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1. Introduction

There have been papers devoted to the study of faster convergence of sequences. Certain
methods concerning acceleration of convergence of sequences of partial sums of fixed series
using linear or nonlinear transformations of partial sums of series are studied in [1]. The
acceleration field of subsequence matrix transformations with respect to the convergence rate
of the sequence being accelerated are studied in [2]. In [3], it is discussed a class of methods
for summing sequences which are generalizations of a method due to Salzer [4], which
accelerate some convergent sequences especially monotone sequences. In [5], is characterized
the summability field of a matrixA by showingA is convergence preserving over the set of all
sequences which converge faster than some fixed sequence x,A is convergence preserving over
the set of all sequences, or A only preserves the limit of a set of constant sequences. Statistical
acceleration convergence of sequences was discussed in [6]. The notion of faster convergent
series with positive terms is defined in [7] and the notion of τ-convergent series is defined in
[8–10]. The statistical convergence of infinite series as a special case of τ-convergence of infinite
series is discussed in [11–14].

In this paper, some questions related to sufficient conditions and necessary conditions
for faster convergent infinite series are studied, faster τ-convergent series are defined and
studied, and faster convergence of series of Kummer’s type is proved. In [7, page 146], it is
mentioned the Kummer’s result: if

∑∞
n=1an is convergent series with positive terms and with

an unknown sum a,
∑∞

n=1cn is a convergent series with positive terms and with a known sum
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c, and limn→∞an/cn = p > 0, then the Kummer series
∑∞

n=1bn has the same sum as
∑∞

n=1an

and is a faster convergent series than
∑∞

n=1an, if all terms of
∑∞

n=1bn are positive. Hence we can
calculate the unknown sum a faster by summation terms of the Kummer series

∑∞
n=1bn, which

is constructed by
∑∞

n=1an,
∑∞

n=1cn, and p. In Lemma 4.1, we proved a faster convergence of the
Kummer series

∑∞
n=1bn to the unknown sum a of

∑∞
n=1an without conditions of positivity of p

and terms of
∑∞

n=1an,
∑∞

n=1bn,
∑∞

n=1cn.
We denote by N the set of all positive integers and by R the set of all real numbers.

Definition 1.1 (see [2]). Let
∑∞

n=1an,
∑∞

n=1bn be convergent real series with the same sum, with
nonzero terms and such that bn + bn+1 + · · · /= 0, n ∈ N. The series

∑∞
n=1an is called faster

convergent than
∑∞

n=1bn if limn→∞(an + an+1 + · · · )/(bn + bn+1 + · · · ) = 0.

Lemma 1.2 (see [7]). Let
∑∞

n=1an,
∑∞

n=1bn be convergent real series with positive terms and with the
same sum. If limn→∞(an/bn) = 0, then limn→∞(an + an+1 + · · · )/(bn + bn+1 + · · · ) = 0.

In what follows, we do not assume equality of sum of convergent series
∑∞

n=1an,
∑∞

n=1bn
because we can construct series

∑∞
n=1a

∗
n,
∑∞

n=1b
∗
n, where a∗

n = an and b∗n = bn for n ≥ 2 with the
same sum.

2. Faster convergent series

Lemma 2.1. Let
∑∞

n=1an,
∑∞

n=1bn be convergent real series with positive terms. If

lim
n→∞

an + an+1 + · · ·
bn + bn+1 + · · · = 0, then lim inf

n→∞
an

bn
= 0. (2.1)

Proof. By the way of contradiction, we suppose that lim infn→∞(an/bn) = q > 0, then there
exists n0 ∈ N such that for every n > n0 we have 0 < q� < an/bn, where 0 < q� < q. From
this follows q�(bn + bn+1 + · · · ) < (an + an+1 + · · · ) for n > n0, which is a contradiction with
limn→∞(an + an+1 + · · · )/(bn + bn+1 + · · · ) = 0, similarly for q = ∞.

Lemma 2.2. Let
∑∞

n=1an,
∑∞

n=1bn be convergent real series with positive terms. Let limn→∞(an/bn)
exist. Then

lim
n→∞

an

bn
= 0 iff lim

n→∞
an + an+1 + · · ·
bn + bn+1 + · · · = 0. (2.2)

The next example shows that under the conditions of Lemma 2.1, for all 0 < r ≤ ∞, there
exist a series

∑∞
n=1an,

∑∞
n=1bn such that lim supn→∞(an/bn) = r.

