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1. Introduction
A continuous function f = u+iv is a complex-valued harmonic function in a complex domain
C if both u and v are real harmonic inC. In any simply connected domainD ⊆ C, we canwrite
f = h + g, where h and g are analytic in D. We call h the analytic part and g the coanalytic
part of f . A necessary and sufficient condition for f to be locally univalent and orientation-
preserving in D is that |g ′(z)| < |h′(z)| in D, see [1].

Denote by H the class of functions f = h + g which are harmonic univalent and
orientation-preserving in the open unit disk U = {z : |z| < 1} so that f = h + g is normalized
by f(0) = h(0) = fz(0) − 1 = 0. Therefore, for f = h + g ∈ H, we can express h and g by the
following power series expansion:

h(z) = z +
∞∑

n=2

anz
n, g(z) =

∞∑

n=1

bnz
n,

∣∣b1
∣∣ < 1. (1.1)

Observe that H reduces S, the class of normalized univalent analytic functions, if the
coanalytic part of f is zero.

For f = h + g given by (1.1) and n > −1, Murugusundaramoorthy [2] defined the
Ruscheweyh derivative of the harmonic function f = h + g inH by

Dnf(z) = Dnh(z) +Dng(z), (1.2)
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where the Ruscheweh derivative of a power series f(z) = z +
∑n

n=2anz
n is given by

Dnf(z) =
z

(1 − z)n+1
∗f. (1.3)

The operator ∗ stands for the Hadamard product or convolution of two power series

f(z) =
∞∑

n=1

anz
n, g(z) =

∞∑

n=1

bnz
n (1.4)

defined by

(f∗g)(z) =
∞∑

n=1

anbnz
n. (1.5)

In [3], Owa introduced the following definition.

Definition 1.1. Let the function f(z) be analytic in a simply connected domain of the z-plane
containing the origin and let 0 ≤ λ < 1. The fractional derivative of f of order λ is defined by

Dλ
zf(z) :=

1
Γ(1 − λ)

d

dz

∫1

0

f(ζ)

(z − ζ)λ
dζ (0 ≤ λ < 1), (1.6)

where the multiplicity of (z − ζ)−λ is removed by requiring log(z−ζ) to be real when z−ζ > 0.

In [4], Owa gave the relation between the fractional derivative and Ruscheweyh
operator for the function f(z) = z +

∑∞
n=2anz

n as

Dλf(z) :=
1

Γ(1 + λ)
Dλ

z

[
zλ−1f(z)

]
, 0 < λ < 1,

D0f(z) = lim
λ→∞

Dλf(z),

D1f(z) = lim
λ→ 1

Dλf(z).

(1.7)

Using (1.2) and the relation between the fractional derivative and Ruscheweyh
operator, we define the fractional derivative of order λ, 0 ≤ λ < 1, for the harmonic function
f = h + g as

Dλ
z

[
zλ−1f(z)

]
= Dλ

z

[
zλ−1h(z)

]
+Dλ

z

[
zλ−1g(z)

]
, 0 < λ < 1,

D0
zf(z) = lim

λ→ 0
Dλ

zf(z),

D1
zf(z) = lim

λ→ 1
Dλ

zf(z).

(1.8)
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Since Dλf = Dλh + Dλg, it was proved in [1] that the harmonic function Dλf is starlike of
order 1/2 if and only if the analytic function Dλh − Dλg is starlike of order 1/2, and it was
shown in [4, Theorem 3] thatDλh −Dλg is starlike of order 1/2 if and only if Re{Dλ+1

z [zλ(h −
g)]/Dλ

z[z
λ−1h − g)]} > (1 + λ)/2 for 0 < λ < 1. Since Re{Dλ+1

z [zλ(h − g)]/Dλ
z[z

λ−1(h − g)]} =
Re(Γ(2 + λ)Dλ+1(h − g)/Γ(1 + λ)Dλ(h − g)), then Dλh − Dλg is starlike of order (1 + λ)Γ(1 +
λ)/2Γ(2+λ), henceDλf = Dλh+Dλg is starlike of order (1+λ)Γ(1+λ)/2Γ(2+λ). This means

Re
DDλf

Dλf
>

(1 + λ)Γ(1 + λ)
2Γ(2 + λ)

=⇒ Re
Dλ+1

z

[
zλf

]

