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Hurwitz spaces are spaces of pairs (S, f) where S is a Riemann surface and f : S → ̂C a
meromorphic function. In this work, we study 1-dimensional Hurwitz spacesHDp of meromorphic
p-fold functions with four branched points, three of them fixed; the corresponding monodromy
representation over each branched point is a product of (p − 1)/2 transpositions and the

monodromy group is the dihedral group Dp. We prove that the completion HDp of the Hurwitz
spaceHDp is uniformized by a non-nomal index p+1 subgroup of a triangular group with signature
(0; [p, p, p]). We also establish the relation of the meromorphic covers with elliptic functions and
show thatHDp is a quotient of the upper half plane by the modular group Γ(2) ∩ Γ0(p). Finally, we

study the real forms of the Belyi projectionHDp → ̂C and show that there are two nonbicoformal
equivalent such real forms which are topologically conjugated.
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1. Introduction

Hurwitz spaces are spaces of pairs (S, f) where S is a Riemann surface and f : S→ ̂C is
a meromorphic function, that is, a covering. These spaces have a natural complex structure
and were introduced by Clebsch and Hurwitz in the nineteenth century. In 1873, Clebsch
[1] showed that the Hurwitz space parametrizing simple n-fold coverings is connected and
Severi used this result to show the irreducibility of the moduli of curves. See the recent
exposition by Eisenbud et al. [2]. In 1891, Hurwitz [3] gave a complex structure to the set
of pairs (S, f) having a fixed topological type. In 1969, Fulton [4] showed again the theorems
of Clebsch and Severi using tools of algebraic geometry. He showed how to produce Hurwitz
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spaces in positive characteristic. There are many recent works studying Hurwitz spaces by
Fried, Völklein, Wewers, Bouw (see, e.g., [5, 6]).

Another reason for the new attention to Hurwitz spaces is that they provide examples
of Frobenius manifolds in the sense of Dubrovin [7].

In this work, we study 1-dimensional Hurwitz spaces. In 1989, Diaz et al. [8] showed
that any covering of the Riemann sphere branched on three points, that is, a Belyi curve [9],
is a connected component of a 1-dimensional Hurwitz space. The Belyi curves appear as
Hurwitz spaces of meromorphic functions with four branching points, three of them fixed.
Hence, via Hurwtiz spaces, there is a way to associate a Belyi curve and then a real algebraic
curve to a type of meromorphic function with four branching points. The correspondence
between types of meromorphic functions branched on four points and real algebraic curves
is not known in general. In this work, we will determine the real algebraic curve describing
the Hurwitz space of irregular dihedral coverings. As a result, we obtain that there are two
nonequivalent real forms for these Hurwitz spaces.

Let S be a Riemann surface and f : S→ ̂C a meromorphic function branched on the
set of points B(f) = {0, 1,∞, λ : λ/∈ {0, 1,∞}}. Let p be a prime integer, we define an irregular
p-fold dihedral covering as a meromorphic function having a monodromy:

ω : π1
(

̂C − B(f), O
)

−→ Σp, such that (1.1)

the monodromy group ω(π1(̂C − B(f), O)) = Dp, given by b ∈ B(f), ω(mb) is a product of
(p − 1)/2 transpositions, where mb is free homotopic to the boundary of a disc neighborhood
of b in ̂C − (B(f) − {b}).

Let HDp be the Hurwitz space of irregular p-fold dihedral branched coverings and
let π : HDp→ ̂C − {0, 1,∞} be the covering defined by (f : ̂C→ ̂C)→λ ∈ B(f) − {0, 1,∞}.
Then HDp and π can be extended, in the Deligne-Munford compactification, to a branched

covering π :HDp→ ̂C which is a Belyi function.

In Section 2, we present the uniformization of π : HDp→ ̂C by a non-normal, index
p+1, subgroup of an hyperbolic (Euclidean for p = 3) triangular group. Let Δ be the triangular
Fuchsian (Euclidean, for p = 3) group acting on the hyperbolic plane H with signature
(0; [p, p, p]) and canonical presentation:

〈

x1, x2, x3 : xp1 = xp2 = xp3 = 1;x1x2x3 = 1
〉

. (1.2)

We define ρ : Δ→PSL(2, p) by

ρ(x1) =
[

1 −2
2 −3

]

, ρ(x2) =
[

1 2
0 1

]

, ρ(x3) =
[

1 0
−2 1

]

. (1.3)

If φ : PSL(2, p)→Σp+1 is the natural map given by the geometrical action of PSL(2, p)

on P
1(Zp) and δ = φ ◦ ρ, then H/δ−1(Stab(1)) is isomorphic toHDp and the orbifold covering

H/δ−1(Stab(1))→H/Δ is conformally equivalent to the covering π :HDp→ ̂C. Therefore, the

surfaceHDp is a Riemann surface of genus (p − 3)/2 which is the quotient of the underlying
surface of a regular hypermap of type (p, p, p) with automorphism group PSL(2, p) by the
action of the stabilizer of infinity in PSL(2, p) (see [10]).

In Section 3, we establish the relation between irregular p-fold dihedral coverings and
elliptic curves. We show that the space HDp is isomorphic to the quotient of the hyperbolic
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plane by the modular group Γ(2) ∩ Γ0(p). Some authors (see e.g., [11]) use different modular
groups and curves in connection with Hurwitz spaces. Our model is based on Definition 2.1
below, a concept consistent with Diaz et al. [8].

