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1. Introduction

Toughness, like connectivity, is an important invariant in graphs. There has been extensive
work on toughness (see the survey in [1]) since Chvátal introduced the concept in 1973 [2].
The toughness t(G) of a graph G is the minimum value of |S|/w(G − S), where S ⊂ V (G) is a
proper subset of the vertices of G and w(G − S) > 1 is the number of connected components
after removing S from G. (If G is a complete graph so that w(G − S) is always equal to 1,
then t(G) is set to be ∞.) That is, for any integer k > 1, G cannot be split into k connected
components by removing less than k · t(G) vertices. We also say that G is t(G)-tough. Chvátal
made a number of conjectures in [2], including the famous 2-tough conjecture saying that
every 2-tough graph has a Hamiltonian cycle. Having inspired many interesting results, the
2-tough conjecture itself was showed to be false by Bauer et al. in 2000 [3].

A subgraph H of G is called a factor of G if H is a spanning subgraph of G. An
important class of factors is k-factors, also called regular degree factors, where every vertex
of G has degree k in H. (Note that a perfect matching is a 1-factor, and a Hamiltonian cycle is
a connected 2-factor.) There has been extensive work on the conditions of existence of various
factors in graphs. Many results can be found in the latest survey by Plummer [4].
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Figure 1: The bound of bipartite toughness in Theorems 1.2 and 1.3, illustrated with n = 1000. The x-axis
is k and y-axis is log(tB(G)). The bound is given by f1 on the left and f2 on the right of k = (n + 4)/4.

It is natural to expect that toughness, yet another measure of the connectivity of a
graph, ought to relate to the existence of k-factors in graphs. Enomoto et al. [5–7] proved that
every k-tough graph contains a k-factor if it satisfies trivial necessary conditions, and there
are (k − ε)-tough graphs for any ε > 0 that do not contain a k-factor. Consider a bipartite graph
G = (X,Y ;E), where X ∪ Y = V (G) is a partition of V (G) and E is the edge set of G with
each edge having one end in X and the other in Y . Katerinis [8] proved that every 1-tough
bipartite graph has a 2-factor. Recall that the toughness of a bipartite graph G = (X,Y ;E) is at
most 1 because the removal of X from G (assuming |X| ≥ |Y |) results in an independent set Y .
Therefore, it is not possible to use toughness to predict the existence of k-factors in balanced
bipartite graphs for any k ≥ 3.

1.1. Bipartite toughness

In this paper, we introduce bipartite toughness, which is analogous to the concept of toughness
but reflects the bipartition of V (G). The bipartite toughness tB(G) of a bipartite graph G =
(X,Y ;E) is the minimum value of |S|/w(G − S), where S is a proper subset of X or Y and
w(G − S) > 1 is the number of connected components after removing S from G. We set
tB(G) =∞ for complete bipartite graphs, just like t(G) =∞ for complete graphs.

A bipartite graph can have a regular degree factor only if |X| = |Y |. Therefore, in the
rest of the paper, we consider only a balanced bipartite graph with |X| = |Y | = n. For a subset S
of V (G), we use N(S) to denote the set of vertices adjacent to at least one vertex in S. For two
disjoint subsets S and T of V (G), we use eG(S, T) to stand for the number of edges having
one end in S and the other in T . Other terminologies and notations used in this paper follow
[9] and other references.

Bipartite toughness tB(G) measures the connectivity of a bipartite graph better than
toughness t(G) does. In contrast to toughness t(G) that is at most 1 in a bipartite graph, tB(G)
can be arbitrarily big. For example, in a complete bipartite graph with one edge deleted,
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t(G) = O(n), which approaches to ∞, is just like t(G) = O(n) in a complete graph with one
edge deleted. Interestingly, tB(G) a better invariant to predict the existence of k-factors in
balanced bipartite graphs, for any k. Furthermore, by their definitions, calculating tB(G) in a
bipartite graph is easier than calculating t(G) since one is a subtask of the other.

