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Let R
(s)
0,m+1 be the space of s-vectors (0 ≤ s ≤ m + 1) in the Clifford algebra R0,m+1 constructed over

the quadratic vector space R
0,m+1, let r, p, q ∈ N with 0 ≤ r ≤ m+ 1, 0 ≤ p ≤ q, and r + 2q ≤ m+ 1, and

let R
(r,p,q)
0,m+1 =

∑ q

j=p
⊕

R
(r+2j)
0,m+1 . Then, an R

(r,p,q)
0,m+1 -valued smooth function W defined in an open subset

Ω ⊂ R
m+1 is said to satisfy the generalized Moisil-Théodoresco system of type (r, p, q) if ∂xW = 0 in

Ω, where ∂x is the Dirac operator in R
m+1. A structure theorem is proved for such functions, based

on the construction of conjugate harmonic pairs. Furthermore, if Ω is bounded with boundary Γ,
where Γ is an Ahlfors-David regular surface, and if W is a R

(r,p,q)
0,m+1 -valued Hölder continuous func-

tion on Γ, then necessary and sufficient conditions are given under which W admits on Γ a Cauchy
integral decomposition W = W+ +W−.

Copyright q 2008 Ricardo Abreu Blaya et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Clifford analysis, a function theory for the Dirac operator in Euclidean space R
m+1 (m ≥ 2),

generalizes in an elegant way the theory of holomorphic functions in the complex plane to
a higher dimension and provides at the same time a refinement of the theory of harmonic
functions. One of the basic properties relied upon in building up this function theory is the fact
that the Dirac operator ∂x in R

m+1 factorizes the Laplacian Δx through the relation ∂2x = −Δx.
The Dirac operator ∂x is defined by ∂x =

∑m
i=0 ei∂xi

, where x = (x0, x1, . . . , xm) ∈ R
m+1 and

e = (ei : i = 0, . . . , m) is an orthogonal basis for the quadratic space R
0,m+1, the latter being

the space R
m+1 equipped with a quadratic form of signature (0, m + 1). By virtue of the basic
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multiplication rules

e2i = −1, i = 0, 1, . . . , m,

eiej + ejei = 0, i /= j; i, j = 0, 1, . . . , m,
(1.1)

valid in the universal Clifford algebraR0,m+1 constructed overR
0,m+1, the factorization ∂2x = −Δx

is thus obtained.
Notice that R0,m+1 is a real linear associative algebra of dimension 2m+1, having as stan-

dard basis the set (eA : |A| = s, s = 0, 1, . . . , m + 1), where A = {i1, . . . , is}, 0 ≤ i1 < i2 < · · · < is ≤
m, eA = ei1ei2 · · · eis , and eφ = 1, the identity element in R0,m+1.

Now let Ω ⊂ R
m+1 be open and let F : Ω �→ R0,m+1 be a C1-function in Ω. Then, F is

said to be left monogenic in Ω if ∂xF = 0 in Ω. The equation ∂xF = 0 gives rise to a first-order
linear elliptic system of partial differential equations in the components fA of F =

∑
A fAeA.

By choosing e = (e1, . . . , em) as an orthogonal basis for the quadratic space R
0,m, then inside

R0,m+1, R
0,m thus generates the Clifford algebra R0,m. It is then easily seen that

R0,m+1 = R0,m ⊕ e0R0,m, (1.2)

where e0 = −e0. If the R0,m+1-valued C1-function F in Ω is decomposed following (1.2), that is
F = U + e0V whereU and V are R0,m-valued C1-functions in Ω, then in Ω

∂xF = 0 ⇐⇒ DxF = 0 ⇐⇒
⎧
⎨

⎩

∂x0U + ∂xV = 0,

∂xU + ∂x0V = 0,
(1.3)

where Dx = e0∂x = ∂x0 + e0∂x is the Cauchy-Riemann operator in R
m+1 and ∂x =

∑m
j=1ej∂xj

is
the Dirac operator in R

m.
Obviously the system (1.3) generalizes the classical Cauchy-Riemann system in the

plane: it indeed suffices in the casem = 1 to take U R-valued and V Re1-valued.
Left monogenic functions in Ω are real analytic, whence by virtue of ∂2x = −Δx, they are

in particular R0,m+1-valued and harmonic in Ω.
As the algebra R0,m+1 is noncommutative, one could as well consider right monogenic

functions F inΩ, that is F satisfies the equation F∂x = 0 inΩ. If both ∂xF = 0 and F∂x = 0 inΩ,
then F is said to be two-sided monogenic in Ω.

Notice also that through a natural linear isomorphism Θ : R0,m+1 �→ ΛR
m+1 (see Section

2), the spaces E(Ω;R0,m+1) and E(Ω;ΛR
m+1) of smooth R0,m+1-valued functions and smooth dif-

ferential forms inΩmay be identified. The left and right actions of ∂x on E(Ω;R0,m+1) then cor-
respond to the actions of d+d∗ and d−d∗ on E(Ω;ΛR

m+1), where d and d∗ denote, respectively,
the exterior derivative and the coderivative operators. For the sake of completeness, let us re-
call the definition of d and d∗ on the space E(Ω;Λs

R
m+1) of smooth s-forms in Ω, 0 ≤ s ≤ m + 1

(see [1]).
For ωs ∈ E(Ω;Λs

R
m+1) with ωs =

∑
|A|=s ω

s
Adx

A, where dxA = dxi1 ∧ dxi2 ∧ · · · ∧ dxis ,
0 ≤ i1 < i2 < · · · < is ≤ m, dωs and d∗ωs are defined by

dωs =
∑

A

m∑

i=0

∂xi
ωs

Adx
i ∧ dxA,

d∗ωs =
∑

A

s∑

j=1

(−1)j∂xij
ωs

Adx
A\{ij}.

(1.4)
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A smooth differential form ω satisfying (d − d∗)ω = 0 in Ω was called in [2] a self-
conjugate differential form.

It thus becomes clear that through the identifications mentioned (see again Section 2)
a subsystem of (1.3) corresponds to a subsystem of self-conjugate differential forms and vice
versa. For instance, for 0 < s < m+1 fixed, the study of left monogenic s-vector valued functions
Ws thus corresponds to the study of s-formsωs satisfying the Hodge-de Rham system dωs = 0
and d∗ωs = 0.