We end this section with a complete analysis of the case p = 3 establishing the relation
between modular groups, Belyi curves, modular equations, and euclidean crystallographic
groups.

Finally, in Section 4 we study the real forms for the Belyi function π : HDp→ ̂C. A
real form for a meromorphic function f : S→ ̂C is a reflection r of ̂C and an anticonformal
involution r̃ of S such that r̃ is the lift by f of r. Two real forms (r1, r̃1) and (r2, r̃2) of a
meromorphic function f : S→ ̂C are conformally equivalent if there is an automorfism α
of ̂C and a lift of α by f to an automorphism α̃ of S, such that r1 = α−1 ◦ r2 ◦ α and r̃1 =

α̃−1 ◦ r̃2 ◦ α̃. We establish that the meromorphic functionHDp→ ̂C admits two nonequivalent
real forms: (r1, r̃1) and (r2, r̃2). The set of real points for the anticonformal involutions r̃1 and
r̃2 is connected and nonseparating. Hence r̃1 and r̃2 are topologically conjugate (see [12]).

2. Hurwitz spaces of irregular dihedral coverings

Hurwitz spaces are spaces of pairs (S, f) where S is a Riemann surface and f : S→ ̂C is a
meromorphic function. We will consider the case when f has four branching points 0, 1, ∞, λ.

Definition 2.1. Two meromorphic functions f1 and f2 are considered equivalent if there is an
automorphism g : S→S satisfying f1 = f2 ◦ g.

Let (S1, f1) and (S2, f2) be two pairs of Riemann surfaces S1 and S2 and meromorphic
functions f1 : S1→ ̂C and f2 : S2→ ̂C with four branching points. We say that (S1, f1) and
(S2, f2) are of the same topological type if there are homeomorphisms ϕ : S1→S2 and ψ :
̂C→ ̂C such that f2 ◦ ϕ = ψ ◦ f1 and ψ(0) = 0, ψ(1) = 1 and ψ(∞) =∞.

Let t be a class of topologically equivalent meromorphic functions; H(t) denotes the
set of topological classes of pairs (S, f) with f of topological type t.

Given (S, f), the representative of a point in H(t), we denote the branching set of f
by B(f) = {0, 1,∞, λ}. Following [13], the pair (S, f) is given by B(f) and the monodromy
representation of the covering f : S→ ̂C:

ω : π1
(

̂C − B(f), O
)

−→ Σn. (2.1)

The group ω(π1(̂C − B(f), O)) is called the monodromy group of the n-fold covering
f .

Fixing ω, the variation of the point λ gives an 1-dimensional complex structure on the
set of pairs (S, f).

Let B(f) be the branching set of f and b ∈ B(f). Let Db be a disc in C centered in b and
such that Db ∩ B(f) = {b}. A meridian of b in ̂C − B(f) based in O ∈ ̂C is a path starting and
finishing atO and free homotopically equivalent to ∂Db, where ∂Db is positively oriented. We
will denote mb the homotopy class in π1(̂C − B(f), O) represented by a meridian of b. Then
we have the following presentation of π1(̂C − B(f), O):

〈

mb, b ∈ B(f) :
∏

b∈B(f)
mb = 1

〉

. (2.2)
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Definition 2.2. Define an irregular p-fold dihedral covering as a covering having a
monodromy ω : π1(̂C−B(f), O)→Σp, such that the monodromy group ω(π1(̂C−B(f), O)) =
Dp, ω(mb) is a product of (p − 1)/2 transpositions.

We will denote the Hurwitz space of irregular p-fold dihedral branched coverings f :
S→ ̂C whose branching set consists exactly of 0, 1,∞ and a variable point λ ∈ ̂C− {0, 1,∞} by
HDp .

There is a covering π : HDp→ ̂C − {0, 1,∞}, defined by (f : S→ ̂C)→λ ∈ B(f) −
{0, 1,∞}. Then HDp and π can be extended to a branched covering π : HDp→ ̂C that is a

Belyi function. We will determine π andHDp .
First of all we need to know the degree of π . The degree of π is the number of different

meromorphic functions f : S→ ̂C of degree p that are dihedral irregular coverings branched
on four fixed points. In other words, we look for the number of irregular dihedral p-fold
coverings S→ ̂C with monodromy representation as in Definition 2.2.

Proposition 2.3. There are p+ 1 classes of monodromies ω : π1(̂C−{0, 1,∞, λ}, i)→Σp of irregular
p-fold dihedral coverings.

Proof. A monodromy is given by (ω(m0), ω(m1), ω(m∞)) (up to conjugacy in Σp). Let

s = (0)(1, p − 1)(2, p − 2) · · ·
(

p − 1
2

,
p + 1

2

)

∈ Σp,

r = (0, 1, 2, . . . , p − 1) ∈ Σp.
(2.3)

By conjugation in Σp, we can assume that ω(m0) = s.
Now, either ω(m0) = ω(m1) = s or s = ω(m0)/=ω(m1).
If ω(m0) = ω(m1) = s, by an automorphism of Dp, we can assume that ω(m∞) = sr,

and so ω(mλ) = sr.
If s = ω(m0)/=ω(m1), again by an automorphism of the group Dp, we can assume that

ω(m1) = sr. Now each value of ω(m∞) gives a class of monodromies. Then we have

(

ω
(

m0
)

, ω
(

m1
)

, ω
(

m∞
))

=
(

s, sr, sri
)

, i = 0, . . . , p. (2.4)

Thus we have p + 1 classes of monodromy representations.