Example 2.3. Let {αn; n ∈ N} be any sequence of real positive numbers which satisfy αn ≤ 1/n4

for n ≥ 1. We define the series
∑∞

n=1an = rα1 + α1/12 + rα2 + α2/22 + · · · + rαk + αk/k
2 + · · · and

∑∞
n=1bn = α1 + 12α1 + α2 + 22α2 + · · · + αk + k2αk + · · · . Then we have

lim
n→∞

a2n−1 + a2n + · · ·
b2n−1 + b2n + · · · = lim

n→∞
r
(
αn + αn+1 + · · · ) + (

1/n2)(αn + αn+1 + · · · )
(
αn + αn+1 + · · · ) + n2

(
αn + αn+1 + · · · ) = 0,

lim
n→∞

a2n + a2n+1 + · · ·
b2n + b2n+1 + · · · = lim

n→∞
r
(
αn+1 + αn+2 + · · · ) + (

1/n2)(αn + αn+1 + · · · )
(
αn+1 + αn+2 + · · · ) + n2

(
αn + αn+1 + · · · ) = 0,
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lim
n→∞

a2n−1
b2n−1

= r, lim
n→∞

a2n

b2n
= 0. (2.3)

If
∑∞

n=1an = α1 + α1/12 + 2α2 + α2/22 + · · · + kαk + αk/k
2 + · · · , then limn→∞(a2n−1/b2n−1) = ∞.

Remark 2.4. It is evident that in general from limn→∞(an + an+1 + · · · )/(bn + bn+1 + · · · ) = 0 does
not follow lim infn→∞(an/bn) = 0. For example, if we put a2n = b2n = 1/(n(n + 1)), n ∈ N, and
a2n−1 = −b2n−1 = −1/(n(n + 1)), n ∈ N, we obtain limn→∞(an + an+1 + · · · )/(bn + bn+1 + · · · ) = 0
and {−1, 1} is the set of all cluster points of the sequence {an/bn; n ∈ N}.

In general, the condition limn→∞(an/bn) = 0 does not imply the condition limn→∞(an +
an+1 + · · · )/(bn + bn+1 + · · · ) = 0 as it follows from the next example.

Example 2.5. Let {αn; n ∈ N} be a sequence such that αn = qn, n ∈ N, 0 < q < 1/2. We define
convergent series

∑∞
n=1an = α1 + α1 + α2/22 + α2/22 + · · · + αk/k

2 + αk/k
2 + · · · and ∑∞

n=1bn =
α1 − α1/2 + α2/3 − α2/4 + · · · + αk/(2k − 1) − αk/2k + · · · . From the definition, we obtain

b2n + b2n+1 + · · · = −αn

2n
+

αn+1
(
2n + 1

)
(2n + 2

) +
αn+2

(
2n + 3

)(
2n + 4

) + · · ·

<
1
2n

( − α + αn+1 + αn+2 + · · · )

=
1
2n

( − qn + qn+1 + qn+2 + · · · ) = qn
(
2q − 1

)

2n
(
1 − q

) < 0.

(2.4)

It is obvious that b2n+1 + b2n+2 + · · · > 0 and limn→∞(an/bn) = 0. From (2(k +m) − 1)(2(k +m)) >
(k +m)2, k, m ∈ N we have

a2k−1 + a2k + · · ·
b2k−1 + b2k + · · · =

2
(
αk/k

2 + αk+1/(k + 1)2 + · · · )

αk/(2k(2k − 1)) + αk+1/
(
(2k + 1)(2k + 2)

)
+ · · · > 2 for k ≥ 1. (2.5)

Thus limn→∞(an + an+1 + · · · )/(bn + bn+1 + · · · )/= 0.

Lemma 2.6. Let
∑∞

n=1an,
∑∞

n=1bn be convergent real series with nonzero terms. Let bn + bn+1 + · · · /= 0
for all n ∈ N. Let li(a) = lim infn→∞|1+ an+1/an + an+2/an + · · · |, ls(a) = lim supn→∞|1+ an+1/an +
an+2/an + · · · |, li(b) = lim infn→∞|1 + bn+1/bn + bn+2/bn + · · · |, ls(b) = lim supn→∞|1 + bn+1/bn +
bn+2/bn + · · · |, then

(1) if ls(a) < ∞, li(b) > 0, limn→∞(an/bn) = 0, then limn→∞(an + an+1 + · · · )/(bn + bn+1 +
· · · ) = 0,