Let us recall that the space R
(s)
0,m+1 of s-vectors in R0,m+1 (0 ≤ s ≤ m + 1) is defined by

R
(s)
0,m+1 = span

R

(
eA : |A| = s

)
. (1.5)

For an account on recent investigations on subsystems of (1.3) or, equivalently, on the study of
particular systems of self-conjugate differential forms, we refer to [2–10].

Now fix 0 ≤ r ≤ m + 1, take p, q ∈ N such that 0 ≤ p ≤ q and r + 2q ≤ m + 1, and put

R
(r,p,q)
0,m+1 =

q∑

j=p

⊕
R

(r+2j)
0,m+1 . (1.6)

The present paper is devoted to the study of R
(r,p,q)
0,m+1 -valued smooth functions W in Ω which

are left monogenic in Ω (i.e., which satisfy ∂xW = 0 in Ω). The space of such functions is
henceforth denoted by MT(Ω,R

(r,p,q)
0,m+1). The system ∂xW = 0 defines a subsystem of (1.3), called

the generalized Moisil-Théodoresco system of type (r, p, q) in R
m+1.

To be more precise, let us first recall the definition of the differential operators ∂+x and
∂−x acting on smooth R

(s)
0,m+1-valued functions Ws in Ω. Call E(Ω;R(s)

0,m+1) the space of smooth

R
(s)
0,m+1-valued functions in Ω and put for Ws ∈ E(Ω;R(s)

0,m+1),

∂+xW
s =

1
2
(
∂xW

s + (−1)sWs∂x
)
,

∂−xW
s =

1
2
(
∂xW

s − (−1)sWs∂x
)
.

(1.7)

Note that ∂+xW
s is R

(s+1)
0,m+1-valued while ∂−xW

s is R
(s−1)
0,m+1-valued and that through the isomor-

phism Θ, the action of ∂+x and ∂−x on E(Ω;R(s)
0,m+1) corresponds to, respectively, the action of d

and d∗ on the space E(Ω;Λs
R

m+1).
If W ∈ E(Ω;R(r,p,q)

0,m+1) is written as

W =
q∑

j=p

Wr+2j , with Wr+2j ∈ E
(
Ω;R(r+2j)

0,m+1

)
, j = p, . . . , q, (1.8)

we then have that the generalized Moisil-Théodoresco system of type (r, p, q) reads as follows
(see also Section 2):

∂xW = 0 ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂−xW
r+2p = 0,

∂+xW
r+2j + ∂−xW

r+2(j+1) = 0, j = p, . . . , q − 1,

∂+xW
r+2q = 0.

(1.9)
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Note that for p = q = 0 and 0 < r < m + 1 fixed, the system (1.9) reduces to the generalized
Riesz system ∂xW

r = 0. Its solutions are called harmonic multivector fields (see also [11]). We
have

∂xW
r = 0 ⇐⇒

⎧
⎨

⎩

∂−xW
r = 0,

∂+xW
r = 0.

(1.10)

Furthermore, for p = 0, q = 1, and 0 ≤ r ≤ m + 1 fixed, the system (1.9) reduces to the Moisil-
Théodoreco system in R

m+1 (see, e.g., [3]):

∂−xW
r = 0, ∂+xW

r + ∂−xW
r+2 = 0, ∂+xW

r+2 = 0. (1.11)

In the particular case, where m + 1 = 3, p = 0, q = 1, and r = 0, the original Moisil-Théodoresco
system introduced in [12] is reobtained (see also [4]).

In this paper, two problems are dealt with; we list them as follows.

(i) To characterize the structure of solutions to the system (1.9).

It is proved in Section 4 (see Theorem 3.2) that, under certain geometric conditions upon
Ω, each W ∈ MT(Ω,R

(r,p,q)
0,m+1) corresponds to a harmonic potential L belonging to a particular

subspace of the spaceH(Ω,R
(r,p,q)
0,m ) of harmonic R

(r,p,q)
0,m -valued functions in Ω.

The proof of Theorem 3.2 relies heavily on the construction of conjugate harmonic pairs
elaborated in Section 3.

(ii) To characterize thoseW ∈ C0,α(Γ;R(r,p,q)
0,m+1)which admit a Cauchy-type integral decom-

position on Γ of the form

W = W+ +W−, (1.12)

where Γ is the boundary of a bounded open domain Ω = Ω+ in R
m+1 and C0,α(Γ;

R
(r,p,q)
0,m+1) denotes the space of R

(r,p,q)
0,m+1 -valued Hölder continuous functions of order α on

Γ, 0 < α < 1. PuttingΩ− = R
m+1 \ (Ω ∪ Γ), the elementsW+ andW− should also belong

to C0,α(Γ;R(r,p,q)
0,m+1) and as such should be the boundary values of solutions W+ and W−

of (1.9) in Ω+ and Ω−, respectively.

In Section 5, this problem is solved in terms of the Cauchy transform CΓ on Γ, Γ being an
m-dimensional Ahlfors-David regular surface (see Theorem 4.2).

In order to make the paper self-contained, we include in Section 2 some basic properties
of Clifford algebras and Clifford analysis. For a general account of this function theory, we
refer, for example, to the monographs [13–15].

2. Clifford analysis: notations and some basic properties

Let again e = (e0, e1, . . . , em) be an orthogonal basis for R
0,m+1 and let R0,m+1 be the universal

Clifford algebra over R
0,m+1. As has already been mentioned in Section 1, R0,m+1 is a real linear

associative but noncommutative algebra of dimension 2m+1; its standard basis is given by the
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set (eA : |A| = s, 0 ≤ s ≤ m + 1) and the basic multiplication rules are governed by (1.1). For
0 ≤ s ≤ m+1 fixed, the spaceR

(s)
0,m+1 of s-vectors is defined by (1.5), leading to the decomposition

R0,m+1 =
m+1∑

s=0

⊕
R

(s)
0,m+1 (2.1)

and the associated projection operators []s : R0,m+1 �→ R
(s)
0,m+1.

Note in particular that for s = 0, R
(0)
0,m+1

∼= R and that for s = 1, R
(1)
0,m+1

∼= R
0,m+1.

An element x = (x0, x1, . . . , xm) = (x0, x) ∈ R
m+1 is therefore usually identified with

x =
∑m

i=0 eixi ∈ R
0,m+1.

For x, y ∈ R
(1)
0,m+1, the product xy splits in two parts, namely,

xy = x•y + x ∧ y, (2.2)

where x•y = [xy]0 is the scalar part of xy and x ∧ y = [xy]2 is the 2-vector or bivector part of
xy. They are given by

x•y = −
m∑

i=0

xiyi,

x ∧ y =
∑

i<j

eiej
(
xiyj − xjyi

)
.