We have found that the degree of π and π is p + 1.
We can establish a bijection between monodromy classes and points of P

1(Zp). This
bijection will be very useful in determining the monodromy representation of π :

P
1(

Zp

)

ω
(

m0
)

ω
(

m1
)

ω
(

m∞
)

ω
(

mλ

)

(0 : 1) s s sr sr
(1 : i) s sr sri sri−1.

(2.5)

Since the degree of π is p + 1, the monodromy

δ : π1
(

̂C − {0, 1,∞},−1
)

−→ Σp+1 (2.6)

associated to the covering π is determined as follows.



Antonio F. Costa et al. 5

The meridian μ∞ in π1(̂C − {0, 1,∞},−1) is represented by a closed path

γ : [0, 1] −→ ̂C − {0, 1,∞} (2.7)

around ∞, with base point −1, together with the marking λ = γ(t). If we start with a
monodromy ω for λ0 = γ(0) = −1, then at λ1 = γ(1) = −1 the monodromy ω transforms in a
new monodromy ω′. The monodromy ω′ is precisely ω ◦σ2

3∗, where σ2
3∗ is the isomorphism of

π1(̂C − {0, 1,∞},−1) induced by the braid σ2
3 ∈ B4 acting on ̂C − {0, 1,∞,−1}. We say that the

effect of μ∞ on the monodromies is given by the braid σ2
3 ∈ B4.

In the same way, the effect on the monodromies of the meridian μ1 is given by the
braid σ3σ

2
2σ
−1
3 ∈ B4 and the effect of the meridian μ0 by σ3σ2σ

2
1σ
−1
2 σ−1

3 ∈ B4.
The value of δ(μ∞) (resp., δ(μ0), δ(μ1)) is given by the transformation of the

monodromies when λ moves along μ∞ (resp., μ0, μ1). Since B4 acts on the meridians by

σ3 :
(

m0, m1, m∞, mλ

)

−→
(

m0, m1, mλ,m
mλ
∞
)

,

σ2 :
(

m0, m1, m∞, mλ

)

−→
(

m0, m∞, m
m∞
1 , mλ

)

,

σ1 :
(

m0, m1, m∞, mλ

)

−→
(

m1, m
m1
0 , mλ,mλ

)

,

(2.8)

we obtain that the monodromy δ is defined by the following action on the monodromies of
the meromorphic functions: δ(μ∞)(s, sr, sri) = (s, sr, sri−2) and δ(μ∞)(s, s, sr) = (s, s, sr).

The bijection between monodromies and points of P
1(Zp) yields us

δ
(

μ∞
)

=
[

1 0
−2 1

]

,

δ
(

μ1
)

=
[

1 2
0 1

]

(

since μ1 = σ3σ
2
2σ
−1
3

)

,

δ
(

μ0
)

=
[

1 −2
2 −3

]

(

since μ0 is σ3σ2σ
2
1σ
−1
2 σ−1

3

)

.

(2.9)

Hence, the monodromy group of π :HDp

s → ̂C is PSL(2, p), (see [10]). The function π is
a (p+1)-fold covering with three branching points: 0, 1,∞ (a Belyi function). The preimage of
each branching point contains a ramification point of local degree p and a pseudoramification
point of local degree one. In terms of the monodromy δ: δ(μ∗) = (s1, . . . , sp)(sp+1).

Summarizing, we can describe π :HDp→ ̂C as follows in Theorem 2.4.

Theorem 2.4. Let p be a prime integer, p > 3. Let Δ be a triangular Fuchsian group with signature
(0; [p, p, p]) and canonical presentation

〈

x1, x2, x3 : xp1 = xp2 = xp3 = 1;x1x2x3 = 1
〉

. (2.10)

Define ρ : Δ→PSL(2, p) by

ρ
(

x1
)

=
[

1 −2
2 −3

]

, ρ
(

x2
)

=
[

1 2
0 1

]

, ρ
(

x3
)

=
[

1 0
−2 1

]

. (2.11)

If φ : PSL(2, p)→Σp+1 is the natural map given by the geometrical action of PSL(2, p) on
P

1(Zp) and δ = φ ◦ ρ, then
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Figure 1

(1) HDp is uniformized by δ−1(Stab(1)) ≤ Δ, that is, H/δ−1(Stab(1)) is isomorphic toHDp ,

(2) the orbifold covering D/δ−1(Stab(1))→H/Δ is analytically equivalent to the covering π :
HDp→ ̂C.

A similar result it is obtained in [11] for some different types of Hurwitz spaces.
In Figure 1 we can see a fundamental region for the triangular group Δ and its

subgroup for p = 5. In Section 3, we obtain a fundamental region for all p.

Remark 2.5. The signature of the Fuchsian group δ−1(Stab(1)) is ((p − 3)/2; [p, p, p]). See
Section 3.

Remark 2.6. For p = 3, there is a completely analogous description using the Euclidean
crystallographic group (0; [3, 3, 3]) (the group p3 in crystallographic notation) instead of
(0; [p, p, p]).

