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Let C be a nonempty closed and convex subset of a Hilbert space H, let T and S : C — C be
two commutative generalized asymptotically nonexpansive mappings. We introduce an implicit

iteration process of S and T defined by x,, = a,x0 + (1 —a,,) 2/ ((n+1)(n + 2)))ZZ=OZi+j=kSizj”’

and then prove that {x,} converges strongly to a common fixed point of S and T. The results
generalize and unify the corresponding results.
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1. Introduction

Let H be a Hilbert space, C a nonempty closed and convex subset of H. A mapping S is said
to be generalized asymptotically nonexpansive if

|S"x = S"y|| < knllx =yl + 74 (1.1)

with k, >0,r,>0,k, - 1,7, =0 (n — o), foreachx,y € C,n=0,1,2,.... If k, = 1 and
r, = 0, (1.1) reduces to nonexpansive mapping; if r, = 0, (1.1) reduces to asymptotically
nonexpansive mapping; if k, = 1, (1.1) reduces to asymptotically nonexpansive-type
mapping. So, a generalized asymptotically nonexpansive mapping is much more general
than many other mappings.

Browder [1] introduced the following implicit iteration process of a nonexpansive self-
mapping for arbitrary xo € C:

X = anXo + (1= ay) Txy, (1.2)

and then proved that {x,} converges strongly to the fixed point of T which is nearest to xy.
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After that, Baillon [2] proved the first nonlinear ergodic theorem: let T be a
nonexpansive self-mapping defined on a nonempty bounded closed and convex set. Then
for arbitrary x € C, {(1/(n+1)) X", Tx} converges weakly to a fixed point of T. Those results
have been extended by several authors (see, e.g., [3-7]).

Recently, Shimizu and Takahashi [8] studied the following implicit iteration process
of asymptotically nonexpansive mappings for arbitrary x; € C:

1 &
Xn = ayxo + (1 - an)mZT’xn, (1.3)
i=0

where a, = (b, -1)/(by—1+a),b, = (1/(n+1))3XL,(1+[1-ki|+e7), {k,} is the asymptotical
coefficient of T. And then proved that {x,} converges strongly to the fixed point of T which
is nearest to xg.

They also studied the following explicit iteration process of two commutative
nonexpansive self-mappings in [9]:

n+l = &n —Qn ! ns 4
X1 = AnXo + (1 a)(n+1)(n+2)kz()l§kSTx (1.4)

where {a,} C [0,1], lim,eay, = 0, Xpoo@ = oo. And then proved that {x,} converges
strongly to the common fixed point of S and T which is nearest to xo.

In this paper, we prove the strong convergence theorem of implicit iteration process
for generalized asymptotically nonexpansive mappings which is defined by

_ _ i
Xp=apxo+ (1 —ay) ———— o 1)(n ) g}lgks Tix,, (1.5)

where {a,} C[0,1], lim, ., = 0and limsup,, ,  (1-a,) 2/ ((n+1)(n+2))) 35X jickiti < 1.
It is well known that a Hilbert space H satisfies Opial’s condition [5], that is, if a
sequence {x,} converges weakly to an element y € H and y # z, then

liﬂglf||xn -y < li’rgglf”xn -z|. (1.6)

Throughout this paper, S and T are two commutative generalized asymptotically
nonexpansive mappings. We denote by F(S) and F(T) the set of fixed points of S and T,
respectively; and suppose that F(S) " F(T)#@. S and T satisfy the following conditions:

|S"x = S"y|| < knllx =yl + 7, 1
| T"x = Ty || < tullx =yl + by, '

where k,, >0,7,>0,t,>0,b,>0,and k, —» 1,7, —0,t, - 1,b, —» 0 (n — o0).
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2. Auxiliary lemmas

This section collects some lemmas which will be used to prove the main results in the next
section.