(2.3)

More generally, for x ∈ R
(1)
0,m+1 and υ ∈ R

(s)
0,m+1 (0 < s < m + 1), we have that the product xυ

decomposes into

xυ = x•υ + x ∧ υ, (2.4)

where

x•υ = [xυ]s−1 =
1
2
(
xυ − (−1)sυx),

x ∧ υ = [xυ]s+1 =
1
2
(
xυ + (−1)sυx).

(2.5)

Another useful decomposition of R0,m+1 may be obtained by splitting it “along the e0-
direction,” as indicated in (1.2). This in fact means that we split R

m+1 following R
m+1 = R × R

m

and that within R0,m+1, the Clifford algebra R0,m is generated by the orthogonal basis e =
(e1, . . . , em) of R

0,m. R0,m denotes the space R
m to which the original quadratic form of signature

(0, m + 1) on R
0,m+1 has been restricted.

Following the decomposition (1.2), the element x = (x0, x) ∈ R
m+1 is then often identified

with the so-called paravector x = x0 + e0x = x0 + e0
∑m

j=1 xjej ∈ R
⊕

e0R
0,m.

Let us also recall that if Ω ⊂ R
m+1 is open and F is an R0,m+1-valued C1-function in Ω,

then F is said to be left monogenic inΩ if ∂xF = 0 inΩ, ∂x =
∑m

i=0 ei∂xi
being the Dirac operator

in R
m+1.
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As already mentioned in (1.3), by putting Dx = e0∂x = ∂x0 + e0∂x, ∂x being the Dirac
operator in R

m, we have for F = U + e0V ,

∂xF = 0 ⇐⇒ DxF = 0 ⇐⇒
⎧
⎨

⎩

∂x0U + ∂xV = 0,

∂xU + ∂x0V = 0.
(2.6)

Let us recall that a pair (U,V ) of R0,m-valued harmonic functions in Ω is said to be conjugate
harmonic if F = U + e0V is left monogenic in Ω (see [16]).

Notice also that, when defining the conjugate Dx of Dx by Dx = ∂x0 − e0∂x, we have that
DxDx = DxDx = Δx.

If S is a subspace of R0,m+1, thenM(Ω, S) andH(Ω, S) denote, respectively, the spaces of
left monogenic and harmonic S-valued functions in Ω. As ∂2x = −Δx, we have that M(Ω, S) ⊂
H(Ω, S).

In particular, for r, p, q ∈ N such that 0 ≤ r ≤ m+ 1, 0 ≤ p ≤ q with r + 2q ≤ m+ 1, we have
put in Section 1 (see (1.6)), R

(r,p,q)
0,m+1 =

∑q

j=p
⊕

R
(r+2j)
0,m+1 andM(Ω,R

(r,p,q)
0,m+1) = MT(Ω,R

(r,p,q)
0,m+1).

Furthermore, for 0 ≤ s ≤ m + 1 fixed, a natural isomorphism

Θ : E
(
Ω;R(s)

0,m+1

)
�−→ E

(
Ω;Λs

R
m+1

)
(2.7)

may be then defined as follows.
Put for Ws =

∑
|A|=sW

s
AeA ∈ E(Ω;R(s)

0,m+1),

ΘWs = ωs ⇐⇒ ωs =
∑

|A|=s
ωs

A dxA, (2.8)

where for eachA = {i1, . . . , is} ⊂ {0, . . . , m}with 0 ≤ i1 < · · · < is ≤ m, dxA = dxi1 ∧ · · · ∧dxis and
ωs

A = Ws
A for all A.

By means of the decomposition (2.1), Θ may be extended by linearity to R0,m+1, thus
leading to the isomorphism Θ : E(Ω;R0,m+1) �→ E(Ω;ΛR

m+1), where as usual ΛR
m+1 =

∑m+1
s=0

⊕
Λs

R
m+1.

It may be easily checked that the action of the exterior derivative d and the co-derivative
d∗ on E(Ω;Λs

R
m+1) then corresponds through Θ to the left action of ∂+x and ∂−x on E(Ω;R(s)

0,m+1).
For the definition of d and d∗ (resp., ∂+x and ∂−x) we refer to (1.4) and (1.7). In fact, taking into
account the relations (2.5), the expressions (1.7)mean that for Ws ∈ E(Ω;R(s)

0,m+1),

∂−xW
s =

[
∂xW

s]
s−1,

∂+xW
s =

[
∂xW

s]
s+1.

(2.9)

Consequently, for Ws ∈ E(Ω;R(s)
0,m+1), ∂xW

s splits into

∂xW
s =

[
∂xW

s]
s−1 +

[
∂xW

s]
s+1 = ∂−xW

s + ∂+xW
s. (2.10)

It thus follows that for W ∈ E(Ω;R(r,p,q)
0,m+1), the system ∂xW = 0 is given by (1.9).

Obviously, for s = 0, ∂−xW
0 = 0, while for s = m + 1, ∂+xW

m+1 = 0. Finally, notice that
∂x = ∂+x + ∂−x and that hence, as mentioned in Section 1, through Θ, the left action of ∂x on
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E(Ω;R0,m+1) corresponds to the action of d + d∗ on E(Ω;ΛR
m+1). We thus have on E(Ω;R0,m+1)

that Δx = −(∂+x∂−x + ∂−x∂
+
x).

The following notations will also be used:

kers∂+x =
{
Ws ∈ E

(
Ω;R(s)

0,m+1

)
: ∂+xW

s = 0
}
,

kers∂−x =
{
Ws ∈ E

(
Ω;R(s)

0,m+1

)
: ∂−xW

s = 0
}
.

(2.11)

Let us recall that ifΩ is contractible to a point, a refined version of the inverse Poincaré lemma
then implies that

∂+x∂
−
x : kers∂+x �−→ kers∂+x,

∂−x∂
+
x : kers∂−x �−→ kers∂−x

(2.12)

are surjective operators.
For the inverse Poincaré lemma and its refined version we refer to, respectively, [1, 17].

For more information concerning the interplay between differential forms and multivectors,
the reader is referred to [17, 18].

Obviously, all notions, notations, and properties introduced abovemay be easily adapted
to the case where Ω̃ ⊂ R

m is the orthogonal projection of Ω on R
m and ∂x and Δx are the Dirac

and Laplace operators in R
m.