Remark 2.7. Let us consider the regular covering R = H/ker δ→H/Δ, the Riemann surface
R is the underlying surface to a regular hypermap of type (p, p, p) with automorphism

group PSL(2, p). Then HDp is the quotient of R by a subgroup of PSL(2, p) isomorphic to
the semidirect product of Cp with Cp−1 (the stabilizer of infinity [10]).

Remark 2.8. The points inHDp −HDp are of two types.

Points ofHDp whereπ :HDp→ ̂C is a local homeomorphism: there are noded Riemann
surfaces consisting in p + 1 Riemann spheres joined by p nodes.

Singular poins of π : HDp→ ̂C corresponding to meromorphic functions f : ̂C→ ̂C of
degree p having three branching points and monodromy ω : π1(̂C − B(f), O)→Σp, such that
the monodromy groupω(π1(̂C−B(f), O)) isDp, ω(mb) is a product of (p−1)/2 transpositions
for two branching points and a p-cycle for the remaining one.
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3. The Hurwitz spacesHDp uniformized by modular groups

We establish first the relation between the irregular p-fold dihedral coverings of ̂C and elliptic
curves. As before, let f : ̂C→ ̂C be a rational function of degree p with branching points at
0, 1, ∞, λ given by a monodromy representation as in Definition 2.2. The Galois covering,
given by the kernel of the monodromy, is a torus T ∗ where Dp acts by a translation of order p
and the elliptic involution. The quotient of T ∗ by the translation group is again a torus T and
the natural projection η gives the following conmutative diagram:

T T∗
η

Ĉ Ĉ.
f

(3.1)

Both vertical arrows are 2 to 1 maps. The horizontal arrows are p to 1 maps. On the
other hand we may start with a torus T , an elliptic involution ε, and the 2 to 1 projection with
branching points 0, 1, ∞, λ. We obtain p+1 different coverings f as follows. Let 〈1, τ〉, Im τ >
0, be the group of translations on C so that T = C/〈1, τ〉. Consider the group epimorphisms

α : Z ⊕ Zτ −→ Zp. (3.2)

The kernel of α defines a subgroup of index p and the quotient of C by this subgroup
defines the torus T ∗; there are p + 1 homomorphisms with different kernels given by

{

αj(1, 0) = j, 0 ≤ j ≤ p − 1,
αj(0, τ) = 1,

{

αp(1, 0) = 1,
αp(0, τ) = 0.

(3.3)

If ℘ denotes the classical Weierstrass elliptic function, the arrows in (3.1) are obtained
by

z mod 〈1, τ〉 z mod
(
ker αj

)id

℘(z; 1, τ) ℘
(
z; 1 + (p − i)τ, pτ

)f

(3.4)

for i ≤ j ≤ p − 1 and ℘(z; p, τ) for i = p. ℘(z; 1, τ) is an even elliptic function for kerαj . Thus
℘(z; 1, τ) is a rational function of ℘(z; 1 + (p − i)τ, pτ) giving us an explicit formula for f . It
may be worthwhile noticing that, for each τ , we get a discrete group acting on C, depending
analytically on τ and uniformizing an orbifold of genus 0 and four conic points of order 2,
that is, an Euclidean crystallographic group with signature (0; [2, 2, 2, 2]), namely,

Gτ = {z −→ ±z + n +mτ}. (3.5)

We obtain corresponding subgroups for kerαj . Each mapping f may be visualized through
appropriate fundamental regions for the group Gτ and its (non normal) subgroups G(kerαj).

The theory of the automorphic function λ(τ) is classical and well known; we recall
here the necessaries to fix the notations:
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C
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Figure 2

(i) Γ = PSL(2,Z), the modular group acting on the upper half plane H;

(ii) Γ(2) = {g(τ) = (aτ + b)/(cτ + d) in Γ : a, d ≡ 1 mod 2, b, c ≡ 0 mod 2}.

The group Γ(2) is a normal subgroup of Γ of index 6 given by the kernel of the natural
map from Γ to PSL(2,Z2) � Σ3. A fundamental region for Γ(2) that we will use is given in
Figure 2.

In this figure the fundamental region is divided into twelve parts, each two adjacent
parts being a fundamental region for Γ. The free generators for Γ(2) are

A(τ) = τ + 2, C(τ) =
τ

−2τ + 1
, (3.6)

with B(τ) = (τ − 2)/(2τ − 3). B fixes 1. We have the relation CBA = Id.
The function λ is the universal covering map from H to ̂C − {0, 1,∞} with a group

of covering automorphisms Γ(2), that is, λ(∞) = 0, λ(0) = 1, λ(1) = ∞. In terms of elliptic
functions,

λ =
e3 − e1

e2 − e1
, (3.7)

where e1 = ℘(1/2; 1, τ), e2 = ℘(1/2 + τ/2; 1, τ), e3 = ℘(τ/2; 1, τ).
We also need to consider the following groups:

Γ0(p) =
{

g(τ) =
aτ + b
cτ + d

in Γ : c ≡ 0 mod p

}

,

Γ0(p) =
{

g(τ) =
aτ + b
cτ + d

in Γ : b ≡ 0 mod p

}

.

(3.8)

In order to explain why Γ(2) (and not Γ) is our main group it is necessary to review
some basic facts of Teichmüller theory of Riemann surfaces. See [14] for complete details.
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Let X be a fixed Riemann surface and f1 : X→X1 a quasiconformal homeomorphism.
Two such maps f1, f2 are considered equivalent if there is a conformal isomorphism g :
X1→X2 such that f−1

2 ◦ g ◦ f1 is homotopic to the identity relative to the ideal boundary.
Teichmüller space T(X) is the set of equivalence classes [f1].