1.2. Our results

Let G = (X,Y ;E) be a balanced bipartite graph with |X| = |Y | = n and 1 ≤ k ≤ n be an integer.
In this paper, we prove the following three theorems.

Theorem 1.1. Letm = �(n − 1)/2�. If tB(G) > m/(m + 2), then G has a 1-factor.

Theorem 1.2. For k ≥ 2 and n ≥ 4k − 4, if tB(G) > f1 = (2k − 1)(n − 1)/(kn + 1), then G has a
k-factor.

Theorem 1.3. For n ≤ 4k − 4, if tB(G) > f2 = (n − 1)/(2
√
kn + 1 − 2k + 1), then G has a k-factor.

These theorems together give a sharp bound of tB(G) for G to have a k-factor, for
k = 1, . . . , n. (See Figure 1. Note that m/(m − 2) = f1 when k = 1 and n is odd; and f1 = f2

when n = 4k − 4.)
The bound of tB(G) is sharp in the following senses.

(a) For Theorem 1.1, let m = �(n − 1)/2� and construct a balanced bipartite graph G =
(X,Y ;E) as follows. Let X = S ∪ P and Y = T ∪ Q, where |P | = |T | = n − m,
|S| = |Q| = m, and |X| = |Y | = n. Let E be comprised of all possible edges between X
and Q and all possible edges between S and Y . If n is even, then we add into E an
edge between P and T . Here, |S|+eG(X−S, T)−|T | = −1 so that by Lemma 2.1 below,
G has no 1-factor. On the other hand, it is not hard to verify that tB(G) = m/(m + 2)
in this construction of G. Therefore, m/(m + 2) is a sharp bound.

(b) For Theorem 1.2, for integers k ≥ 2 and r ≥ 2, construct a balanced bipartite graph
Gr = (X,Y ;E) as follows. Let X = S ∪ P and Y = T ∪ Q, where |P | = |T | = kr − 1,
|S| = |Q| = (k − 1)r − 1, and |X| = |Y | = n = (2k − 1)r − 2 ≥ 4k − 5. Let E be
comprised of all possible edges between X and Q, all possible edges between S and
Y , and a 1-factor between P and T . Here, k|S| + eG(X − S, T) − k|T | = −1 so that by
Lemma 2.1 below, Gr has no k-factor. On the other hand, it is not hard to verify that
tB(Gr) = (n − 1)/(n − |S|) = (2k − 1)(n − 1)/(kn + 1) = f1 in Gr . Therefore, f1 is a
sharp bound.

(c) For Theorem 1.3. Let n/4 < k < n and
√
kn + 1 = t be an integer. Obviously, n/2 <

t < n. Construct a balanced bipartite graph G = (X,Y ;E) as follows. Let X = S ∪ P
and Y = T ∪ Q, where |P | = |T | = t, |S| = |Q| = n − t, and |X| = |Y | = n. Let E
be comprised of all possible edges between X and Q, all possible edges between
S and Y , and a (2k − t)-factor between P and T . Then k|S| + eG(X − S, T) − k|T | =
k(n− t)+ (2k− t)t−kt = kn− t2 = −1. Again, by Lemma 2.1 below, G has no k-factor.
Moreover, it is not hard to verify that tB(G) = (n−1)/(2

√
kn + 1−2k+1). Therefore,

f2 is also a sharp bound.

It is also worth to mention that, unlike Enomoto et al.’s well-known result that k-
tough graphs have k-factors, in our results the bound of tB(G) is much smaller than k,
in fact less than 2 for most k (see Figure 1). This looks counterintuitive but it is due to
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Figure 2: For proof of Lemma 2.1, red dashed line is the minimum cut.

a (not so good) feature of tB(G). Although tB(G) can approach to ∞, most time it does
not increase significantly with edge connectivity or minimum degree. For example, if G =
(X,Y ;E), |X| = |Y | = n has minimum degree δ(G) = n/2 (say on vertex x ∈ X), then removing
all vertices in X except x would split Y into n/2 components. So tB(G) ≤ 2 even when δ(G)
is as high as n/2.

2. Proofs of the theorems

The following lemma will be needed in the proofs of theorems.

