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1. Introduction

In Section 2, we give preliminaries on f-Kenmotsu manifolds. The concept of f-Kenmotsu
manifold, where f is a real constant, appears for the first time in the paper of Jannsens and
Vanhecke [1]. More recently, Olszak and Roşca [2] defined and studied the f-Kenmotsu man-
ifold by the formula (2.3), where f is a function on M such that df ∧ η = 0. Here, η is the dual
1-form corresponding to the characteristic vector field ξ of an almost contact metric structure
on M. The condition df ∧ η = 0 follows in fact from (2.3) if dimM ≥ 5. This does not hold in
general if dimM = 3.

A 1-Kenmotsu manifold is a Kenmotsu manifold (see Kenmotsu [3, 4]. Theorem 2.1 pro-
vides a geometric interpretation of an f-Kenmotsu structure.

In Section 3, we initiate a study of harmonic maps when the domain is a compact f-
Kenmotsu manifold and the target is a Kähler manifold.

Ianus and Pastore [5, 6] defined a (ϕ, J)-holomorphic map between an almost con-
tact metric manifold M(ϕ, η, ξ, g) and an almost Hermitian manifold N(J, h) as a smooth
map F : M→N such that the condition F� ◦ ϕ = J ◦ F� is satisfied. Then, the formula
J(τ(F)) = F�(divϕ)−Trgβ holds, where τ(F) is the tension field of F and β(X,Y ) = ( ˜∇XJ)(F�Y ),
˜∇ being the connection induced in the pull-back bundle F�(TN) (see [7]). It is easy to see that
in our assumptions divϕ = 0 and Trgβ = 0 so that a (ϕ, J)-holomorphic map between an
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f-Kenmotsu manifold M and a Kähler manifold N is a harmonic map. If M is a compact
manifold, a second-order elliptic operator JF , called the Jacobi operator, is associated to the
harmonic map F. It is well known that the spectrum of JF consists only of a discrete set of an
infinite number of eigenvalues with finite multiplicities, bounded by the first one. We define
the Morse index of the harmonic map F as the sum of multiplicities of negative eigenvalues
of the Jacobi operator JF [8, 9]. A harmonic map is called stable if the Morse index is zero.
We have proven that any (ϕ, J)-holomorphic map from a compact f-Kenmotsu manifold to a
Kähler manifold is a stable harmonic map (see [10]).

2. f-Kenmotsu manifolds

A differentiable (2n + 1)-dimensional manifold M is said to have a (ϕ, ξ, η)-structure or an
almost contact structure if there exist a tensor field ϕ of type (1, 1), a vector field ξ, and a
1-form η onM satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

where I denotes the identity transformation.
It seems natural to include also ϕξ = 0 and η ◦ ϕ = 0; both can be derived from (2.1).
Let g be an associated Riemannian metric on M such that

g(X,Y ) = g(ϕX, ϕY ) + η(X)η(Y ). (2.2)

Putting Y = ξ in (2.2) and using (2.1), we get η(X) = g(X, ξ), for any vector field X onM.
In this paper, we denote by C∞(M) and Γ(E) the algebra of smooth functions onM and

the C∞(M)-module of smooth sections of a vector bundle E, respectively. All manifolds are
assumed to be connected and of class C∞. Tensors fields, distribution, and so on are assumed
to be of class C∞ if not stated otherwise.

We say thatM is an f-Kenmotsu manifold if there exists an almost contact metric structure
(ϕ, ξ, η, g) onM satisfying

(

˜∇Xϕ
)

Y = f
(

g(ϕX, Y )ξ − η(Y )ϕX
)

(2.3)

for X,Y ∈ Γ(TM), where f is a smooth function onM such that df ∧ η = 0.
A 1-Kenmotsu manifold is a Kenmotsu manifold [2, 3].
The following theorem provides a geometric interpretation of any f-Kenmotsu structure.

Theorem 2.1 (Olszak-Roşca). LetM be an almost contact metric manifold. Then,M is f-Kenmotsu
if and only if it satisfies the following conditions:

(a) the distribution D = Kerη is integrable and any leaf of the foliation F corresponding to D is a
totally umbilical hypersurface with constant mean curvature;

(b) the almost Hermitian structure (J, g) induced on an arbitrary leaf is Kähler;

(c) ∇ξξ = 0 and Lξϕ = 0.
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Moreover, we have

˜∇Xξ = f
(

X − η(X)ξ
)

(2.4)

which gives div ξ = 2nf .
The characteristic vector field of an f-Kenmotsu manifold also satisfies

R(X,Y )ξ = f2(η(X)Y − η(Y )X
)

. (2.5)

Levy proven that a second-order symmetric parallel nonsingular tensor on a space of
constant curvature is a constant multiple of the metric tensor [11]. On the other hand, Sharma
proven that there is no nonzero skew-symmetric second-order parallel tensor on a Sasakian
manifold [12]. For an f-Kenmotsu manifold we have the following theorem.