The set QC(X) of quasiconformal homeomorphisms of X acts on T(X) via

g∗[f1] = [f1 ◦ g]. (3.9)

If QC0(X) is the normal subgroup consisting of those maps homotopic to the identity
relative to the ideal boundary, then the modular group is M(X) = QC(X)/QC0(X).

Proposition 3.1. The modular group of the four times punctured sphere is a semidirect product of
Γ = PSL(2,Z) with Klein’s group of order four.

The group Γ(2) is isomorphic to the subgroup formed by the elements that give the identity on
the punctures.

Proof. Let G be the group of transformations generated by z→ z+1, z→ z+ i, z→ −z. G acts
properly discontinously on C

′ = C − (1/2)Z[i] with quotient surface X′ = C
′/G isomorphic

to the Riemann sphere with the set {−1, 0, 1,∞} deleted. An explicit isomorphism is given by
the restriction to C

′ of the elliptic function

℘(z) − ℘((1 + i)/2)
℘(1/2) − ℘((1 + i)/2)

. (3.10)

An element M in SL(2, Z) acts on C
′ as a linear mapping:

M(x, y) = (ax + by, cx + dy) (3.11)

porducing an element of the modular group. Observe that M and −M∗ provide the same
action on X′. The homeomorphism induced by M on X′ permutes in general the three points
{−1, 0, 1}. Together with elements of Klein’s group of order four such as z→ (1+ i)/2−z, they
fully generate the modular group and induce the group Σ4 of permutations of {−1, 0, 1,∞}.

To prove that the elements of Γ(2) fix the punctures, it is enough to check this for the
generators A and C given above. Now, A acts as the linear map that sends the pair (1, 0)
and (0, 1) to (1, 0) and (2, 1), thus it sends 1/2 to itself, (1 + i)/2 to (3 + i)/2 ≡ (1 + i)/2 and
i/2 to (2 + i)/2 ≡ i/2. In the same manner, C(1/2) = (1 − 2i)/2 ≡ 1/2, C(i/2) = i/2, and
C((1 + i)/2) = (1 − i)/2 = (1 + i)/2.

Finally, Γ/Γ(2) is isomorphic to the group Σ3 of permutations of {−1, 0, 1} so that if an
element of Γ fixes them, it belongs to Γ(2).

Theorem 3.2. The Hurwitz spaceHDp of irregular p-fold dihedral branched coverings of the sphere
with four marked points is isomorphic to H/Γ(2) ∩ Γ0(p).

Proof. Given τ in H, we consider the linear map

fτ

[

x
y

]

=
(

1 r
0 s

)[

x
y

]

, where τ = r + si, s > 0. (3.12)

It sends the lattice 〈1, i〉 to the lattice 〈1, τ〉 in C and gives a quasiconformal homeomorphism
from ̂C − {0, 1,∞,−1} to ̂C − {0, 1,∞, λ(τ)}.
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We define a left action of PSL(2,Z) on [fτ] via

M
([

fτ
])

=
[

fτ ◦M−1] =
[

fτ∗
]

, (3.13)

which is given explicitely by

τ∗ =
aτ − b
−cτ + d

ifM =
(

a b
c d

)

. (3.14)

Observe that M ∈ Γ(2) if and only if λ(τ) = λ(τ∗).
Now, M also acts on the right of the epimorphisms

α : Z ⊕ Zi −→ Zp (3.15)

via M(α) = α ◦M. In particular, for α0 in (3.3), we have

M
(

α0
)

(1, 0) = c,

M
(

α0
)

(0, i) = a,
(3.16)

so that kerα0 = kerM(α0) if and only if c ≡ 0 mod p.
Given τ in H, we have a p-covering of the lattice 〈1, τ〉 by α0 ◦f−1

τ , therefore a covering
of ̂C − {0, 1,∞, λ(τ)}. Two such coverings will be equivalent in the sense of Definition 2.1
if and only if c ≡ 0 mod p. The p + 1 cosets of Γ(2) ∩ Γ0(p) in Γ(2) correspond to the p + 1
homomorphisms αj and to the monodromy representations ω of Proposition 2.3:

kerM(α0) = αj ifa/= 0, j ≡ ca−1,

kerM(α0) = αp ifa ≡ 0.

(3.17)

An explicit set of coset representatives will be given next.

Lemma 3.3. Let ϕ : Γ(2)→PSL(2,Zp) be the natural homomorphism that sends a matrix to its class
modulo p:

ϕ(A) =
(

1 2
0 1

)

, ϕ(C) =
(

1 0
−2 1

)

in PSL(2,Zp). (3.18)

Let P denote the subgroup of matrices ( a b
0 a−1 ) modulo p of order p((p − 1)/2) and index p + 1.

Then

kerϕ = Γ(2) ∩ Γ(p),
ϕ−1(P) = Γ(2) ∩ Γ0(p).