(2) if an + an+1 + · · · /= 0 for all n ∈ N, li(a) > 0, ls(b) < ∞, limn→∞(an + an+1 + · · · )/(bn +
bn+1 + · · · ) = 0, then limn→∞(an/bn) = 0,

(3) ifan + an+1 + · · · /= 0 for all n ∈ N, 0 < li(a), ls(a) < ∞, 0 < li(b), ls(b) < ∞,
then limn→∞(an/bn) = 0 if and only if limn→∞(an + an+1 + · · · )/(bn + bn+1 + · · · ) = 0.
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Proof. For every n ∈ N, we have

∣
∣
∣
∣
an + an+1 + · · ·
bn + bn+1 + · · ·

∣
∣
∣
∣ =

∣
∣1 + an+1/an + an+2/an + · · · ∣∣

∣
∣bn/an + bn+1/an + bn+2/an + · · · ∣∣

=

∣
∣1 + an+1/an + an+2/an + · · · ∣∣

∣
∣bn/an

∣
∣
∣
∣1 + bn+1/bn + bn+2/bn + · · · ∣∣

=

∣
∣an/bn

∣
∣
∣
∣1 + an+1/an + an+2/an + an+3/an + · · · ∣∣

∣
∣1 + bn+1/bn + bn+2/bn + bn+3/bn + · · · ∣∣ .

(2.6)

From this follows our assertion.

Remark 2.7. The condition lim infn→∞|1+bn+1/bn+bn+2/bn+· · · | > 0 can be satisfied, for example,
if lim supn→∞|bn+1/bn| < 1/2. In fact, if lim supn→∞|bn+1/bn| < r < 1/2. then there exists n0 ∈ N

such that for every n > n0, we have
∣
∣
∣
∣
bn+1
bn

+
bn+2
bn

+
bn+3
bn

+ · · ·
∣
∣
∣
∣ ≤

∣
∣
∣
∣
bn+1
bn

∣
∣
∣
∣ +

∣
∣
∣
∣
bn+2
bn+1

∣
∣
∣
∣

∣
∣
∣
∣
bn+1
bn

∣
∣
∣
∣ +

∣
∣
∣
∣
bn+3
bn+2

∣
∣
∣
∣

∣
∣
∣
∣
bn+2
bn+1

∣
∣
∣
∣

∣
∣
∣
∣
bn+1
bn

∣
∣
∣
∣ + · · ·

≤ r + r2 + r3 + · · · = r

1 − r
,

(2.7)

and thus |1 + bn+1/bn + bn+2/bn + · · · | ≥ (1 − 2r)/(1 − r) > 0. The condition lim supn→∞|1 +
an+1/an + an+2/an + · · · | < ∞ can be satisfied, for example, if lim supn→∞|an+1/an| < 1. Indeed,
if lim supn→∞|an+1/an| = α < 1, then there exists n0 ∈ N such that for every n > n0, we have

∣
∣
∣
∣1 +

an+1

an
+
an+2

an
+ · · ·

∣
∣
∣
∣ =

∣
∣
∣
∣1 +

an+1

an
+
an+2

an+1

an+1

an
+
an+3

an+2

an+2

an+1

an+1

an
+ · · ·

∣
∣
∣
∣

≤ 1 + β + β2 + β3 + · · · = 1
1 − β

< ∞, where α < β < 1.
(2.8)

Conversely, from the condition lim infn→∞|1 + bn+1/bn + bn+2/bn + · · · | > 0 need not follow
the condition lim supn→∞|(bn+1/bn)| < 1/2. For example, if we put a1 /= 0, a2n = 1/2n,
a2n+1 = −1/2n, n = 1, 2, . . . , then

∑∞
n=1an is convergent series and lim supn→∞|an+1/an| = 1,

lim supn→∞|1 + an+1/an + an+2/an + · · · | = 1.

3. τ-convergent series

Definition 3.1 (see [10]). We say that a sequence {an; n ∈ N} has τ-limit a real number L and
we write τ-limn→∞an = L, if for each ε > 0 the set A(ε) = {n; |an − L| ≥ ε} belongs to the ideal
τ , where τ is an admissible ideal of subsets of N which is additive (if A,B ∈ τ , then A ∪ B ∈ τ),
hereditary (if B ⊂ A ∈ τ , then B ∈ τ), containing all singletons and not containing N.

We denote by τf the ideal of all finite subsets of N.