Dλ
z

[
zλ−1f

] >
(1 + λ)

2
. (1.9)

Recently, Owa and Srivastava [5] studied the linear Ωλ defined by operator

Ωλf(z) := Γ(2 − λ)zλDλ
zf(z) (0 ≤ λ < 1), (1.10)

where f is normalized and analytic function onU.
It is easily seen that

Ω0f = f, Ω1f = zf ′. (1.11)

Analogously, we studied the linear operator Ωλ defined on the harmonic function f = h + g
by

Ωλf(z) = Ωλh(z) + Ωλg(z), (1.12)

where

Ωλh(z) := Γ(2 − λ)zλDλ
zh(z) =

∞∑

n=0

Γ(n + 2)Γ(2 − λ)
Γ(n + 2 − λ)

an+1z
n+1, a1 = 1,

Ωλg(z) := Γ(2 − λ)zλDλ
zg(z) =

∞∑

n=0

Γ(n + 2)Γ(2 − λ)
Γ(n + 2 − λ)

bn+1z
n+1, b1 = 0.

(1.13)

We will define subclasses of normalized harmonic functions obtained by the Hadamard
product and using the fractional derivative.

2. Main results

Let h and g be analytic in U. Let PH stand for harmonic functions f = h + g so that Re f >
0, z ∈ U and f(0) = 1.

If the function fz + fz = h′ +g ′ belongs to PH for the analytic and normalized functions

h(z) = z +
∞∑

n=2

anz
n, g(z) =

∞∑

n=2

bnz
n, (2.1)

then the class of functions f = h + g is denoted by P̃ 0
H [6].
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The function

tα(z) = z +
1

1 + α
z2 + · · · + 1

1 + (n − 1)α
zn + · · · (2.2)

is analytic onUwhen α is a complex number different from −1,−(1/2),−(1/3), . . . . ForΩλf ∈
P̃ 0
H , we denote by P̃ λ,0

H (α) the class of functions defined by

ΩλF = Ωλf∗(tα + tα
)
. (2.3)

Therefore,

ΩλF = ΩλH + Ωλg

= z +
∞∑

n=2

Γ(n + 1)Γ(2 − λ)
Γ(n + 1 − λ)[1 + (n − 1)α]

anz
n +

∞∑

n=2

Γ(n + 1)Γ(2 − λ)
Γ(n + 1 − λ)[1 + (n − 1)α]

bnzn

= z +
∞∑

n=2

Anz
n +

∞∑

n=2

Bnzn, z ∈ U

(2.4)

is in P̃ λ,0
H (α). Conversely, ifΩλF is in the form (2.4), with an, bn being the coefficients ofΩλf ∈

P̃ 0
H , then ΩλF = P̃ λ,0

H (α).
Note that P̃ 0,0

H (α) ≡ P̃ 0
H(α) [7] and P̃ 0,0

H (0) ≡ P̃ 0
H .

Theorem 2.1. If ΩλF ∈ P̃ λ,0
H (α), then there exists Ωλf ∈ P̃ 0

H so that

α
[
z
(
ΩλF

)
z(z) + z(ΩλF)z(z)

]
+ (1 − α)ΩλF(z) = Ωλf(z). (2.5)

Conversely, for any function f such that Ωλf ∈ P̃ 0
H , there exists ΩλF ∈ P̃ λ,0

H (α) satisfying (2.5).

Proof. Let ΩλF ∈ P̃ λ,0
H (α). If Ωλf ∈ P̃ 0

H , then since

αzt′α(z) + (1 − α)tα(z) = t0(z) (2.6)

as ΩλF = Ωλf∗(tα + tα), we obtain that

Ωλf(z) = α
[
Ωλf(z)∗(zt′α + zt′α

)]
+ (1 − α)

[
Ωλf(z)∗(tα + tα

)]
. (2.7)

Therefore,

Ωλf(z) = α
[
z
(
ΩλF

)
z(z) + z

(
ΩλF

)
z(z)