Theorem 2.2. There is no nonzero parallel 2-form on an f-Kenmotsu manifold.

Proof. We omit it.

A plane section p in Tx ˜M, x ∈ ˜M, of a Kenmotsu manifold (f = 1) is called a ϕ-section if
it spanned by a vector X orthogonal to ξ and ϕX. A connected Kenmotsu manifold ˜M is called
a Kenmotsu space form and it is denoted by ˜M(c) if it has the constant ϕ-sectional curvature c.
The curvature tensor of a Kenmotsu space form ˜M(c) is given by

4R(X,Y )Z = (c − 3)
{

g(Y,Z)X − g(X,Z)Y
}

+ (c + 1)
{

η(X)η(Z)Y + −η(Y )η(Z)X + η(Y )g(X,Z)ξ − η(X)g(Y,Z)η

+ g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ
}

(2.6)

for any X,Y,Z ∈ Γ(T ˜M).
Now, let M(J, g ′) be a 2m-dimensional almost Hermitian manifold. A surjective map

π : ˜M→M is called a contact-complex Riemannian submersion if it is a Riemannian submersion
and satisfies [10]

π� ◦ ϕ = J ◦ π�. (2.7)

In [13], we have proven the following theorem.

Theorem 2.3. Let π : ˜M→M be a contact-complex Riemannian submersion from a (2m + 1)-
dimensional Kenmotsu manifold ˜M to a 2m-dimensional almost Hermitian manifold M. Then, M
is a Kählerian manifold. Moreover, ˜M is a Kenmotsu space form if and only if M is a complex space
form .

3. Harmonic maps and stability

Let (M,g) and (N,h) be two Riemannian manifolds and F : M→N a differentiable map. Then,
the second fundamental form αF of F is defined by

αF(X,Y ) = ˜∇XF�Y − F�(∇XY ), (3.1)
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where ∇ is the Levi-Civita connection on M and ˜∇ is the connection induced by F on the
bundle F−1(TN), which is the pull-back of the Levi-Civita connection ∇′ on N, and satisfies
the following formula (see [8]):

˜∇XF�Y − ˜∇YF�X = F�

(

[X,Y ]
)

, X, Y ∈ Γ(TM). (3.2)

The tension field τ(F) of F is defined as the trace of the second fundamental form αF ,
that is τ(F)x =

∑

αF(ei, ei)(x), where (e1, . . . , em) is an orthonormal basis for TxM at x ∈ M.
In what follows, we will use Einstein summation convention, so we will omit the sigma

symbol.
We say that a map F : M→N is a harmonic map τ(F) x ∈ M.

Examples. (1) IfM is the circle S1, a map F : S1→(N,g) is harmonic if and only if it is a geodesic
parametrized proportionally to arc length. (2) If N = R, a harmonic map F : (M,g)→R is a
harmonic function. (3) A holomorphic map between two Kähler manifolds is harmonic [8].
For examples in the contact metric geometry, see [5, 6, 14].

Now let us consider a variation Fs,t ∈ C∞(M,N), with s, t ∈ (−ε, ε) and F0,0 = F. If the
corresponding variation vector fields are denoted by V andW , the Hessian of F is given by

HF(V,W) =
∫

M

h(JF(V ),W)Vg, (3.3)

where Vg is the canonical measure associated to the Riemannian metric g and JF(V ) is a
second-order self-adjoint operator acting on Γ(F−1(TN)) by

JF(V ) =
∑

i

(

˜∇∇ei
ei − ˜∇ei

˜∇ei

)

V −
∑

i

R′(V, F�ei
)

F�ei, (3.4)

where R′ is the curvature operator on (N,h).
We say that a map f : (M,ϕ, ξ, η, g)→(N, J, h) from an almost contact metric manifold to

an almost Hermitian manifold is a (ϕ, J)-holomorphic map if and only if F� ◦ ϕ = J ◦ F�.
If M(ϕ, ξ, η, g) is a Sasaki manifold and N(J, h) is a Kähler manifold, then any (ϕ, J)-

holomorphic map from M toN is a harmonic map [14].
Then, we can prove the same result for any (ϕ, J)-holomorphic map from an f-Kenmotsu

manifold to a Kähler manifold (see also [15]).
Our main result is the following.

Theorem 3.1. LetM(ϕ, ξ, η, g) be a compact f-Kenmotsu manifold and letN(J, h) be a Kähler mani-
fold. Then, any (ϕ, J)-holomorphic map F : M→N is stable.