3. Conjugate harmonic pairs

Let r, p, q ∈ N be as in Section 1, let W ∈ E(Ω;R(r,p,q)
0,m+1) with W =

∑q

j=p W
r+2j , and decompose

eachWr+2j ∈ E(Ω;R(r+2j)
0,m+1) following (1.2), that is

Wr+2j = Ur+2j + e0V
r−1+2j , (3.1)

whereUr+2j ∈ E(Ω,R
(r+2j)
0,m ) and V r−1+2j ∈ E(Ω,R

(r−1+2j)
0,m ).

Then, W = U + e0V with

U =
q∑

j=p

Ur+2j
R

(r,p,q)
0,m -valued,

V =
q∑

j=p

V r−1+2j
R

(r−1,p,q)
0,m -valued.

(3.2)

Now suppose that W ∈ MT(Ω,R
(r,p,q)
0,m+1), that is, (U,V ) is a conjugate harmonic pair in Ω in the

sense of [16]. Then, as already stated in (1.3),

∂xW = 0 ⇐⇒
⎧
⎨

⎩

∂x0U + ∂xV = 0,

∂xU + ∂x0V = 0.
(3.3)
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By virtue of (2.10) and (3.2), the equations in (3.3) lead to the systems

∂−xV
r−1+2p = 0,

∂x0U
r+2j + ∂+xV

r−1+2j + ∂−xV
r−1+2j+2 = 0, j = p, . . . , q − 1,

∂x0U
r+2q + ∂+xV

r−1+2q = 0,

(3.4)

∂−xU
r+2p + ∂x0V

r−1+2p = 0,

∂+xU
r+2j + ∂−xU

r+2j+2 + ∂x0V
r−1+2j+2 = 0, j = p, . . . , q − 1,

∂+xU
r+2q = 0.

(3.5)

From (3.5) it thus follows thatW ∈ MT(Ω,R
(r,p,q)
0,m+1) implies that ∂+xU

r+2q = 0 in Ω.
We now claim that, under certain geometric conditions upon Ω, given U =

∑q

j=p U
r+2j ,

harmonic and R
(r,p,q)
0,m -valued in Ω, the condition ∂+xU

r+2q = 0 in Ω is sufficient to ensure the

existence of a Ṽ , harmonic and R
(r−1,p,q)
0,m -valued inΩ, which is conjugate harmonic toU, that is

W̃ = U + e0Ṽ ∈ MT(Ω,R
(r,p,q)
0,m+1).

In proving this statement, we will adapt where necessary the techniques worked out in
[16] for constructing conjugate harmonic pairs.

Let again Ω̃ denote the orthogonal projection of Ω on R
m. Then, we suppose henceforth

that Ω satisfies the following conditions (C1) and (C2):

(C1) Ω is normal with respect to the e0 direction, that is, there exists x∗
0 ∈ R such that for all

x ∈ Ω̃, Ω ∩ {x + te0 : t ∈ R} is connected and it contains the element (x∗
0, x);

(C2) Ω̃ is contractible to a point.

The condition (C1) is sufficient for constructing harmonic conjugates toU (see [16]), while the
condition (C2) ensures the applicability of the inverse Poincaré lemma and its consequences in
Ω̃ (see [17]).

As is well known, classical results of cohomology theory provide necessary and suffi-
cient conditions for the validity of the inverse Poincaré lemma in Ω̃. For convenience of the
reader, we restrict ourselves to the condition (C2), thus making the inverse Poincaré lemma
applicable for any closed or coclosed form ωs in Ω̃ (0 < s < m).

Now assume that U =
∑q

j=p U
r+2j harmonic and that R

(r,p,q)
0,m -valued in Ω satisfies the

condition ∂+xU
r+2q = 0 in Ω.

Put

H̃
(
x0, x

)
=
∫x0

x∗
0

U(t, x)dt − h̃(x), (3.6)

where h̃ =
∑q

j=p h̃
r+2j is a smooth R

(r,p,q)
0,m -valued solution in Ω̃ of the equation

Δxh̃(x) = ∂x0U
(
x∗
0, x

)
. (3.7)

As Δx : E(Ω̃;R(r,p,q)
0,m ) �→ E(Ω̃;R(r,p,q)

0,m ) is surjective (see [19]), such h̃ indeed exists and any other

similar solution of (3.7) has the form h̃ + h, where h ∈ H(Ω̃;R(r,p,q)
0,m ).
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Fix a solution h̃ of (3.7). Then by construction, the corresponding H̃ determined by (3.6)
belongs toH(Ω;R(r,p,q)

0,m ) (see [16]).

We now prove that there exists hr+2q ∈ H(Ω̃;R(r+2q)
0,m ) such that in Ω̃,

∂+x
(
h̃r+2q + hr+2q) = 0. (3.8)

To this end, first notice that, as by the assumption ∂+xU
r+2q = 0 in the Ω, we have that

∂+x(∂x0U
r+2q)(x∗

0, x) = 0 in Ω̃, whence ∂x0U
r+2q(x∗

0, x) ∈ kerr+2q∂+x.

As ∂+x∂
−
x : kerr+2q∂+x �→ kerr+2q∂+x is surjective (see also (2.12)) there exists W̃r+2q ∈

kerr+2q∂+x such that ∂+x∂
−
xW̃

r+2q(x) = −∂x0U
r+2q(x∗

0, x), that is, W̃
r+2q satisfies in Ω̃ the relations

∂+xW̃
r+2q = 0, ∂+x∂

−
xW̃

r+2q(x) = −∂x0U
r+2q(x∗

0, x
)
. (3.9)

Furthermore, put hr+2q = W̃r+2q − h̃r+2q. Then, on the one hand,

Δx

(
h̃r+2q + hr+2q)(x) = −(∂−x∂+x + ∂+x∂

−
x

)
W̃r+2q(x)

= −∂+x∂−xW̃r+2q(x)

= ∂x0U
r+2q(x∗

0, x
)
,

(3.10)

while on the other hand

Δx

(
h̃r+2q + hr+2q)(x) = Δxh̃

r+2q(x) + Δxh
r+2q(x)

= ∂x0U
r+2q(x∗

0, x
)
+ Δxh

r+2q(x).
(3.11)

Consequently, Δxh
r+2q = 0 in Ω̃ and ∂x(h̃r+2q + hr+2q) is R

(r−1+2q)
0,m -valued in Ω̃.