]
+ (1 − α)ΩλF(z). (2.8)
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Conversely, for Ωλf ∈ P̃ 0
H , from (2.1), (2.2), and (2.5),

z +
∞∑

n=2

Γ(n + 2)Γ(2 − λ)
Γ(n + 1 − λ)

anz
n +

∞∑

n=2

Γ(n + 1)Γ(2 − λ)
Γ(n + 1 − λ)

bnzn

= z +
∞∑

n=2

[1 + (n − 1)α]Anz
n +

∞∑

n=2

[1 + (n − 1)α]Bnzn,

(2.9)

where

An =
Γ(n + 1)Γ(2 − λ)

Γ(n + 1 − λ)[1 + (n − 1)α]
an, Bn =

Γ(n + 1)Γ(2 − λ)
Γ(n + 1 − λ)[1 + (n − 1)α]

bn. (2.10)

Therefore,

ΩλF = z +
∞∑

n=2

Anz
n +

∞∑

n=2

Bnzn = Ωλf∗[tα(z) + tα(z)
]
. (2.11)

Theorem 2.2. A function ΩλF of the form (2.4) belongs to P̃ λ,0
H (α), if and only if

Re
{
z
(
ΩλH(z)

)′′ + α
(
ΩλG(z)

)′′ +
(
ΩλH(z)

)′ +
(
ΩλG(z)

)′}
> 0, z ∈ U. (2.12)

Proof. If ΩλF = ΩλH + ΩλG ∈ P̃ λ,0
H (α), then from Theorem 2.1,

α
[
z
(
ΩλH

)′ + z
(
ΩλG

)′] + (1 − α)
[
ΩλH + ΩλG

]
= Ωλh + Ωλg ∈ P̃ 0

H (2.13)

and (Ωλh)′ + (Ωλg)′ ∈ PH . Hence

0 < Re
{(

Ωλh
)′ +

(
Ωλg

)′}

× Re
{
αz

(
ΩλH

)′′ + α
(
ΩλH

)′ + (1 − α)
(
ΩλH

)′ + αz
(
ΩλG

)′′ + α
(
ΩλG

)′ + (1 − α)
(
ΩλG

)′}

× Re
{
z
(
α
(
ΩλH

)′′ + α
(
ΩλG

)′′) +
(
ΩλH

)′ +
(
ΩλG

)′}
.

(2.14)

Conversely, if the function ΩλF = ΩλH + ΩλG of the form (2.4) satisfies (2.10), then by

Theorem 2.1 (Ωλh)′ + (Ωλg)′ ∈ PH and the following function holds:

Ωλf = Ωλh + Ωλg = α
[
z
(
ΩλH

)′ + z
(
ΩλG

)′] + (1 − α)
[
ΩλH + ΩλG

] ∈ P̃ 0
H. (2.15)

Then by Theorem 2.1, ΩλF = ΩλH + ΩλG ∈ P̃ λ,0
H (α).
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Theorem 2.3. P̃ λ,0
H (α) is convex and compact.

Proof. Let ΩλF1 = ΩλH1 + ΩλG1, ΩλF2 = ΩλH2 + ΩλG2 ∈ P̃ λ,0
H (α) and let μ ∈ [0, 1]. Then

Re
{
z
[
α
(
μ
(
ΩλH1(z)

)′′ + (1 − μ)
(
ΩλH2(z)

)′′) + α
(
ΩλG1(z)

)′′ + (1 − μ)
(
ΩλG2(z)

)′′)]

+ μ
[(
Ωλ

H1(z)
)′ +

(
ΩλG1(z)

)′] + (1 − μ)
[(
ΩλH2(z)

)′ +
(
ΩλG2(z)

)′]}

= μ Re
{
z
[
α
(
ΩλH1(z)

)′′ + α
(
ΩλG1(z)

)′′] +
(
ΩλH1(z)

)′ +
(
ΩλG1(z)

)′}

+ (1 − μ)Re
{
z
[
α
(
ΩλH2(z)

)′′ + α
(
ΩλG2(z)

)′′] +
(
ΩλH2(z)

)′ +
(
ΩλG2(z)

)′}

> 0.

(2.16)

Hence from Theorem 2.2, μΩλF1 + (1 − μ)ΩλF2 ∈ P̃ λ,0
H (α). Therefore, P̃ λ,0

H (α) is convex.

