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1. Introduction

Let X be a real Banach space; B a nonempty, convex subset of X; and T : B → B an operator.
Let x0 ∈ B. The following iteration is known as Krasnoselskij iteration (see [1]):

xn+1 = (1 − λ)xn + λTxn. (1.1)

The map J : X → 2X
∗
given by Jx := {f ∈ X∗ : 〈x, f〉 = ‖x‖2, ‖f‖ = ‖x‖}, for all x ∈ X, is

called the normalized duality mapping. It is easy to see that we have
〈
y, j(x)

〉 ≤ ‖x‖‖y‖, ∀x, y ∈ X, ∀j(x) ∈ J(x). (1.2)

Denote

Ψ :=
{
ψ | ψ : [0,+∞) −→ [0,+∞) is astrictly increasing map with ψ(0) = 0

}
. (1.3)

Definition 1.1. Let X be a real Banach space, and let B be a nonempty subset of X. A map T :
B → B is called uniformly pseudocontractive if there exists a map ψ ∈ Ψ and j(x−y) ∈ J(x−y)
such that

〈
Tx − Ty, j(x − y)〉 ≤ ‖x − y‖2 − ψ(‖x − y‖), ∀x, y ∈ B. (1.4)
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A map S : X → X is called uniformly accretive if there exists a map ψ ∈ Ψ and j(x −y) ∈
J(x − y) such that

〈
Sx − Sy, j(x − y)〉 ≥ ψ(‖x − y‖), ∀x, y ∈ X. (1.5)

Taking ψ(a) := ψ(a) · a, for all a ∈ [0,+∞), (ψ ∈ Ψ), reduces to the usual definitions of
ψ-strongly pseudocontractive and ψ-strongly accretive. Taking ψ(a) := γ · a2, γ ∈ (0, 1), for all
a ∈ [0,+∞), (ψ ∈ Ψ), we get the usual definitions of strongly pseudocontractive and strongly
accretive. Therefore, the class of strongly pseudocontractive maps is included stricly in the
class of ψ-strongly pseudocontractive maps. The example from [2] shows that this inclusion is
proper. Remark, further, that the class of ψ-strongly pseudocontractive maps is also included
strictly in the class of uniformly pseudocontractive maps (see also [3]).

We will give a characterization for the convergence of (1.1) when applied to uniformly
pseudocontractive operators. For this purpose, we need the following lemma similar to [4,
Lemma 1]. Next, N denotes the set of all natural numbers.

Lemma 1.2. Let {an} be a positive bounded sequence and assume that there exists n0 ∈ N such that

an+1 ≤ (1 − λ)an + λan+1 − λ
ψ
(
an+1

)

an+1
+ λεn, ∀n ≥ n0, (1.6)

where λ ∈ (0, 1), εn ≥ 0, for all n ∈ N and limn→∞εn = 0. Then limn→∞an = 0.

Proof. There exists an M > 0 such that an ≤ M, for all n ∈ N. Denote a := lim inf an. We will
prove that a = 0. Suppose on the contrary that a > 0. Then there exists anN1 ∈ N such that

an ≥ a

2
, ∀n ≥N1. (1.7)

From limn→∞εn = 0,we know that there exists anN2 ∈ N such that

εn ≤ ψ(a/2)
2M

, ∀n ≥N2. (1.8)

SetN0 := max{N1,N2}. Using the fact that −(1/M) ≥ −(1/an+1),we get the following:

an+1 ≤ (1 − λ)an + λan+1 − λ
ψ
(
an+1

)

an+1
+ λεn

≤ (1 − λ)an + λan+1 − λ
ψ(a/2)
M

+ λ
ψ(a/2)
2M

≤ (1 − λ)an + λan+1 − λ
ψ(a/2)
2M

,

(1.9)

which implies that (1 − λ)an+1 ≤ (1 − λ)an − λ((ψ(a/2))/2M), or

an+1 ≤ an − λ

1 − λ
ψ(a/2)
2M

≤ an − λ
ψ(a/2)
2M

, (1.10)
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since −(λ/(1 − λ)) ≤ −λ. Thus λ(ψ(a/2))/2M ≤ an − an+1, which implies that
∑
λ < ∞, in

contradiction to
∑
λ = ∞. Therefore, lim inf an = 0. Hence there exists a subsequence {anj} ⊂

{an} such that limj→∞anj = 0. Fix ε > 0. Then there exists an n3 ∈ N such that

anj <
ε

4
, ∀j ≥ n3. (1.11)

Also there exists an n4 ∈ N such that

εn <
ψ(ε/4)
2M

, ∀n ≥ n4. (1.12)

Define n0 := max{n3, n4,N0}.We claim that anj+k < ε/4 for each j > n0 and each k > 0. Suppose
not. Then there exists an n0 and a k > 0 such that

anj+k ≥
ε

4
. (1.13)

For this nj, let k denote the smallest positive integer for which (1.13) is true. Then anj+k−1 ≤ ε/4.
From (1.6),

anj+k ≤ (1 − λ)anj+k−1 + λanj+k − λ
ψ
(
anj+k

)

anj+k
+ λεnj+k−1

≤ (1 − λ)anj+k−1 + λanj+k −
λψ(ε/4)
anj+k

+ λ
ψ(ε/4)
2M

≤ (1 − λ)anj+k−1 + λanj+k − λ
ψ(ε/4)
2M

,

(1.14)

which implies that anj+k ≤ (ε/4) − (λ/(1 − λ))(ψ(ε/4)/2M). This leads to the contradiction:

ε

4
≤ anj+k ≤

ε

4
− λ

1 − λ
ψ(ε/4)
2M

<
ε

4
. (1.15)

Therefore, anj+k < ε/4, for all k ∈ N, and each j > n0, hence limn→∞an = 0.