Now defineH by

H
(
x0, x

)
= H̃

(
x0, x

) − hr+2q(x). (3.12)

Then by construction,H ∈ H(Ω;R(r,p,q)
0,m ) and clearly in Ω, ∂x0H = U.

Furthermore, as ∂+xU
r+2q(x0, x) = 0 inΩ,

∫x0

x∗
0
∂xU(t, x)dt is R

(r−1,p,q)
0,m -valued and obviously

∂x(
∑q−1

j=p h̃
r+2j) is R

(r−1,p,q)
0,m -valued. As moreover ∂x(h̃r+2q + hr+2q) = 0, we get that Ṽ (x0, x) =

−∂xH(x0, x) is R
(r−1,p,q)
0,m -valued.

Consequently, as DxDx = Δx, W̃ = DxH = U + e0Ṽ ∈ MT(Ω,R
(r,p,q)
0,m+1), that is, (U, Ṽ ) is a

conjugate harmonic pair in Ω.
We have thus proved the following theorem.

Theorem 3.1. Let Ω ⊂ R
m+1 be open and normal with respect to the e0-direction and let Ω be con-

tractible to a point. Furthermore, letU ∈ H(Ω;R(r,p,q)
0,m ) be given. Then,U admits a conjugate harmonic

Ṽ ∈ H(Ω;R(r−1,p,q)
0,m ) if and only if ∂+xU

r+2q = 0 in Ω.
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Remarks

(1) If r + 2q = m + 1, then U
r+2q
0,m = Um+1

0,m ≡ 0 in Ω, thus implying that the condition ∂+xU
r+2q = 0

is automatically satisfied and that in constructingH, no correction term hr+2q should be added
to H̃ (i.e., we may take H = H̃ in (3.12)).

(2) It is of course tacitly understood that if r = p = 0, then in the expression of V =
∑q

j=0V
−1+2j (see (3.2)), the first term V −1 is taken to be identically zero in Ω.
(3) The systems (3.4) and (3.5) show a lot of symmetry.
The following theorem (Theorem 3.2) holds, the proof of which is omitted.

Theorem 3.2. Let Ω ⊂ R
m+1 be open and normal with respect to the e0-direction and let Ω be con-

tractible to a point. Furthermore, let V ∈ H(Ω;R(r−1),p,q
0,m+1 ) be given. Then, V admits a conjugate har-

monic Ũ ∈ H(Ω;R(r,p,q)
0,m+1) if and only if ∂

−
xV

r−1+2p = 0 in Ω.

4. Structure theorems

Assume that r, p, q ∈ N are such that 0 ≤ r < m + 1 and that 0 ≤ p < q with r + 2q ≤ m + 1.
This section essentially deals with the construction of harmonic potentials corresponding

to solutions of the generalized Moisil-Théodoresco system.
We start with the following lemma.

Lemma 4.1. LetΩ ⊂ R
m+1 be open and contractible to a point and letW ∈ E(Ω,R

(r,p,q)
0,m+1). The following

properties are equivalent:

(i) W ∈ MT(Ω,R
(r,p,q)
0,m+1),

(ii) there existsH ∈ H(Ω,R
(r+1,p,q−1)
0,m+1 ) such thatW = ∂xH.

Proof. It is clear that if H ∈ H(Ω,R
(r+1,p,q−1)
0,m+1 ), then W = ∂xH is R

(r,p,q)
0,m+1 -valued. As moreover

∂2x = −Δx, W ∈ MT(Ω,R
(r,p,q)
0,m+1); whence (ii)⇒(i) is proved.

Conversely, assume that W ∈ MT(Ω,R
(r,p,q)
0,m+1) and put W =

∑q

j=p W
r+2j . From ∂xW = 0 it

follows that

∂−xW
r+2p = 0,

∂+xW
r+2j + ∂−xW

r+2(j+1) = 0, j = p, . . . , q − 1,

∂+xW
r+2q = 0.

(4.1)

By a refined version of the inverse Poincaré lemma (see [17])we obtain from the first equation
in (4.1) that there existsWr+2p+1

− ∈ E(Ω;R(r+2p+1)
0,m+1 ) such that in Ω

Wr+2p = ∂−xW
r+2p+1
− , ∂+xW

r+2p+1
− = 0. (4.2)

Analogously, the third equation in (4.1) implies the existence of

W
r+2q−1
+ ∈ E

(
Ω;R(r+2q−1)

0,m+1

)
(4.3)
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such that in Ω

Wr+2q = ∂+xW
r+2q−1
+ , ∂−xW

r+2q−1
+ = 0. (4.4)

Put H ′ = W
r+2p+1
− +W

r+2q−1
+ . Then,

H ′ ∈ E
(
Ω;R(r+1+2p)

0,m+1 ⊕ R
(r+1+2(q−1))
0,m+1

)
(4.5)

and by virtue of (4.2) and (4.4),

∂xH
′ = ∂+x

(
W

r+2p+1
− +W

r+2q−1
+

)
+ ∂−x

(
W

r+2p+1
− +W

r+2q−1
+

)

= Wr+2q +Wr+2p.
(4.6)

ButW = W2r+p+W∗+Wr+2q,whereW∗ =
∑q−1

j=p+1W
r+2j is R

(r,p+1,q−1)
0,m+1 -valued and harmonic

in Ω. As Δx : E(Ω;R(r,p+1,q−1)
0,m+1 ) �→ E(Ω,R

(r,p+1,q−1)
0,m+1 ) is surjective (see [19]), there exists that H∗ ∈

E(Ω,R
(r,p+1,q−1)
0,m+1 ) such that ΔxH

∗ = W∗.

Put H ′′ = −∂xH∗. Then, clearly H ′′ ∈ E(Ω;R(r+1,p,q−1)
0,m+1 ) and

∂xH
′′ = −∂2xH∗ = ΔxH

∗ = W∗. (4.7)

Finally, put H = H ′ +H ′′. Then,H is R
(r+1,p,q−1)
0,m+1 -valued and

∂xH = ∂xH
′ + ∂xH

′′ =
q∑

j=p

Wr+2j = W. (4.8)

As H is obviously harmonic in Ω, the proof is done.

Remarks

(1) In the case where r = p = 0 and 2q < m + 1, we have that in (4.1) the equation ∂−xW
0 = 0

is automatically satisfied. Putting W̃ =
∑q−1

j=0 W
2j , take H̃ ∈ E(Ω;R(0,0,q−1)

0,m+1 ) such that ΔxH̃ = W̃

and defineH by H = ∂x(−H̃ +W
2q−1
+ ). Then,W = ∂xH.