Now, let ΩλFn = ΩλHn + ΩλGn ∈ P̃ λ,0
H (α) and let ΩλFn → ΩλF = ΩλH + ΩλG. By

Theorem 2.2,

α
[
z
(
ΩλHn

)′ + z
(
ΩλGn

)′] + (1 − α)
[
ΩλHn + ΩλGn

] ∈ P̃ 0
H. (2.17)

Since P̃ 0
H is compact, see [6],

α
[
z
(
ΩλH

)′ + z
(
ΩλG

)′] + (1 − α)
[
ΩλH + ΩλG

] ∈ P̃ 0
H. (2.18)

Hence by Theorem 2.1, ΩλF ∈ P̃ λ,0
H (α), therefore P̃ λ,0

H (α) is compact.

Theorem 2.4. If ΩλF = ΩλH + ΩλG ∈ P̃ λ,0
H (α) and |z| = r < 1, then

−r + 2 In(1 + r) ≤ Re
{
α
[
z
(
ΩλHn

)′ + z
(
ΩλGn

)′] + (1 − α)
[
ΩλHn + ΩλGn

]}

≤ −r − 2 In(1 − r).
(2.19)

Equality is obtained for the function (2.3) where

Ωλf = 2z + ln(1 − z) − 3z − 3 ln(1 − z), z ∈ U. (2.20)

Proof. From Theorem 2.1, ifΩλH +ΩλG ∈ P̃ λ,0
H (α), then there existsΩλf = Ωλh+Ωλg ∈ P̃ 0

H so
that

α
[
z
(
ΩλH

)′ + z(ΩλG)′
]
+ (1 − α)

[
ΩλH + ΩλG

]
= Ωλf. (2.21)

Since by [5, Proposition 2.2]

−r + 2 ln(1 + r) ≤ Re
(
Ωλf

) ≤ −r − 2 ln(1 − r), (2.22)

this completes the proof.
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Theorem 2.5. If ΩλF = ΩλH + ΩλG ∈ P̃ λ,0
H (α) and Re α > 0, then there exists Ωλf ∈ P̃ 0

H so that

ΩλF =
1
α

∫1

0
ζ1/α−2

(
Ωλf

)
(zζ)dζ, z ∈ U. (2.23)

Proof. Since

tα(z) =
1
α

∫1

0
ζ1/α−1

z

1 − zζ
dζ, |ζ| ≤ 1, Re α > 0, (2.24)

and for Ωλf = Ωλh + Ωλg ∈ P̃ 0
H ,

(
Ωλh

)
(z) ∗ z

1 − zζ
=

(
Ωλh

)
(zζ)

ζ
,

(
Ωλg

)
(z) ∗ z

1 − zζ
=

(
Ωλg

)
(zζ)

ζ
, (2.25)

we have

(
ΩλH

)
(z) =

(
Ωλh

)
(z) ∗ tα =

1
α

∫1

0
ζ1/α−2

(
Ωλh

)
(zζ)dζ,

(
ΩλG

)
(z) =

(
Ωλg

)
(z) ∗ tα =

1
α

∫1

0
ζ1/α−2

(
Ωλg

)
(zζ)dζ.

(2.26)

Hence ΩλF is type (2.23).

Theorem 2.6. If Re α > 0, then P̃ λ,0
0 (α) ⊂ P̃ 0

H .

Proof. Let ΩλF ∈ P̃ λ,0
H (α) and Re α > 0. Then there exists Ωλf ∈ P̃ 0

H so that

ΩλF = ΩλH + ΩλG = Ωλf ∗ (tα + tα
)
=
(
Ωλh ∗ tα

)
+
(
Ωλg ∗ tα

)
. (2.27)

Hence 0 < Re{(Ωλh)′ + (Ωλg)′} = Re{(Ωλh)′ + (Ωλg)′} and since Re α > 0, Re{(ΩλH)′ +
(ΩλG)′} > 0 and ΩλH(0) = 0, (ΩλH)′(0) = 1, ΩλG(0) = 0, (ΩλG)′(0) = 0. And hence ΩλF ∈
P̃ 0
H .