2. Main result

Theorem 2.1. LetX be a real Banach space, B a nonempty, closed, convex, bounded subset ofX. Let T :
B → B be a uniformly pseudocontractive and uniformly continuous operator with F(T)/=∅. Then for
x0 ∈ B, the Krasnoselskij iteration (1.1) converges to the fixed point of T if and only if limn→∞‖xn+1 −
xn‖ = 0.

Proof. Since T is a self-map of B, which is bounded and convex, then, from (1.1), each xn ∈ B,
so {xn} is bounded for each n ∈ N. Uniqueness of the fixed point follows from (1.4). If {xn}
converges to the fixed point of T, that is, limn→∞xn = x∗, then, obviously, limn→∞‖xn+1−xn‖ = 0.
Conversely, we will prove that if limn→∞‖xn+1 − xn‖ = 0, then limn→∞xn = x∗. Suppose that
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xn = x∗ for some n ∈ N. Then from (1.1), it follows that xm = x∗ for each m > n, and the
theorem is proved. Now suppose that xn /=x∗ for each n ∈ N. Using (1.1) and (1.2),

∥∥xn+1 − x∗∥∥2

=
〈
xn+1 − x∗, j

(
xn+1 − x∗)〉

=
〈
(1 − λ)(xn − x∗) + λ

(
Txn − Tx∗), j

(
xn+1 − x∗)〉

= (1 − λ)〈(xn − x∗), j
(
xn+1 − x∗)〉 + λ

〈
Txn − Tx∗, j

(
xn+1 − x∗)〉

≤ (1 − λ)∥∥xn − x∗∥∥∥∥xn+1 − x∗∥∥ + λ
〈
Txn+1 − Tx∗, j

(
xn+1 − x∗)〉 + λ

〈
Txn − Txn+1, j

(
xn+1 − x∗)〉

≤ (1 − λ)∥∥xn − x∗∥∥∥∥xn+1 − x∗∥∥+λ
∥∥xn+1 − x∗∥∥2−λψ(∥∥xn+1 − x∗∥∥)+λ

∥∥Txn − Txn+1
∥∥∥∥xn+1−x∗∥∥

≤ ∥∥xn+1 − x∗∥∥
(

(1 − λ)∥∥xn − x∗∥∥ + λ‖xn+1 − x∗‖ − λψ
(‖xn+1 − x∗‖)

‖xn+1 − x∗‖ + λ‖Txn − Txn+1‖
)

.

(2.1)

Hence

∥∥xn+1 − x∗∥∥ ≤ (1 − λ)∥∥xn − x∗∥∥ + λ
∥∥xn+1 − x∗∥∥ − λψ

(∥∥xn+1 − x∗∥∥)

∥∥xn+1 − x∗∥∥ + λ
∥∥Txn − Txn+1

∥∥. (2.2)

Since limn→∞‖xn+1 − xn‖ = 0 and T is uniformly continuous, it follows that

lim
n→∞

∥∥Txn − Txn+1
∥∥ = 0. (2.3)

Set an = ‖xn − x∗‖, εn = ‖Txn − Txn+1‖ and use Lemma 1.2 to obtain the conlcusion.

Remark 2.2. (1) If B is not bounded, then Theorem 2.1 holds under the assumption that {xn} is
bounded.

(2) If T(B) is bounded, then {xn} is bounded.
(3) If T is strongly pseudocontractive, then automatically F(T)/=∅.

3. Further results

Let I denote the identity map. A map T : B → B is called pseudocontractive if there exists
j(x − y) ∈ J(x − y) such that 〈Tx − Ty, j(x − y)〉 ≤ ‖x − y‖2.

Remark 3.1. The operator T is a (uniformly, strongly) pseudocontractive map if and only if
(I − T) is a (uniformly, strongly) accretive map.

Remark 3.2. (1) Let T, S : X → X, and let f ∈ X be given. A fixed point for the map Tx =
f + (I − S)x, for all x ∈ X, is a solution for Sx = f.

(2) Let f ∈ X be a given point. If S is an accretive map, then T = f − S is a strongly
pseudocontractive map.
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Consider Krasnoselskij iteration with Tx = f + (I − S)x,

xn+1 = (1 − λ)xn + λ
(
f + (I − S)xn

)
. (3.1)

Remarks 3.1 and 3.2 and Theorem 2.1 lead to the following result.

Corollary 3.3. Let X be a real Banach space and let S : X → X be a uniformly accretive and uniformly
continuous operator, with (I − S)(X) bounded. Suppose that Sx = f has a solution. Then for any x0 ∈
X, the Krasnoselskij iteration (3.1) converges to the solution of Sx = f if and only if limn→∞‖xn+1 −
xn‖ = 0.

Let S be an accretive operator. The operator Tx = f−Sx is strongly pseudocontractive for
a given f ∈ X. A solution for Tx = x becomes a solution for x + Sx = f. Consider Krasnoselskij
iteration with Tx := f − Sx,

xn+1 = (1 − λ)xn + λ
(
f − Sxn

)
. (3.2)

Again, using Remarks 3.1 and 3.2 and Theorem 2.1, we obtain the following result.

Corollary 3.4. Let X be a real Banach space and let S : X → X be an accretive and uniformly contin-
uous operator, with (I − S)(X) bounded. Suppose that x + Sx = f has a solution. Then for x0 ∈ X, the
Krasnoselskij iteration (3.2) converges to the solution of x+Sx = f if and only if limn→∞‖xn+1−xn‖ = 0.

Remark 3.5. If (1.4) holds for all x ∈ B and y := x∗ ∈ F(T), then such a map is called uniformly
hemicontractive. It is trivial to see that our results hold for the uniformly hemicontractive maps.
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