Lemma 2.1 (see [9]). Letting L, = ((n+1)(n+2))/2, there holds the identity in a Hilbert space H:

Iy - ﬂ=—ZZN% ﬂ——ZEﬂ% vl 2.1)

"k 0 i+j=k "k 0 i+j=k
for xl]} b0 € CH, y,= (1/LH)ZZ:OZi+j:kxi,j € H,andv € H.

Lemma 2.2. Let C be a nonempty bounded closed convex subset of a Hilbert space H, S and T two
generalized asymptotically nonexpansive mappings of C into itself such that ST = TS. Forany x € C,
put Fy(x) = 2/ ((n+1)(n+2))) {0 Xk S'T/x. Then

lim limsup||F,(x) - S'F(x)|| =0,
l—oon—oo xeC
lim limsup || F,(x) - T'F,(x)|| = 0.

I—con—oo xeC

(2.2)

Proof. Put x;; = S'T/x, v = S'F,(x) and L, = ((n + 1)(n + 2))/2. It follows from Lemma 2.1
that

|| Fu(x) = S'Fu(x) |

= —Z Z |ST/x - S'F, (x)|| ——Z Z |S'T/x - F, (x)||

"k =0 i+j=k ”k =0 i+j=k
1 = i 1 1 - i 1 2
==Y S STx-SE@IF+ Y 3 [|STx-SFEE)]
m k=0 i+j=k M k=l i+j=k,i<l-1
n
+ LS S |5 Tix - SF ()| ——Z S ||STix - Fy ()|
Ly k=l i+j=k,i>I "k 0 i+j=k
1 1-1 1 n o 2
<> 2 ISTx-S'F, )|’ 2 2 ISTx-SF. (x|
n n

k=1 i+j=k, i<l-1

k=l i+j=k i>I nk =0 i+j=k
1 1-1 1 n . 5
=— |S'T/x ~ S'Eu()||* + — |S'T/x - S'F(x)||
Luiz i+j=k Luig i+j=k,i<l-1
n-1
+ 3 3 (RS T~ Flf + 2kn | ST - Fu(o)]| + )
n

1 o
-2 2 ST - Fu@)|’
™ k=0 i+j=k
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15 ij 1 2, 1¢ i 1 2
L—kz:: z;”STx—SFn(x)” +L—nZ Z ||S'T/x — S'Fu(x)||

k=l i+j=k, i<l-1

ka

ZZIISIT’x Ea()|

Ly k=0 i+j=k

25 5 (- DlsT- El
k=0 i+j=k

(m+2-D(n+1-1) ,
m+2)m+1) U

(2.3)
Choose p € F(S) ( F(T), then there exists a constant M > 0 such that
ST~ pl| < k[T~ pl| + 7, < kit 1 - +kib,- rris o
[IFn(x) = pl| < —Z 2 ISTx-pll <=, (2.4)
”k 0 i+j=k
M
ISEu) -l < Kl Eu) ] + 1 < 2

for all nonnegative integer i, j, I, and n. Hence, ||S'T/x — S'F,(x)|| < M, ||S'T/x — F,(x)|| < M
for all nonnegative integer i, j, [, and n. So

sup||Fa(x) — S'Fy(x) ||2
xeC

(I+1)1 M+ 2m+1-01 , (Kf-1)(n+2-D)(n+1-1)

Sm+)m+1) n+)m+n) " n+2)(n+1) 05
2kin(n+2-N(n+1-1) N (n+2—l)(n+1—l)r2
(n+2)(n+1) (n+2)(n+1) !
— 0 (n— o0,l — o0).
Similarly, we can prove that
lim lim sup|| F,(x) - T'F,.(x)|| = 0. (2.6)
I—soon—oo xeC |

Remark 2.3. Lemma 2.2 extends [8, Lemma 3] and [9, Lemma 1].