Lemma 2.1. Let G = (X,Y ;E) be a balanced bipartite graph, where |X| = |Y | = n, and let k ≥ 1 be
an integer. Then the following three statements are equivalent:

(i) G has a k-factor;

(ii) G has k edge-disjoint 1-factors;

(iii) for any S ⊆ X and T ⊆ Y , k|S| + eG(X − S, T) − k|T | ≥ 0.

Proof. (i) and (ii): following the König-Hall theorem [9, Theorem 5.2 and Lemma 5.2], a
regular degree bipartite graph has a perfect matching. Therefore, a k-factor of a bipartite
graph G can be partitioned into a collection of k edge-disjoint perfect matchings (1-factors).
(ii) to (i) is trivial.

(i) and (iii): the equivalence of (i) and (iii) can be deduced from the max-flow min-cut
theorem [10, 11]. Convert G = (X,Y ;E) into a network by (a) adding a source vertex s with
k multiedges between s and each vertex x ∈ X; (b) adding a sink vertex t with k multiedges
between t and each vertex y ∈ Y ; and (c) orienting each edge into a directed arc going from
s to X, from X to Y , or from Y to t (see Figure 2). Clearly, G has a k-factor ⇔ the network
has a kn-flow from s to t ⇔ any cut in the network that separates s and t contains at least kn
forward edges. For any S ⊆ X and T ⊆ Y , consider the cut shown in dashed line in Figure 2,
we have

k|S| + eG(X − S, T) + k|Y − T | ≥ kn = k|T | + k|Y − T |, (2.1)

so that

k|S| + eG(X − S, T) − k|T | ≥ 0. (2.2)
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Proof of Theorem 1.1 (By contradiction). Suppose G has no k-factor and n ≥ 4k − 4, we will infer
that tB(G) ≤ f1. According to Lemma 2.1, there exist S ⊆ X and T ⊆ Y such that k|S| + eG(X −
S, T) − k|T | < 0. Let s = |S| and t = |T |. Then

eG(X − S, T) ≤ kt − ks − 1. (2.3)

Obviously, t > s. We can further assume that

s + t ≤ n. (2.4)

Because, if s+ t > n, then we can let S′ = X−S and T ′ = Y −T and have |S′|+ |T ′| < n, |S′| > |T ′|,
and k|T ′| + eG(S′, Y − T ′) − k|S′| = k|S| + eG(X − S, T) − k|T |. By symmetry, this converts to the
case of s + t ≤ n.

We then have two cases to consider.

Case 1.

k(t − s) ≤ t. (2.5)

If k = 1, then w(G − S) ≥ t + 1 − (t − s − 1) = s + 2 by (2.3). By t > s and (2.4), we have
s ≤ m, where m = �(n − 1)/2�. Thus

tB(G) ≤ |S|
w(G − S) ≤

s

s + 2
≤ m

m + 2
. (2.6)

This completes the proof of Theorem 1.1. (Note that when k = 1, we have only Case 1 to
consider.)

Proof of Theorem 1.2 (Continue the proof of Theorem 1.1). Now suppose k ≥ 2, by (2.5), we have
t ≤ ks/(k − 1). Let T ′ = T ∩N(X − S). Then by (2.3), |T ′| ≤ kt − ks − 1. Let T ′′ = (Y − T) ∪ T ′.
Then |T ′′| ≤ n − t + (kt − ks − 1) < n and w(G − T ′′) ≥ n − s + 1. Therefore,

tB(G) ≤ |T ′′|
w(G − T ′′) ≤

n + (k − 1)t − ks − 1
n − s + 1

. (2.7)

Case 1.1. If n − s ≤ ks/(k − 1), then we have s ≥ (k − 1)n/(2k − 1). By (2.4) and (2.7),

tB(G) ≤ n + (k − 1)(n − s) − ks − 1
n − s + 1

= 2k − 1 − (k − 1)n + 2k
n − s + 1

≤ 2k − 1 − (k − 1)n + 2k
n − (k − 1)n/(2k − 1) + 1

=
(2k − 1)(n − 1)
kn + 2k − 1

≤ (2k − 1)(n − 1)
kn + 1

= f1.