In the case where r + 2q = m + 1, the equation ∂+xW
m+1 = 0 is automatically satisfied. An

analogous reasoning to the one just made then leads to an appropriate H ∈ H(Ω;R(r+1,p,q−1)
0,m+1 )

such thatW = ∂xH.
(2) Obviously, in the case where as well r = p = 0 as 2q = m + 1, the technique suggested

in Remark (1) then producesH ∈ H(Ω;R(1,0,(m+1)/2−1)
0,m+1 ) such thatW = ∂xH.

(3) A particularly important example where as well r = p = 0 as 2q = m + 1 occurs when
m + 1 = 4. Indeed, put for given real valued smooth functions fi in Ω ⊂ R

4, i = 0, 1, 2, 3,

W0 = f0,

W2 = f1
(
e2e3 − e0e1

)
+ f2

(
e3e1 − e0e2

)
+ f3

(
e1e2 − e0e3

)
,

W4 = f0e0e1e2e3.

(4.9)
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Then, for W = W0 +W2 +W4 ∈ E(Ω;R(0,0,2)
0,4 ),

∂xW = 0 ⇐⇒
{
∂+xW

0 + ∂−xW
2 = 0,

∂+xW
2 + ∂−xW

4 = 0.
(4.10)

Both equations in (4.10) give rise to the same system to be satisfied by f = (f0, f1,
f2, f3), namely

∂f0
∂x0

− ∂f1
∂x1

− ∂f2
∂x2

− ∂f3
∂x3

= 0,

∂f0
∂x1

+
∂f1
∂x0

− ∂f2
∂x3

+
∂f3
∂x2

= 0,

∂f0
∂x2

+
∂f1
∂x3

+
∂f2
∂x0

− ∂f3
∂x1

= 0,

∂f0
∂x3

− ∂f1
∂x2

+
∂f2
∂x1

+
∂f3
∂x0

= 0.

(4.11)

The system (4.11) is the Fueter system in R
4 for so-called left regular functions of a quaternion

variable; it lies at the basis of quaternionic analysis (see [20, 21]).
We have taken this example from [2], where it was proved in the framework of self-

conjugate differential forms. We have inserted it here because it demonstrates how quater-
nionic analysis can be viewed upon as part of Clifford analysis in R

4, namely as the theory of
special solutions to a generalized Moisil-Théodoresco system in R

4 of type (0, 0, 2).
(4) In the case where p = 0 and q = 1, Lemma 4.1 tells us that, given W = Wr +Wr+2 ∈

MT(Ω;R(r)
0,m+1 ⊕ R

(r+2)
0,m+1), there exists H ∈ H(Ω;R(r+1)

0,m+1) such that W = ∂xH. This result was
already obtained in [3, Lemma 3.1].

Theorem 4.2. Let Ω ⊂ R
m+1 be open and normal with respect to the e0-direction, let Ω̃ be contractible

to a point, and letW ∈ E(Ω;R(r,p,q)
0,m+1). The following properties are equivalent:

(i) W ∈ MT(Ω;R(r,p,q)
0,m+1),

(ii) there exists L ∈ H(Ω;R(r,p,q)
0,m ) with ∂+xL

r+2q = 0 in Ω such thatW = DxL.

Proof. (i)→(ii). Let W ∈ MT(Ω;R(r,p,q)
0,m+1) and put, following (1.2), W = U + e0V . Then, the pair

(U,V ) is conjugate harmonic in Ω with U ∈ H(Ω;R(r,p,q)
0,m ) and V ∈ H(Ω;R(r−1,p,q)

0,m ).

Associate with U the harmonic R
(r,p,q)
0,m -valued potential H given by (3.12), that is,

H
(
x0, x

)
=
∫x0

x∗
0

U(t, x)dt − (
h̃ + hr+2q)(x), (4.12)

where in Ω̃, Δxh̃(x) = ∂x0U(x∗
0, x), h

r+2q ∈ H(Ω̃;R(r+2q)
0,m ), and ∂+x(h̃

r+2q + hr+2q) = 0.
As moreover ∂+xU

r+2q = 0 in Ω (see Theorem 3.1), it thus follows from (4.12) that

∂+xH
r+2q = 0 in Ω. Consequently, W̃ = DxH = Ũ + e0Ṽ ∈ MT(Ω;R(r,p,q)

0,m+1) with Ũ = ∂x0H = U

and Ṽ = −∂xH.
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From ∂x(W̃ −W) = 0, it is then easily obtained that Ṽ − V is independent of x0 and that
in Ω̃, ∂x(Ṽ − V ) = 0, that is, Ṽ − V ∈ MT(Ω̃;R(r−1,p,q)

0,m ). By virtue of Lemma 4.1, there exists

H∗ ∈ H(Ω̃;R(r,p,q−1)
0,m ) such that Ṽ − V = ∂xH

∗; whence V = −∂x(H +H∗).
Put L = H +H∗. Then by construction,

(i) L ∈ H(Ω;R(r,p,q)
0,m ),

(ii) ∂+xL
r+2q = 0,

(iii) W = DxL;

whence (i)→(ii) is proved.
Conversely, let L ∈ H(Ω;R(r,p,q)

0,m ) with ∂+xL
r+2q = 0. Then clearly W = DxL ∈ MT(Ω;

R
(r,p,q)
0,m+1).

Remarks

(1) Theorem 4.2 tells us that each W ∈ MT(Ω;R(r,p,q)
0,m+1) admits an R

(r,p,q)
0,m - valued harmonic po-

tential L in Ω satisfying ∂+xL
r+2q = 0.

(2) Let W = Wr + Wr+2 ∈ E(Ω;R(r)
0,m+1 ⊕ R

(r+2)
0,m+1), that is, we take p = 0 and q = 1. Then

from Theorem 4.2, it follows that the following properties are equivalent:

(i) W ∈ MT(Ω;R(r)
0,m+1 ⊕ R

(r+2)
0,m+1),

(ii) there exists L ∈ H(Ω;R(r)
0,m ⊕ R

(r+2)
0,m ) with ∂+xL

r+2 = 0 such thatW = DxL.

This characterization was already obtained in [3, Theorem 3.1].