(3.19)

Proof. We have to establish that ϕ is surjective. Since

ϕ
(

A−((p−1)/2)) =
(

1 1
0 1

)

, ϕ
(

C−((p−1)/2)) =
(

1 0
−1 1

)

(3.20)

it is enough to prove that these two matrices generate PSL(2,Zp). Consider A∗(τ) = τ + 1,
C∗(τ) = τ/(−τ + 1) in Γ = PSL(2,Z). Then C∗A∗(τ) has order three and fixes (−1 + i

√
3)/2,

whereas C∗A∗C∗(τ) has order two and fixes i. It is well known that A∗, C∗A∗, C∗A∗C∗

generate Γ. Since the natural homomorphism Γ→PSL(2,Zp) is surjective, so is ϕ. The
definitions of Γ(p) and Γ0(p) give kerϕ and ϕ−1(P).
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Observe that we have the following inclusions:

Γ(2) ∩ Γ(p) � Γ(2) index p

(

p2 − 1
2

)

,

Γ(2) ∩ Γ(p) � Γ(2) ∩ Γ0(p) < Γ(2),
[

Γ(2) : Γ(2) ∩ Γ0(p)
]

= p + 1,

Γ(2) ∩ Γ0(p) � Γ0(p), index 6.

(3.21)

Proposition 3.4. One has the right coset decomposition

Γ(2) =
p−1
⋃

k=0

(

Γ(2) ∩ Γ0(p)
)

Ck ∪
(

Γ(2) ∩ Γ0(p)
)

D, (3.22)

where D = CmB and 3 − 4m ≡ 0 mod p.

Proof. We establish the decomposition

PSL(2,Zp) =
p−1
⋃

k=0

Pϕ(C)k ∪ Pϕ(D). (3.23)

Now

(

a b
c d

)(

1 0
2k 1

)

=
(

a + 2bk b
c + 2dk d

)

. (3.24)

Therefore, if d /= 0 mod p, we define k by c + 2dk ≡ 0 mod p to obtain a matrix in P . If
d ≡ 0 mod p, then

(

a b
−b−1 0

)(

0 2
n 1

)

=
(

bn 2a + b
0 −2b−1

)

∈ P,

ϕ(D) = ϕ
(

Cm
)

ϕ(B) =
(

1 −2
2 − 2m 4m − 3

)

.

(3.25)

Now, taking 4m − 3 ≡ 0 mod p, ϕ(D) = ( 0 2
n 1 )

−1, as required. (n = 2m − 2).

Corollary 3.5. Let F be a fundamental region for Γ(2) as in Figure 2. Then
⋃p−1
k=0C

k(F) ∪D(F) is a
fundamental region for Γ(2) ∩ Γ0(p) in H.

When we compactify this region by filling in the punctures of order p, then F
corresponds to the quadrilateral with angles (2π/p, π/p, 2π/p, π/p), a fundamental region
for the Fuchsian group Δ in Theorem 2.4. The correspondence between generators is

A←→ x2, C ←→ x3, B ←→ x1. (3.26)

This explains Figure 1 for p = 5, where D(F) has been separated into two triangles for
symmetry.
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3.1. The case p = 3

The theory presented above is of course valid for p = 3 but there are aspects in this particular
case that make it worthwhile to examine it in more detail.

We start with the description of the rational functions f : ̂C→ ̂C of degree three with
four branching points. If such a function has simple points at 0, 1,∞ and double ramification
points, then it must be of the form

f(x) = x
(

ax + b
cx + d

)2

. (3.27)

The reader may easily check that the function

f(x) = x
(

(2z − 1)2x − 3z(z − 2)

3(2z − 1)x + (z − 2)2

)2

(3.28)

has double ramifications points at

3z
(z − 2)

(2z − 1)2
,

(

z − 2
2z − 1

)2

, −1
3
(z − 2)2

2z − 1
,

z(z − 2)
2z − 1

, (3.29)

lying over the branching points 0, 1, ∞, λ with

λ = z3 z − 2
1 − 2z

(3.30)

and simple points at 0, 1, ∞, λ∗ with

λ∗ = z
(

z − 2
1 − 2z

)3

, (3.31)

lying over the same branching points.
We recover Proposition 2.3 since, for each value of λ, there are four possible covers by

(3.30). On the other hand, given τ in H, the 2 to 1 mapping from T = C/〈1, τ〉 to ̂C is given
by y = ℘(u; 1, τ) and the mapping from T ∗ = C/〈1, 3τ〉 to ̂C is given by the corresponding
function y = ℘(u; 1, 3τ). Given a point u1 in C modulo 〈1, τ〉, there are three preimages: u1,
u2 = (1+τ)−u1 and u3 = u1+τ modulo 〈1, 3τ〉. Branching will happen when y is branched but
x is not. Thus y is a 3 to 1 rational function of x with simple points at e1(3τ), e2(3τ), e3(3τ), ∞
lying over e1(τ), e2(τ), e3(τ), ∞. Normalizing these points we obtain the values (3.30) and
(3.31):

λ = λ(τ), λ∗ = λ(3τ), (3.32)

therefore,

z − 2
2z − 1

=

√

e2 − e3

e2 − e1

√

℘(1/2 + τ/2) − e1

℘(1/2 + τ/2) − e3
(3τ). (3.33)

We consider now a fundamental region for the group Γ(2) ∩ Γ0(3) of index 4 in Γ(2) in
Figure 3.
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12/31/21/30−1/3−1/2−2/3−1

Figure 3

If the sides are numbered from 1 to 10 counterclockwise starting at the vertical side on
the left, the pairing of the sides and the group generators are as follows:

A(τ) = τ + 2 : 1←→ 10,

C3(τ) =
−τ

6τ − 1
: 5←→ 6,

H1(τ) =
5τ + 2

12τ + 5
: 4←→ 7,

H2(τ) =
7τ + 4

12τ + 7
: 3←→ 8,

H3(τ) =
5τ + 4
6τ + 5

: 2←→ 9.

