(t)||Kk,l(t, z)|dt

≤ 1
2π

∫

Γ

|f(t)|
|t − z|

∞∑

k=0

|ank||z|k+1
(|t|k+1 + |z|k+1)

|t|(l+1)(k+1)|tk+1 − 1| dt

+
1
2π

∫

Γ

|f(t)|
|z| − R

∞∑

k=0

|ank|
(|z|k+1 + 1

)(|z|k+1 + Rk+1)

R(l+2)(k+1)
dt.

(3.23)
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The interchange of the integral and the summations is justified by showing that the two series
in (3.23) converge as follows. From (1.3) we have that for any 1 < w < 1/v, |ank|wn ≤ Bsk,
where s < 1/u < R/ρ̂ 2 < 1. Since |t| = R and |z| < ρ̂, using the same method used in (3.4) we
write the first summation as

∞∑

k=0

|ank||z|k+1
|t|(l+1)(k+1)

(|t|k+1 + |z|k+1)

(Rk+1 − 1)
≤

∞∑

k=0

Bsk|z|k+1
wnR(l+1)(k+1)

[
1 +

( |z|
R

)k+1] ∞∑

q=0

(
1

Rk+1

)q

≤ B

wn

∞∑

q=0

ρ̂

Rl+q+1

[ ∞∑

k=0

(
sρ̂

Rl+q+1

)k

+
∞∑

k=0

(
sρ̂

Rl+q+1

)k( ρ̂

R

)k+1]

=
B

wn

∞∑

q=0

ρ̂

Rl+q+1

[
Rl+q+1

(Rl+q+1 − sρ̂)
+

ρ̂

R

(Rl+q+2)

(Rl+q+2 − sρ̂2)

]
,

(3.24)

because sρ̂/Rl+q+1 < 1/ρ̂Rl+q < 1 and sρ̂2/Rl+q+2 < 1/Rl+q+1 < 1 for each l and q. Now, for the
second sum in (3.23)we have

∞∑

k=0

|ank|
(|z|k+1 + 1

)(|z|k+1 + Rk+1)

R(l+2)(k+1)
≤ B

wn

∞∑

k=0

sk

R(l+2)(k+1)

[
ρ̂2k+2 + ρ̂k+1 + (ρ̂R)k+1 + Rk+1

]

=
B

wn

[
ρ̂2

Rl+2 − sρ̂2
+

ρ̂

Rl+2 − sρ̂
+

ρ̂

Rl+1 − sρ̂
+

1
Rl+1 − s

]
,

(3.25)

because for each l,

sρ̂2

Rl+2
<

1
Rl+1

< 1,

sρ̂

Rl+2
<

1
ρ̂Rl+1

< 1,

sρ̂

Rl+1
<

1
ρ̂Rl

< 1,

s

Rl+1
<

1
ρ̂2Rl

< 1.

(3.26)
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Using (3.24) and (3.25), the expression (3.23) becomes

|λn(z) − σn,l(z)| ≤ B

wn2π

∫

Γ

|f(t)|
|t − z|

∞∑

q=0

[
ρ̂

Rl+q+1 − sρ̂
+

ρ̂2

Rl+q+2 − sρ̂2

]
dt

+
B

2πwn

∫

Γ

|f(t)|
|z| − R

[
ρ̂2

Rl+2 − sρ̂2
+

ρ̂

Rl+2 − sρ̂
+

ρ̂

Rl+1 − sρ̂
+

1
Rl+1 − s

]
dt.

(3.27)

It can be easily proved that the two series on the right side of the above expression converge
by using the ratio test. Assuming that f(t) is bounded on Γ, w > 1 implies that

lim
n→∞

[λn(z) − σn,l(z)] = 0 (3.28)

for each |z| < ρ̂.

In two of the above three theorems, for any R and ρ̂ satisfying the stated conditions,
we have chosen u > ρ̂/R > 1 and 0 < v < 1. In the case of the last theorem, we have chosen
u > ρ̂2/R > 1 and 0 < v < 1. Now, to see if there exists such a Gu − Gv matrix, we give below
an obvious example.

Define a matrix A by

ank =
vn

pk
, p > u. (3.29)

Then for any w such that 0 < w < 1/v, we have that

|ank|wn =
(vw)n

pk
<

(
1
p

)k

, (3.30)

where 1/p < 1/u. Hence by Theorem 1.1, A is a Gu −Gv matrix.
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