5. Cauchy integral decompositions

Let Ω = Ω+ ⊂ C be a bounded open subset with boundary γ, where γ is a rectifiable closed
Jordan curve such that for some constant c > 0,H1(γ ∩ B(z, p)) ≤ cp and this for all z ∈ γ and
p > 0, where B(z, p) is the closed disc with center z and radius p and H1 is the 1-dimensional
Hausdorff measure on γ . Furthermore, let Ω− = C \ (Ω ∪ γ) and let f ∈ C0,α(γ), 0 < α < 1.

In classical complex analysis, the following jump problem (5.1) is solved by means of
the Cauchy transform:

“Find a pair of functions f+ and f−, holomorphic inΩ+ andΩ− with f−(∞) = 0, such that
f± are continuously extendable to γ and that on γ

f = f+ + f−, (5.1)

where in (5.1), f±(u) = limΩ±�z→uf±(z), u ∈ γ .”
Let Cγ be the Cauchy transform on C0,α(γ), that is, for f ∈ C0,α(γ),

Cγf(z) =
1
2π

∫

γ

1
t − z

ν(t)f(t)dH1(t), z ∈ C \ γ, (5.2)

where ν(t) is the outward pointing unit normal at t ∈ γ and ds is the elementary Lebesgue
measure on γ .



14 International Journal of Mathematics and Mathematical Sciences

Then, the following fundamental properties hold (see, e.g., [22]):

(i) Cγf is holomorphic and of the class C0,α on Ω+ ∪Ω− with Cγf(∞) = 0;

(ii) Plemelj-Sokhotzki formulae:

C±
γ f(u) = lim

Ω±�z→u
Cγf(z) =

1
2
( ± f(u) + Sγf(u)

)
, u ∈ γ, (5.3)

where for u ∈ γ ,

Sγf(u) =
1
π
PV

∫

γ

1
t − u

ν(t)
(
f(t) − f(u)

)
dH1(t) + f(u) (5.4)

define the Hilbert transform Sγ on C0,α(γ);

(iii) f = C+
γ f − C−

γ f on γ .

It thus follows that the answer to the jump problem (5.1) is indeed given by Cγf .
The decomposition (iii) thus obtained is known as the Cauchy integral decomposition

of f on γ .
Now let Ω = Ω+ be a bounded and open subset of R

m+1 with boundary Γ = ∂Ω. Then, in
Clifford analysis, for suitable pairs (Γ, f) of boundaries Γ and R0,m+1-valued functions f on Γ,
the Cauchy transform CΓf is defined by

CΓf(x) =
∫

Γ
E(y − x)ν(y)f(y)dHm(y), x ∈ R

m+1 \ Γ, (5.5)

where the following conditions hold.

(i) E(x) = (−1/Am+1)(x/|x|m+1), x ∈ R
m+1 \ {0}, is the fundamental solution of the Dirac

operator ∂x, where Am+1 is the area of the unit sphere in R
m+1. E(x) is R

(1)
0,m+1-valued

and monogenic in R
m+1 \ {0}.

(ii) ν(y) =
∑m

i=0 eiνi(y) is the outward pointing unit normal at y ∈ Γ.

(iii) Hm is the m-dimensional Hausdorff measure on Γ. For the definition of Hm, see, for
example, [23, 24].

In what follows we restrict ourselves to the following conditions on the pair (Γ, f) (see also the
remarks made at the end of this section).

(C1) Γ is an m-dimensional Ahlfors-David regular surface, that is, there exists a constant
c > 0 such that for all y ∈ Γ and 0 < ρ ≤ diamΓ,

c−1ρm ≤ Hm(Γ ∩ B(y, ρ)
) ≤ cρm, (5.6)

where B(y, ρ) is the closed ball in R
m+1 with center y and radius ρ and diamΓ is the

diameter of Γ.

For the definition of AD-regular surfaces, see, for example, [24, 25].

(C2) f ∈ C0,α(Γ;R0,m+1), 0 < α < 1, C0,α(Γ;R0,m+1) being the space of R0,m+1-valued Hölder
continuous functions of order α on Γ.
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Under the conditions (C1) and (C2), the following properties hold (see, e.g., [26–28]):

(i) CΓf is left monogenic in R
m+1 \ Γ and CΓf(∞) = 0;

(ii) (Plemelj-Sokhotzki formulae) the functions C±
Γf determined by

C±
Γf(u) = lim

Ω±�x→u
CΓf(x) =

1
2
(SΓf(u) ± f(u)

)
, u ∈ Γ, (5.7)

belong to C0,α(Γ;R0,m+1), where

SΓf(u) = 2
∫

Γ
E(y − u)ν(y)

[
f(y) − f(u)

]
dHm(y) + f(u), u ∈ Γ, (5.8)

the integral being taken in the sense of principal values;

(iii) f(u) = C+
Γf(u) − C−

Γf(u), u ∈ Γ.

It thus follows that, given a Hölder continuous R0,m+1-valued density f on Γ, the jump problem
(5.9)

“Find f+ and f−, belonging to C0,α(Γ;R0,m+1) and which are the boundary values of left
monogenic functions f+ and f− in, respectively, Ω+ and Ω− with f−(∞) = 0 such that on Γ

f = f+ + f− ′′ (5.9)

is solved by considering the Cauchy transform CΓf . Indeed, we can take f+ = CΓf in Ω+ and
f− = −CΓf in Ω−.

Now let again r, p, q ∈ N be a triplet satisfying 0 ≤ r ≤ m + 1 and 0 ≤ p < q with
r + 2q ≤ m + 1, and let W ∈ C0,α(Γ;R(r,p,q)

0,m+1).

As E(y − x)ν(y) is R
(0)
0,m+1 ⊕R

(2)
0,m+1-valued, it is easily seen that CΓW is R

(r−2+2p)
0,m+1 ⊕R

(r,p,q)
0,m+1 ⊕

R
(r+2+2q)
0,m+1 -valued. Consequently, if the jump problem (5.9) is formulated in terms of R

(r,p,q)
0,m+1 -

valued Hölder continuous functionsW ,W+, andW− on Γ, then if we wish to solve it by means
of the Cauchy transform CΓ, restrictions on CΓW have to be imposed, namely, in R

m+1 \ Γ we
should have

[CΓW
]
r−2+2p ≡ 0,

[CΓW
]
r+2+2q ≡ 0.

(5.10)

The very heart of the following theorem (Theorem 5.1) tells us that the conditions (5.10) are
necessary and sufficient. Although the arguments used in proving Theorem 5.1 are similar to
the ones given in the proof of [29, Theorem 4.1], for convenience of the reader we write them
out in full detail.