(2.8)
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Case 1.2. If n − s > ks/(k − 1), then we have s < (k − 1)n/(2k − 1). By (2.5) and (2.7),

tB(G) ≤ n − 1
n − s + 1

<
n − 1

n − (k − 1)n/(2k − 1) + 1
=

(2k − 1)(n − 1)
kn + 2k − 1

≤ (2k − 1)(n − 1)
kn + 1

= f1.

(2.9)

Case 2.

k(t − s) > t. (2.10)

Let d be the unique integer satisfying

t·d < k(t − s) ≤ (d + 1)t. (2.11)

By (2.10), 1 ≤ d ≤ k − 1. By (2.3) and (2.11), there is a vertex y0 ∈ T that is adjacent to at most
d vertices in X − S. Let T ′ = Y − {y0} so |T ′| = n − 1 and w(G − T ′) ≥ n − s − d + 1. By (2.4) and
(2.11), we have s ≤ [(k − d)n − 1]/(2k − d). Therefore,

tB(G) ≤ n − 1
n − s − d + 1

≤ n − 1
n − ((k − d)n − 1)/(2k − d) − d + 1

. (2.12)

Define a function g(d) = n − [(k − d)n − 1]/(2k − d) − d + 1. It is easy to verify that, by
the assumption of n ≥ 4k − 4, g(1) ≤ g(2). Since g(d) is a convex function, it follows that
f(1) ≤ f(d) for d > 1. By (2.12),

tB(G) ≤ n − 1
f(d)

≤ n − 1
f(1)

=
(2k − 1)(n − 1)

(kn + 1)
= f1. (2.13)

This completes the proof of Theorem 1.2.

Proof of Theorem 1.3 (By contradiction). Indeed, we will prove that the result in Theorem 1.3
holds for all 1 ≤ k ≤ n. The condition of n ≥ 4k − 4 in Theorem 1.3 is only because that
f2 is not as tight a bound as f1 when n < 4k − 4.

Suppose G has no k-factor, we will infer that tB(G) ≤ f2. According to Lemma 2.1,
there exist S ⊆ X and T ⊆ Y such that

eG(X − S, T) ≤ kt − ks − 1, (2.14)

where s = |S| and t = |T |. Like in the proof of Theorems 1.1 and 1.2, we can still assume (2.4).
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Suppose y0 is vertex in T that is adjacent to the least number (denoted by d) of vertices
in X − S. By (2.14), we have t·d ≤ kt − ks − 1. Then with (2.4), we further have s ≤ [(k − d)n −
1]/(2k − d). Let T ′ = Y − {y0}, then |T ′| = n − 1 and w(G − T ′) ≥ n − s − d + 1. Therefore,

tB(G) ≤ |T ′|
w(G − T ′) ≤

n − 1
n − s − d + 1

≤ n − 1
n − ((k − d)n − 1)/(2k − d) − d + 1

=
n − 1

(2k − d) + (kn + 1)/(2k − d) − 2k + 1
≤ n − 1

2
√
kn + 1 − 2k + 1

= f2.

(2.15)

This completes the proof of Theorem 1.3.

3. Conclusion and future work

We have defined a new invariant in bipartite graphs called bipartite toughness and provided
a sharp bound of it for a balanced bipartite graph to have a k-factor, for k from 1 through
n. We view this as a big improvement from using toughness to predict k-factors in bipartite
graphs, as toughness of a bipartite graph is at most 1 and it cannot predict k-factors for any
k ≥ 3.

There is also research on computational complexity of toughness. In general,
recognizing toughness of a graph is NP-hard [12]. Furthermore, 1-tough of graphs is also
NP-hard [13], and even 1-tough of bipartite graphs is NP-hard [14] too. Toughness in claw-
free (K1,3-free) graphs [15], 1-tough in split graphs [14], and toughness in split graphs [16]
have been shown in P. In the future, it would be very interesting to determine the complexity
of bipartite toughness.
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