(3.34)

We observe that at the puncture at 0, λ has a triple value 1 and a simple value at the
puncture at 2/3. It has a simple 0 at ∞ and a triple 0 at 1/2 and a simple pole at 1/3 and a
triple pole at 1. This gives us a Belyi map

H

Γ(2)
∩ Γ0(3) −→

H

Γ(2)
, (3.35)

determined by λ as a function of z as in (3.30). But the values of λ(3τ) yield also an interesting
configuration. This function is automorphic with respect to the group

Γ∗ =
{

aτ + b
cτ + d

, ad − bc = 1, a, d ∈ Z, b ∈ (2/3)Z, c ∈ 6Z

}

(3.36)

with [Γ∗ : Γ(2) ∩ Γ0(3)] = 4. Indeed, this group is conjugated to Γ(2) via the transformation
τ→ 3τ and Γ(2) ∩ Γ0(3) to Γ(2) ∩ Γ0(3). Multiplying by 3 sends the fundamental region in
Figure 3 to a region bounded by arcs at −3, − 2, − 3/2, − 1, 0, 1, 3/2, 2, 3. The fundamental
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2/3

1/2

1/3 = −1/3

−1/2

−2/3

−1

∞

1

Figure 4

region for Γ(2), as in Figure 2, pulls back to a fundamental region for Γ∗. We observe now that
λ(3τ) has a simple value 1 at the puncture at 0 and a triple value at 2/3. Similar configurations
are obtained at the other punctures; we have then a Belyi map

H

Γ(2)
∩ Γ0(3) −→

H

Γ∗
(3.37)

determined by λ∗ = λ(3τ) as a function of z as in (3.31). If we fill in the punctures of Figure 3
we obtain the Euclidean crystallographic group (0; [3, 3, 3]); as shown in Figure 4.

We sumarize all this in Theorem 3.6.

Theorem 3.6. There is an isomorphism between the following spaces:

(a) the completionHD3 of the Hurwitz space of irregular 3-fold dihedral coverings of ̂C;

(b) the quotient space H/Γ(2) ∩ Γ0(3);

(c) the quotient space C/G where G is the group generated by g(u) = ρu, h(u) = ρu+(1−ρ),
(ρ = (−1 + i

√
3)/2);

(d) the curve with Belyi map x = z3((z − 2)/(1 − 2z));

(e) the algebraic modular curve

x4 + y4 − 256xy + 384
(

x2y + xy2) − 132
(

x3y + xy3) − 762x2y2

+ 384
(

x3y2 + x2y3) − 256x3y3 = 0,
(3.38)

where x = λ(τ), y = λ(3τ).
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Proof. Only (e) remains to be proven. The algebraic equation is obtained by eliminating z
from (3.30) and (3.31). It can be done in a computer algebra system via the instruction
“Groebner basis of the ideal generated by

x(1 − 2z)3 + z(2 − z)3, y(1 − 2z) + z3(2 − z) (3.39)

and lexicographic order z > x > y.”
We obtain a map from H/Γ(2) ∩ Γ0(3) into this modular curve. Since the quotient is of

genus 0, this is the modular curve and the map is onto. Given now (x, y) we may determine
z up to an eight root of unity by z8 = x3/y. For generic z these give eight different values of
x. But a generic one to one rational function from surfaces of genus 0 is one to one, proving
the equivalence.

4. Real forms of the Belyi mapHDp→ ̂C

Let Δ be the triangular Fuchsian group with signature (0; [p, p, p]) and canonical presentation
〈

x1, x2, x3 : xp1 = xp2 = xp3 = 1;x1x2x3 = 1
〉

. (4.1)

We define ρ : Δ→PSL(2, p) by

ρ
(

x1
)

=
[

1 −2
2 −3

]

, ρ
(

x2
)

=
[

1 2
0 1

]

, ρ
(

x3
)

=
[

1 0
−2 1

]

. (4.2)

Lemma 4.1. For each prime p > 3 there are non-Euclidean crystallographic (NEC) groups Λ1 and
Λ2, such that Λ+

1 = Δ = Λ+
2 with signatures

s
(

Λ1
)

=
(

0;+; [−];
{

(p, p, p)
})

, s
(

Λ2
)

=
(

0;+; [p];
{

(p)
})

. (4.3)

There are two epimorphisms:

ρ1 : Λ1→PGL(2, p), ρ2 : Λ2→PGL(2, p) (4.4)

such that ρ1|Δ = ρ2|Δ = ρ.

Proof. By [15] (see also [16]), we obtain the existence of the groups Λ1 and Λ2 such that
Λ+

1 = Δ = Λ+
2 .