Lemma 2.4. Let S and T be two continuous generalized asymptotically nonexpansive mappings
defined on a nonempty bounded closed convex subset C of a Hilbert space H with ST = TS. Let
L, =((n+1)(n+2))/2. If {x,} is a sequence in C such that {x,} converges weakly to some x € C
and {x, = (1/Ln) 330 Xi4j-k ST/ X} converges strongly to 0, then x € F(S) N F(T).
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Proof. We claim that {S'x} converges strongly to x as I — oo. If not, there exist a positive
number gy and a subsequence {l,,} of {I} such that ||Sx — x|| > & for all m. However, we
have

Xn; — I Z Z SlTlxn

i k=0 i+j=k

ZZST’ —’m( ZZST’xn>H

"1k 0 i+j=k "1k 0 i+j=k
+[|s" < Z > S’T’xn> Shr
L”'k =0 i+j=k
LS v
< | xp, Z ST xy,
Ly, k=0 i+j=k
1
- Z > S'Tix,, — S (L Z > Sfon,>H (27)
Mi k=0 i+j=k Mi k=0 i+j=k
+k1 ZZST}X"_ + 1,
"lk 0 it+j=k
<|lx —ini ZSizj
= n; n
Ly, k=0 itj=k
L s -s(15 zoe)|
n; n;
Mi k=0 i+j=k Ly, k=0 i+j=k
1 & i
+ky, L_Z Z STy, = xu, || + ki, || %n, = x|| +71,.-
i k=0 i+j=k

By Opial’s condition, for any y € C with y # x, we have
lim inf||x,, — x|| < liminf||x, - y||. (2.8)

Let r = liminf, . ||x, — x|| and choose a positive number p such that

p< r2+z—r. (2.9)

Then, there exists a subsequence {x,,} of {x,} such that lim; . ||x,, — x|| = r and ||x,,, — x|| <
r + p/5 for all i. By definition of {k;, } and {r;, }, there exists a positive integer m such that

ki, |[2n, — x|| <7+ g, 1, < g—) (2.10)

for all m > my. Since

= (2.11)

n—oo

Xy — Liki Z SiTix,
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and {k;, } is bounded , there exists a positive integer i such that

Xy, — —Z Z SIT]xn

"lk =0 i+j=k

Z ZST’xn X,

"'k 0 i+j=k

/

(2.12)

forall mandi > iy. As {x,,} C Cisbounded and by Lemma 2.2, there exist m; > mg and i; > 0
such that

‘ 1SS §itix, - S ( S Y ST, ) <£ (2.13)
"lk =0 i+j=k "lk =0 i+j=k 5
for all i > i1. By (2.7), (2.10), (2.12), and (2.13), we have

||xn,.—5""1x||</5—)+g+g+r+g g=r+p (2.14)

for all i > max{ip, i }. However,

Sl + x ||?

Xn; — 5

1 2 1 2 1 2
P I [T e Lo

G +2p)2 N (r+;27/5)2 B 84% (2.15)

£,
<(r+p)2—zo<r2

for all i > max{ip, i1 }. This contradicts with (2.8). So {S'x} converges strongly to x and then
x € F(S). Similarly, we can get x € F(T). Hence, x is a common fixed point of S and T. O

3. Main results

In this section, we prove our main theorem.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and let S, T be two
continuous generalized asymptotically nonexpansive mappings of C into itself such that

(ii) |[T"x = T"y|| < tullx =yl + by, £, 20,b, >0, t, = 1, b, = 0 (n — o),
(iii) ST =TS and F(S)N F(T) # 2.

(i) 1IS"x = S"yll < knllx = yll + 70, kn 20,7 20, kn = 1,7 = 0 (n — o0),

For arbitrary xo € C, the sequence {x,}, is defined by

Z > S'Tix,, n>0, (3.1)

k=0 i+j=k

Xn = apxo + (1= ty) ——=s— (n+1)(n+2)
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with a, € [0,1] and limy, g, = 0. Iflimsup, (1 -a,)(2/((n+1)(n+2))) i S jickiti <1,
then {x,},., converges strongly to the common fixed point Pxo of S and T, where P is the metric
projection of H onto F(S) ( F(T).