Definition 3.2 (see [10]). We say that
∑∞

n=1anτ-converges to a real number L and we write
τ-
∑∞

n=1an = L if for each ε > 0 the set A(ε) = {n; |∑n
k=1ak − L| ≥ ε} belongs to the ideal τ ,

where τ is an admissible ideal of subsets of N.
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Definition 3.3. Let
∑∞

n=1an,
∑∞

n=1bn be τ-convergent real series with nonzero terms such that bn+
bn+1+· · · /= 0, n ∈ N. A series

∑∞
n=1an is called τ-faster convergent than

∑∞
n=1bn if τ-limn→∞(an+1+

an+2 + · · · )/(bn+1 + bn+2 + · · · ) = 0.

Definition 3.4 (see [9]). Let τ be an admissible ideal of subsets of N. A number x ∈ R is said to
be a τ-cluster point of

∑∞
n=1xn if for each ε > 0 the set {n ∈ N; |∑n

k=1xk − x| < ε} is not from τ.

Remark 3.5. Of course, if τ is an admissible ideal of subsets of N, by τ-cluster point of a real
sequence {xn; n ∈ N}, wemean a number x ∈ R, where for each ε > 0 the set {n ∈ N; |xn−x| < ε}
is not from τ.Moreover, we say that∞ (−∞) is the τ-cluster point of a real sequence {xn; n ∈ N}
if for each c > 0 (c < 0) the set {n ∈ N; xn > c} ({n ∈ N; xn < c}) is not from τ .

Remark 3.6. If {xn; n ∈ N} is a real sequence, τ is an admissible ideal, and X = {x;
x is a τ-cluster point of {xn; n ∈ N}}, then X /=∅., Indeed, if {xn; n ∈ N} is bounded, then
by [8] there exists a τ-cluster point of {xn; n ∈ N}. If {xn; n ∈ N} is not bounded, then either
+∞ or −∞ is τ-cluster point of {xn; n ∈ N} according to Remark 3.5 or there exists l ∈ R such
that {n ∈ N; |xn| > l} ∈ τ. If for some l ∈ R {n ∈ N; |xn| > l} ∈ τ , then Kl = {n ∈ N; |xn| ≤ l}/∈ τ.
Consider the ideal υ = {Kl ∩ A; A ∈ τ}. Because {xn; n ∈ Kl} is a bounded set, there exists
x� ∈ R, |x�| ≤ l such that x� is a υ-cluster point of {xn; n ∈ Kl}. Let ε > 0. Since x� is a υ-cluster
point of {xn; n ∈ Kl}, then the set {n ∈ Kl; |xn − x�| < ε}/∈ υ and then also is not from τ . Since τ
has a hereditary property, then {n ∈ N; |xn − x�| < ε}/∈ τ . So x� is a cluster point of {xn; n ∈ N}.

Definition 3.7. Let τ be an admissible ideal of subsets of N. Let
∑∞

n=1xn be an infinite series of
real numbers and let X = {x ∈ R; x is a τ-cluster point of

∑∞
n=1xn }. If X is bounded, then

s = supX (s = infX) is said to be a τ-lim supn→∞
∑∞

n=1xn (τ-lim infn→∞
∑∞

n=1xn). If supX = ∞
or ∞ is τ-cluster point (infX = −∞ or −∞ is τ-cluster point), then τ-lim supn→∞

∑∞
n=1xn = ∞

(τ-lim infn→∞
∑∞

n=1xn = −∞).

Definition 3.8. We say that a sequence {xn; n ∈ R} is τ-bounded above (τ-bounded bellow), if
there exist m ∈ R such that {n ∈ N; xn > m} ∈ τ ({n ∈ N; xn < m} ∈ τ) and is τ-bounded if it is
τ-bounded above and below simultaneously.

It is obvious that if
∑∞

n=1an is faster convergent than
∑∞

n=1bn, then
∑∞

n=1an is τ-faster
convergent, the

∑∞
n=1bn. Generally, from the fact that

∑∞
n=1an is τ-faster convergent,

∑∞
n=1bn

does not hold that
∑∞

n=1an is faster convergent than
∑∞

n=1bn.
It is obvious that for τ-convergent series where τ has the property p1:

ifM ∈ τ, then M + 1 = {n + 1; n ∈ M ∩N} ∈ τ, M − 1 = {n − 1 > 0; n ∈ M ∩N} ∈ τ
(3.1)

(τf or τst = {A ⊂ N; asymptotic density (A) = 0} have p1), we obtain similar lemma as
Lemma 2.6.