Let
〈

c0, c1, c2 : c2
0 = c2

1 = c2
2 = 1;

(

c0c1
)p =

(

c1c2
)p =

(

c2c0
)p = 1

〉

(4.5)

be a canonical presentation for the NEC group Λ1 and let
〈

x, c0, c1, e : c2
0 = c2

1 = xp = 1; xe =
(

c0c1
)p = 1; c0 = ec1e

−1〉 (4.6)

be a canonical presentation for the NEC group Λ2.
Then we define ρ1 : Λ1→PGL(2, p) as

ρ1
(

c0
)

=
[

1 0
2 −1

]

, ρ1
(

c1
)

=
[

1 −2
0 −1

]

, ρ1
(

c2
)

=
[

1 0
0 −1

]

, (4.7)

and we define ρ2 : Λ2→PGL(2, p) by

ρ2(x) =
[

1 2
0 1

]

, ρ2
(

c0
)

=
[

0 1
1 0

]

. (4.8)

It is clear that ρ1|Δ = ρ2|Δ = ρ.
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Remark 4.2. For p = 3, the two extensions of (0; [3, 3, 3]) (or p3) are the classical plane
Euclidean crystallographic groups p3m1 and p31m.

An anticonformal involution r of ̂C conjugated to the complex conjugation z→ z is
called a reflection of ̂C.

Definition 4.3 (real form of a meromorphic function; see [17]). Let S be a Riemann surface
and f : S→ ̂C a meromorphic function. A real form for f : S→ ̂C is a reflection r of ̂C and an
anticonformal involution σ of S such that σ is the lift of r by f .

Definition 4.4 (equivalence of real forms of a meromorphic function). Two real forms (r1, σ1)
and (r2, σ2) of a meromorphic funcion f : S→ ̂C are biconformally equivalent if there are
automorfisms α of ̂C and α̃ of S, such that

α ◦ f = f ◦ α̃,
r1 = α ◦ r2 ◦ α−1,
σ1 = α̃ ◦ σ2 ◦ α̃−1.

(4.9)

Proposition 4.5. The meromorphic functionHDp→H/Δ = ̂C admits two nonequivalent real forms.

Proof. With the same notation as in Theorem 2.4 and Lemma 4.1. Let φ′ : PGL(2, p)→Σp+1

be the natural representation given by the geometrical action of PGL(2, p) on P
1(Zp). Let

δi = φ′ ◦ ρi, i = 1, 2.
The orbifold coverings

HDp =
H

δ−1(Stab(1))
−→ H

δ−1
i (Stab(1))

, i = 1, 2, (4.10)

provide us the existence of two anticonformal involutions σ1 and σ2 inHDp , defining the two
required real forms.

The fact that the signatures of Λ1 and Λ2 are different implies that the two defined real
forms are not equivalent.

Proposition 4.6. Let p > 3. The set of real points for each of the two real forms of the meromorphic

functionHDp→H/Δ in the above proposition is connected and nonseparating.

Proof. (1) The set of real points is connected.
In order to compute the number of connected components of the set of real points

of each real form, we need to compute the number of period cycles in the signature of
δ−1
i (Stab(1)). We will use the technics in [18, 19].

Following [18] (see also [19]), we construct the Schreier graph given by the action of
the canonical generators of Λ1 by ρi on the cosets of φ′−1(Stab(1)) ≤ PGL(2, p). Each connected
component of this graph corresponds to a period cycle in s(δ−1

i (Stab(1))). For each reflection
cj in Λi we have that ρi(cj) has two fixed points in P

1(Zp) and then the permutation δi(cj) left
invariant two indices, so each reflection gives rise to two vertices of the graph: vj1, vj2. Since
all periods in Λi are prime integers, then we connect the vertices vjk with vj+1k by an edge
and we have that δ−1

i (Stab(1)) has one or two cycles. Finally, the hyperbolic generator with
axis in the fixed point set of the reflection in δ−1

i (Stab(1)) is sent by δi to an element of order
two:

[

1 −1
2 −1

]

(

for δ1
)

or
[

0 −1
1 0

]

(

for δ2
)

. (4.11)
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So the vertices v31 and v02 for δ1 and v11 and v02 for δ2 are joined by an edge. Hence
the graph is connected and there is only one period cycle in s(δ−1

i (Stab(1))). Therefore, the
set of real points of each real form is connected.

(2) The real points are nonseparating
For p ≡ 1 mod 4, there are square roots of −1 in Zp by Wilson’s theorem. For p ≡

3 mod 4, there are ((p − 1)/2)-roots of −1 in Zp since (Zp)
∗ is cyclic. Let q be such a root of −1.

Consider the following element of PGL(2,Zp):

[

1 0
0 q

]

. (4.12)

The above element in PGL(2,Zp) − PSL(2,Zp) has order 4 or p − 1 and fixes (1 : 0) ∈
P

1(Zp), then there are orientation reversing transformations in δ−1
i (Stab(1)) of order at least

4. Hence there is a − sign in s(δ−1
i (Stab(1))) and the real parts of the two real forms are

nonseparating.

Remark 4.7. With the notation in the previous theorem, the complete signatures of
s(δ−1

i (Stab(1))), for p > 3 are

(

p − 3
2

;−; [−]; (p, p, p)
)

for δ1,

(

p − 3
2

;−; [p]; (p)
)

for δ2. (4.13)

Remark that there is only one exceptional case, p = 3 when the two real parts are
connected but separating (in this case (p − 3)/2 = 0), the signatures are

(i) (0;+; [−]; (3, 3, 3)) (the Euclidean crystallographic group p3m1),

(ii) (0;+; [3]; (3)) (the Euclidean crystallographic group p31m).
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