Theorem 2.7. Let ΩλF = ΩλH + ΩλG ∈ P̃ λ,0
H (α). Then

(i)

∥∥An| − |Bn

∥∥ ≤ 2Γ(n + 1)Γ(2 − λ)
nΓ(n + 1 − λ)|(1 + (n − 1)α| , n ≥ 1, (2.28)
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(ii) if ΩλF is sense-preserving, then

∣∣An

∣∣ ≤ 2n − 1
n

Γ(n + 1)Γ(2 − λ)
Γ(n + 1 − λ)|1 + (n − 1)α| , n = 1, 2, . . . ,

|Bn| ≤ 2n − 3
n

Γ(n + 1)Γ(2 − λ)
Γ(n + 1 − λ)|1 + (n − 1)α| , n = 2, 3, . . . .

(2.29)

Proof. By (2.10),

∥∥An| − |Bn

∥∥ =
Γ(n + 1)Γ(2 − λ)

Γ(n + 1 − λ)|1 + (n − 1)α|
∥∥an| − |bn

∥∥. (2.30)

Also, by [6, Theorem 2.3], we have

∥∥an| − |bn
∥∥ ≤ 2

n
. (2.31)

The required results are obtained.
On the other hand, from (2.10), it is known [6, Corollary 2.5] that

∣∣an

∣∣ ≤ 2n − 1
n

,
∣∣bn

∣∣ ≤ 2n − 3
n

. (2.32)

Then we get the coefficient inequalities for P̃ λ,0
0 (α).

Remark 2.8. Taking λ = 0 in Theorems 2.1–2.7, we get the similar results in [7].

Theorem 2.9. Let ΩλF = ΩλH = ΩλG ∈ P̃ λ,0
H (α) and sense-preserving inU, then for |z| = r < 1,

∣∣αz
(
ΩλH

)′ + (1 − α)ΩλH
∣∣ ≤ 2r

1 − r
+ ln(1 − r),

∣∣αz
(
ΩλG

)′ + (1 − α)ΩλG
∣∣ ≤ 3r − r2

1 − r
+ 3 ln(1 − r).

(2.33)

Proof. From Theorems 2.1 and 2.2, if ΩλF = ΩλH + ΩλG ∈ P̃ λ,0
H (α), then there exists Ωλf =

Ωλh + Ωλg ∈ P̃ 0
H such that

αz
(
ΩλH

)′ + (1 − α)ΩλH = Ωλh,

αz
(
ΩλG

)′ + (1 − α)ΩλG = Ωλg.

(2.34)

By [6, Theorem 3.5], we obtain the results.



R. A. Al-Khal and H. A. Al-Kharsani 9

Remark 2.10. Taking λ = 0 and α = 0 in Theorem 2.9, we get [6, Theorem 2.4].

3. Positive order

We say that the harmonic function f = h + g of the form (2.1) is in the class PH(β), 0 ≤ β < 1
for |z| = r if Re f > β and f(0) = 1.

If the function fz + fz = h′ + g ′ belongs to PH(β) for the analytic and normalized
functions h and g of the form (2.1), then the class of functions f = h + g is denoted by P̂ 0

H(β).
Denote by P̂ λ,0

H (β, α) the class of functions defined By (2.3)where Ωλf ∈ P̂ 0
H(β).

Many of our results can be rewritten for functions in the class P̂ λ,0
H (β, α). For instance,

see the following theorems.

Theorem 3.1. If ΩλF∈ P̂
λ,0
H (β, α), then there exists Ωλf ∈ P̂ 0

H(β) so that

α
[
z
(
ΩλF

)
z(z) + z

(
ΩλF

)
z(z)

]
+ (1 − α)ΩλF(z) = Ωλf(z). (3.1)

Conversely, for any function f such that Ωλf ∈ P̂ 0
H(β), there exists ΩλF ∈ P̂ λ,0

H (β, α) satisfying
(3.1).

Theorem 3.2. A function ΩλF belongs to P̂ λ,0
H (β, α) if and only if

Re
{
z
(
ΩλH(z)

)′′ + α
(
ΩλG(z)

)′′ +
(
ΩλH(z)

)′ +
(
ΩλG(z)

)′}
> β, z ∈ U. (3.2)

Theorem 3.3. If ΩλF ∈ P̂ λ,0
H (β, α) and Re α > 0, then there exists Ωλf ∈ P̂ 0

H(β) so that

ΩλF =
1
α

∫1

0
ζ1/α−2

(
Ωλf

)
(zζ)dζ, z ∈ U. (3.3)

Theorem 3.4. If Re α > 0, then P̂ λ,0
H (β, α) ⊂ P̂ 0

H(β).
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