IfM is compact, the spectrum of JF consists only of a discrete set of an infinite number of
eigenvalues with finitemultiplicities, bounded below by the first one.We define theMorse index
of the harmonic map F : M→N as the sum of multiplicities of negative eigenvalues of the Jacobi
operator JF . Equivalently, the Morse index of F equals the dimension of the largest subspace of
Γ(f−1(TN)) on which the Hessian HF is negative definite (see [8, 9]).
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We recall the following formula (see [5, 9]):

HF(V,W) =
∫

M

(

h
(

˜∇eaV, ˜∇eaW
)

+ h
(

R′(F�ea, V
)

F∗ea,W
))Vg, (3.5)

where we omitted the summation symbol for repeated indices a = 1, . . . , n, n = dimM [5].
Now, let (e1, . . . , em; f1, . . . , fm, ξ) be a local orthonormal ϕ-basis onM(ϕ, ξ, η, g) such that

fi = ϕei, i = 1, . . . , m.
From the (ϕ, J)-holomorphicity of F and by ϕξ = 0, we have F�ξ = 0. Thus, from (3.5),

we obtain the following.

Lemma 3.2. Let F : M→N be a (ϕ, J)-holomorphic map from an f-Kenmotsu manifoldM to a Kähler
manifoldN. Then, one has

HF(V, V )

=
∫

M

(

h
(

˜∇ei
V , ˜∇eiV

)

+h
(

˜∇fi
V , ˜∇fiV

))Vg+
∫

M

(

h
(

R′(F�ei, V
)

F�ei, V
)

+h
(

R′(F�fi, V
)

F�fi, V
))Vg.

(3.6)

Lemma 3.3. Let T be a vector field onM such that

g(T,X) = h( ˜∇ϕXV, JV ) (3.7)

for any X ∈ Γ(D), where D = Kerη and g(T, ξ) = 0. Then,

div (T) = h
(

R′(F�ei, F�fi
)

V, JV
)

+ 2h
(

˜∇eiJV, ˜∇fiV
)

. (3.8)

Proof. Let

h
(

R′(F�ei, F�fi
)

V, JV
)

= h
(

˜∇ei
˜∇fiV − ˜∇fi

˜∇eiV − ˜∇[ei,fi]V, JV
)

= eih
(

˜∇fiV, JV
) − h

(

˜∇fiV, ˜∇eiJV
) − fih

(

˜∇eiV, JV
)

+ h
(

˜∇eiV, ˜∇fiJV
) − h

(

˜∇∇ei
fiV, JV

)

+ h
(

˜∇∇fi
eiV, JV

)

.

(3.9)

By using (3.7) and (2.3), we obtain

div (T) = g
(∇eiT, ei

)

+ g
(∇fiT, fi

)

+ g
(∇ξT, ξ

)

= eig
(

T, ei
) − g

(

T,∇eiei
)

+ fig
(

T, fi
) − g

(

T,∇fifi
)

= eih
(

˜∇fiV, JV
) − fih

(

˜∇eiV, JV
)

+ h
(

˜∇∇fi
eiV, JV

)

+ h
(

˜∇∇ei
fiV, JV

)

(3.10)

and (3.8) follows.

Proposition 3.4. LetM(ϕ, ξ, η, g) be a compact f-Kenmotsu manifold. Then, the function f satisfies

∫

M

fVg = 0. (3.11)
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Proof. We have

div (ξ) = g
(

ei,∇eiξ
)

+ g
(

fi,∇fiξ
)

+ g
(

ξ,∇ξξ
)

. (3.12)

Using (2.1)–(2.4), we obtain div(ξ) = −2nf . Since M is a compact manifold (without
boundary), using Stokes’s theorem, we have

∫

M

div (ξ)Vg = 0, (3.13)

so that (3.11) follows from (3.13).

Now we are ready to prove Theorem 3.1. Since F is a (ϕ, J)-holomorphic map, by using
the curvature Kähler identity R′(U,V )JW = JR′(U,V )W on N(J, h) and Bianchi’s identity, we
have

R′(F�ei, V
)

F�ei + R′(F�fi, V
)

F�fi = −JR′(F�ei, F�fiV
)

. (3.14)

For any V ∈ Γ(F−1(TN)), we define the operator

DV : Γ(TM) −→ Γ
(

F−1(TN)
)

(3.15)

by the formula

DV (X) = ˜∇ϕXV − J ˜∇XV, (3.16)

for any X ∈ Γ(TM) (see [5]).
Using Lemmas 3.2, 3.3, and (3.14), by a straightforward calculation, we obtain

HF(V, V ) =
1
2

∫

M

(

h
(

DV
(

ei
)

, DV
(

ei
))

+ h
(

DV
(

fi
)

, DV
(

fi
)))Vg (3.17)

because
∫

M div (T)Vg = 0.
Thus, we haveHF(V, V ) ≥ 0 for any V ∈ Γ(F−1(TN)), so that F is a stable harmonic map.
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