Lemma 3.9. Let τ be an admissible ideal of subsets of N with property p1. Let
∑∞

n=1an,
∑∞

n=1bn be
τ-convergent real series with nonzero terms. Let bn + bn+1 + · · · /= 0, for all n ∈ N. Let

ti(a) = τ-lim inf
n→∞

∣
∣
∣
∣1 +

an+1

an
+
an+2

an
+ · · ·

∣
∣
∣
∣, ts(a) = τ-lim sup

n→∞

∣
∣
∣
∣1 +

an+1

an
+
an+2

an
+ · · ·

∣
∣
∣
∣,

ti(b) = τ-lim inf
n→∞

∣
∣
∣
∣1 +

bn+1
bn

+
bn+2
bn

+ · · ·
∣
∣
∣
∣, ts(b) = τ-lim sup

n→∞

∣
∣
∣
∣1 +

bn+1
bn

+
bn+2
bn

+ · · ·
∣
∣
∣
∣.

(3.2)
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Then

(1) if ts(a) < ∞, ti(b) > 0, τ-limn→∞(an/bn) = 0, then τ-limn→∞(an+an+1+ · · · )/(bn+bn+1+
· · · ) = 0,

(2) if an + an+1 + · · · /= 0 for all n ∈ N, ti(a) > 0, ts(b) < ∞, τ-limn→∞(an +an+1 + · · · )/(bn +
bn+1 + · · · ) = 0, then τ-limn→∞(an/bn) = 0,

(3) if an + an+1 + · · · /= 0 for all n ∈ N, 0 < ti(a), ts(a) < ∞, 0 < ti(b), ts(b) < ∞, then
τ-limn→∞(an/bn) = 0, if and only if τ-limn→∞(an + an+1 + · · · )/(bn + bn+1 + · · · ) = 0.

Proof. First, we note that if τ-lim supn→∞xn < ∞, then sequence {xn; n ∈ N} is τ-bounded
above (similarly for τ- lim inf). Next, we show that if {an; n ∈ N} is a τ-convergent sequence
to 0 and {bn; n ∈ N} is a τ-bounded sequence, then {anbn : n ∈ N} is a τ-convergent sequence
to 0. There exist k ∈ R such that the set Nb = {n; |bn| ≥ k} is from τ . Let ε > 0. The set
Na(ε) = {n; |an| ≥ ε/k} is from τ . If n ∈ N \ (Na(ε) ∪Nb), then |an| < ε/K and |bn| < k and so
|anbn| < ε. From this and from properties of ideal τ , follows that {anbn : n ∈ N}τ-converges to
0. Then the proof follows from Lemma 2.6.

The following examples show that we cannot replace lim by τ-lim in Lemmas 1.2, 2.1,
and 2.2.

Example 3.10. Let
∑∞

n=1bn be a convergent series with positive terms such that
∑∞

n=1(bn + bn+1 +
bn+2 + · · · ) is convergent (e.g., ∑∞

n=1bn =
∑∞

n=1α
n−1, 0 < α < 1). Let M = {ij ; 1 < ij < ij+1, j ∈ N},

M ∈ τ be an infinite subset of N, where τ is an arbitrary admissible ideal with property p1
different from τf . We define a real series

∑∞
n=1an in the following way:

an =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
n
bn, n > 1, n /= ij , ij ∈ M, j = 2, 3, . . .

bij−1 + bij−1+1 + · · · n ∈ M \ {i1},
c, n = 1,

(3.3)

where c be a real number such that
∑∞

n=1an =
∑∞

n=1bn. We obtain τ-limn→∞(an/bn) = 0, (an +
an+1 + · · · )/(bn + bn+1 + · · · ) > 1 for all n ≥ i2.

Example 3.11. LetM = {nj ; n1 = 1, nj < nj+1, nj+1−nj ≥ 2, j ∈ N}, M ∈ τ be an infinite subset of
N, where τ is an arbitrary admissible ideal with property p1 different from τf . Let {Bnj

}∞
j=1

be
a sequence of positive real numbers such that Bnj+1 < Bnj

< mBnj+1 , limj→∞Bnj
= 0,wherem > 1.