Theorem 5.1. Let Ω ⊂ R
m+1 be open and bounded such that Γ = ∂Ω is an m-dimensional Ahlfors-

David regular surface and let W ∈ C0,α(Γ;R(r,p,q)
0,m+1) with 0 < α < 1 and p < q. The following properties

are equivalent:

(i) W admits on Γ a decomposition W = W+ + W−, where W± belong to C0,α(Γ;R(r,p,q)
0,m+1) and

moreover are the boundary values of functionsW± ∈ MT(Ω±;R
(r,p,q)
0,m+1) withW−(∞) = 0,
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(ii) CΓW ∈ MT(Rm+1 \ Γ;R(r,p,q)
0,m+1),

(iii)
∑q

j=p[CΓW]r+2j ∈ MT(Rm+1 \ Γ;R(r,p,q)
0,m+1),

(iv) [CΓW]r−2+2p ≡ 0 and [CΓW]r+2+2q ≡ 0 in R
m+1.

Proof. (i)→(ii). Assume that W = W+ +W−, where W+ and W− satisfy the conditions given in
(i). Then

CΓW = CΓW+ + CΓW−. (5.11)

In view of the assumptions made on W±, we have that CΓW+ = 0 in Ω−, CΓW− = 0 in Ω+ and
that CΓW± = W± in Ω±.

Consequently,

CΓW =

{
W+ in Ω+,

W− in Ω−.
(5.12)

As W± ∈ MT(Ω±;R
(r,p,q)
0,m+1)with W−(∞) = 0, (ii) is proved.

(ii)→(iii): Trivial.
(iii)→(iv). Let us first recall that CΓW is left monogenic in R

m+1 \ Γ with CΓW(∞) = 0.
According to the decomposition

CΓW =
[CΓW

]
r−2+2p +

q∑

j=p

[CΓW
]
r+2j +

[CΓW
]
r+2+2q (5.13)

and by the assumption made on
∑q

j=p[CΓW]r+2j , it follows from [1] that

∂x
([CΓW

]
r−2+2p

)
+ ∂x

([CΓW
]
r+2+2q

)
= 0 in R

m+1 \ Γ. (5.14)

Furthermore, as ∂x([CΓW]r−2+2p) and ∂x([CΓW]r+2+2q) split into an (r−3+2p) and an (r−1+2p),
respectively, into an (r + 1 + 2q) and an (r + 3 + 2q) multivector, we obtain from [22] that in
R

m+1 \ Γ

∂x
([CΓW

]
r−2+2p

)
= 0,

∂x
([CΓW

]
r+2+2q

)
= 0.

(5.15)

Moreover, as by assumption W is R
(r,p,q)
0,m+1 -valued, by virtue of the Plemelj-Sokhotzki formulae,

we obtain that on Γ
[C+

ΓW
]
r−2+2p =

[C−
ΓW

]
r−2+2p,

[C+
ΓW

]
r+2+2q =

[C−
ΓW

]
r+2+2q.

(5.16)

Furthermore, [C±
ΓW]

r−2+2p and [C±
ΓW]

r+2+2q are Hölder continuous on Γ.
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It thus follows that [CΓW]r−2+2p and [CΓW]r+2+2q are left monogenic in R
m+1 \ Γ and

continuously extendable to Γ. Painlevé’s theorem (see [30]) then implies that [CΓW]r−2+2p and
[CΓW]r+2+2q are left monogenic in R

m+1.
Finally, as [CΓW]r−2+2p(∞) = [CΓW]r+2+2q(∞) = 0, we obtain by virtue of Liouville’s

theorem (see [31]) that [CΓW]r−2+2p ≡ 0 and [CΓW]r+2+2q ≡ 0 in R
m+1.

(iv)→(i). First note that, as W ∈ C0,α(Γ;R(r,p,q)
0,m+1), by means of the Plemelj-Sokhotzki for-

mulae, we have on Γ that

W = C+
ΓW − C−

ΓW. (5.17)

In view of the assumption (iv)made, the functionsW± defined inΩ± byW± = ±CΓW obviously
belong to MT(Ω±;R

(r,p,q)
0,m+1) and they satisfy all required properties.

Remarks

(1) In the last decades, intensive research has been done in studying the Cauchy integral trans-
form and the associated singular integral operator on curves γ in the plane or on hypersurfaces
Γ in R

m+1 (m ≥ 2). Two types of boundary data are usually considered, namely a Hölder con-
tinuous density or an Lp-density (1 < p < +∞).

In this section, we have formulated the jump problems (5.1) and (5.9) in terms of Hölder
continuous densities. The reason for this is that in proving some of the equivalences stated in
Theorem 5.1, the continuous extendability of the Cauchy integral up to the boundary plays a
crucial role. This becomes clear for instance when use is made of Painlevé’s theorem in proving
the implication “(iii)→(iv).”

Note that for f ∈ C0,α(Γ;R0,m+1) (0 < α < 1), the continuous extendability of CΓf was
already obtained in 1965 by V. Iftimie in the case where Γ is a compact Liapunov surface (see
[32]). For an overview of recent investigations on conditions which can be put on the pair
(Γ, f), f being a continuous density on Γ, we refer the reader to [28, 30, 33–38]. In particular,
we wish to point out that the introduction and the references in [35] contain a detailed account
of the historical background of the jump problems (5.1) and (5.9).

(2) The case p = q = 0 and 0 < r < m + 1 was dealt with in [39]. For Ω ⊂ R
m+1 open,

bounded and connected with C∞-boundary Γ such that R
m+1 \(Ω∪Γ) is also connected, a set of

equivalent properties was obtained ensuring the validity of the Cauchy integral decomposition
for Wr ∈ E(Γ,R(r)

0,m+1) given.
(3) If W ∈ C0,α(Γ;R+

0,m+1), where

R
+
0,m+1 =

∑

s even
⊕ R

(s)
0,m+1, (5.18)

then CΓW ∈ MT(Rm+1 \ Γ;R+
0,m+1), that is the condition (ii) in Theorem 5.1 is satisfied.

Analogously, if W ∈ C0,α(Γ;R−
0,m+1)where

R
−
0,m+1 =

∑

s odd

⊕ R
(s)
0,m+1, (5.19)

then CΓW ∈ MT(Rm+1 \ Γ;R−
0,m+1) and so the condition (ii) in Theorem 5.1 is again satisfied.
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