Proof. Firstly, we show that {x,}5 is bounded. By limsup, (1 — a,)(2/((n + 1)(n +

2)))ZZ:OZi+;‘=kkiti < 1, there exist N > 0 and 0 < a < 1 such that (1 —a,)2/((n + 1)(n +
2)))ZZ:OZi+7-:kk,~tj <aforalln > N.Choosep € F(S) N F(T), then we have

”xn - P” =

k=0 i+j=k

Stxn||x0—p||+(1 an)mz Z(kt ||xn p”+kb +1"1)

k=0 i+j=k

(3.2)
:a"”xo_p” + (1 a") (n+1)(n+2);) H;kkt ”x" P”
t(-a) oy (n+2)kzél§kkb i+ (1= “”)(n+1)(n+2);)l§k”
Hence
(1 _a)”x"l_p” < Dln||X0—p|| + (1 0{-,1) (n+1)(n+2)§)z+]zkkb (3 3)

+(1- “")(n+1)(n+2 Z 2

k 0 i+j=k

foralln > N.So {x,} is bounded.

Letting {x,,} be any subsequence of {x,}, there exists a subsequence {x,} of {x,,}
such that {xmt} converges weakly to some u € C. For {x,} is bounded, so is {(2/((m; +
1)(m; +2)) X0 S S Tixrs, ). Thus

2 R
Xy — s 1)(mt ) Z > STixy, = am <xo > s Tlxmt>

k=0 itj=k (my+1) (my +2) i i+j=k (3.4)
— 0(t — o0).
It follows from Lemma 2.4 that u € F(S) ( F(T). For
2
am, Pxo = Pxg — (1 - aym,) Z Z S'TI Pxy, (3.5)

(m +1)(mt+2)k 0 i+j=k
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we have

A, (X0 — Pxg, Xm, — Pxo)

mi
= <xmt - Pxo— (1-ay,) 2 Z Z (S'TVxpm, — ST/ Pxy), X, — Px0>

(my+1) (m: +2) 5 i+j=k

my
= [, — Pxo* - (1 - cxmt)< 2 > > (8T xy, - STIPxg), X, - Px0>

(my +1) (me +2) {5 i+j=k

2
m; + 1)(mt + 2)

> ”xﬂu - Px()”z - (1 _amt) (

1
x kz(; 'Zk(kitj”xm: — Pxol| + kibj + ;) [|xm, — Pxo|
=0 i+j=

B <1_ (-an) o +1)(mt+z)Z 2, kit )”x’"f Pxolf

k=0 i+j=k

-(1- )(m +1)(m +2)Z Z (kibj + 17) 1%, — Pxol|.

k=0 i+j=k

(3.6)

By hypothesis, there exist M > 0 and 0 < a < 1 such that (1 — a,,)(2/((m; + 1) (m; +
2))) X 2isjokkiti < aforallt > M. So

(1-a)l|xm — Px0||2

< (X0 = Pxg, Xm, — Pxo) + (1 — am,) s +1)(mt+2)z Z (kibj +17) || xm, — Pxo|
k=0 i+j=k

(3.7)

for all t > M. We can easily prove that limy, o (1 - a,,) (2/ ((m +1) (m; +2))) 3, o2i+jk (kibj +
7i)|[%m, — Pxol| = 0. Since P is metric projection, (xo— Pxp, x — Pxp) < 0forall x € F(S)N F(T)
Hence

(x0 = Pxo, Xm, — Pxq) = (x0 — Px0, X, — 1) + (9 — Pxo, u — Pxp) 9)
3.8
< (xo = Pxo, Xy, — u).

Since {xy, } converges weakly to u, limsup, ,_(xo — Pxo, Xm, — Pxo) < 0. It follows from (3.7)
that {x,, } converges strongly to Pxo. Hence, {x,} converges strongly to Px,. This completes
the proof. O
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