Put Ak = Bk/2k, k ∈ M. Let Ak, Bk for k /∈M be defined as follows: if nj < k < nj+1, where
j ∈ N we put εnj

= (Anj
− Anj+1)/(nj+1 − nj), Ak = Anj

− (k − nj)εnj
, Bk = Bnj

− (k − nj)εnj
. For

k /∈M, we have Ak/Bk < Anj
/Bnj+1 = Bnj

/2njBnj+1 < m/2nj , where nj < k < nj+1. From this and
from the definition Ak, k ∈ M, it follows limk→∞(Ak/Bk) = 0, hence τ-limk→∞(Ak/Bk) = 0. It
is obvious that (Ak −Ak+1)/(Bk − Bk+1) = 1 for k /=nj − 1, j > 1. Let A0 > A1 and B0 > B1 be real
numbers. Put an = An−1 −An, bn = Bn−1 − Bn, n ∈ N. The series

∑∞
n=1an,

∑∞
n=1bn are convergent

with positive terms and τ-limn→∞(an + an+1 + · · · )/(bn + bn+1 + · · · ) = 0, τ-limn→∞(an/bn) = 1.

Remark 3.12. If τ have not the property p1, we get similar lemma as Lemma 3.9, but with shift
indices of given series. (In general, it does not hold that if τ-limn→∞an = a, then τ-limn→∞an+1 =
a, and so on.)
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4. Kummer series

In [7], is showed: if
∑∞

n=1an is a convergent real series with positive terms andwith an unknown
sum a and

∑∞
n=1cn is a convergent real series with positive terms and with a known sum c, then

if limn→∞(an/cn) = p > 0 the Kummer series
∑∞

n=1bn, where b1 = a1 +p(c− c1) and bn = an −pcn
for n ≥ 2, has the same sum as

∑∞
n=1an and if bn > 0 is a faster convergent series then

∑∞
n=1an.

In the following lemma, we prove by using Lemma 2.6 the faster convergence of the
Kummer series

∑∞
n=1bn to the unknown sum of

∑∞
n=1an without conditions of positivity of p

and terms of
∑∞

n=1an,
∑∞

n=1bn,
∑∞

n=1cn.

Lemma 4.1. Let
∑∞

n=1an be a convergent real series with nonzero terms and with the sum a. Let
lim infn→∞|1 + an+1/an + an+2/an + · · · | > 0. Let an + an+1 + · · · /= 0 for all n ∈ N. Let

∑∞
n=1cn

be a convergent series with nonzero terms and with the sum c. Let limn→∞ an/cn = p /= 0. If for the
series

∑∞
n=1bn, where b1 = a1 + p(c − c1) and bn = an − pcn, for n ≥ 2, is bn /= 0, for n ≥ 2, and

lim supn→∞|1 + bn+1/bn + bn+2/bn + · · · | < ∞, then
∑∞

n=1bn = a and
∑∞

n=1bn is a faster convergent
series than

∑∞
n=1an.

Proof. Since limn→∞(bn/an) = 0, the proof follows from Lemma 2.6.

In the next example, we construct, by using of Remark 2.7 and Lemma 4.1, the Kummer
series

∑∞
n=1bn faster convergent than the series

∑∞
n=1an such that series

∑∞
n=1an,

∑∞
n=1cn,

∑∞
n=1bn

does not have positive terms.

Example 4.2. Let
∑∞

n=1an =
∑∞

n=1(−1)n/(4n(3n2 +
√
n)), (the sum is unknown). It is evident that

lim supn→∞|an+1/an| = 1/4 < 1/2. Let
∑∞

n=1cn =
∑∞

n=1(−1)n/(4nn2), then limn→∞an/cn = 1/3
and from

∑∞
n=1(x

n/n2) = − ∫x
0 (ln(1 − t)/t)dt, x ∈ (−1, 1), it follows

∑∞
n=1(−1)n/(4nn2) =

∫0
−1/4(ln(1−t)/t)dt (the sum is known). The Kummer series is

∑∞
n=1bn = b1+

∑∞
n=2(an−(1/3)cn),

where
∑∞

n=2bn =
∑∞

n=2(−1)n+1/(4n3n
√
n(3n2 +

√
n)), b1 = 1/48 + 1/3

∫0
−1/4(ln(1 − t)/t)dt. It

is obvious that lim supn→∞|bn+1/bn| = 1/4 < 1. Because
∑∞

n=1an is series with alternating
signs such that for all n ∈ N we have that |an+1| < |an|, we get for n ∈ Na2n + a2n+1 + · · · >
0, a2n+1 + a2n+2 + · · · < 0. Hence

∑∞
n=1bn is a faster convergent series than

∑∞
n=1an and it has the

same sum.
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