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Let R be a commutative ring and S a finite locally inverse semigroup. It is proved that the semi-
group algebra R[S] is isomorphic to the direct product of Munn algebras M (R[GJ], mJ , nJ ;PJ)
with J ∈ S/J, where mJ is the number of R-classes in J , nJ the number of L-classes in J , and GJ a
maximum subgroup of J . As applications, we obtain the sufficient and necessary conditions for the
semigroup algebra of a finite locally inverse semigroup to be semisimple.
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1. Main results

A regular semigroup S is called a locally inverse semigroup if for all idempotent e ∈ S, the lo-
cal submonoid eSe is an inverse semigroup under the multiplication of S. Inverse semigroups
are locally inverse semigroups. Inverse semigroup algebras are a class of semigroup algebras
which is widely investigated. One of fundamentally important results is that a finite inverse
semigroup algebra is the direct product of full matrix algebras over group algebras of the maxi-
mum subgroups of this finite inverse semigroup. Consider that all local submonoids of a locally
inverse semigroup are inverse semigroups, it is a very natural problem whether a finite locally
inverse semigroup algebra has a similar representation to inverse semigroup algebras. This is
the main topic of this note.

LetA be an R-algebra. Letm and n be positive integers, and let P be a fixed n×mmatrix
over A. Let M := M(A;m,n;P) be the vector space of all m × n matrices over A. Define a
product ◦ in M by

A ◦ B = APB (A,B ∈ M), (1.1)

whereAPB is the usual matrix product ofA, P , and B. ThenM is an algebra over R. Following
[1], we call M the Munnm × n matrix algebra over A with sandwich matrix P .
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By a semisimple semigroup, we mean a semigroup each of whose principal factor is ei-
ther a completely 0-simple semigroup or a completely simple semigroup. It is well known
that a finite regular semigroup is semisimple. The Rees theorem tells us that any completely
0-simple semigroup (completely simple semigroup) is isomorphic to some Rees matrix semi-
group M0(G, I,Λ;P) (M(G, I,Λ;P)), and vice versa (for Rees matrix semigroups, refer to [1]).
In what follows, by the phrase “Let S =

⋃
J∈S/JM0(GJ ; IJ ,ΛJ ;PJ) be a finite regular semi-

group,” we mean that S is a finite regular semigroup in which the principal factor of S de-
termined by the J-class J is isomorphic to the Rees matrix semigroup M0(GJ ; IJ ,ΛJ ;PJ) or
M(GJ ; IJ ,ΛJ ;PJ) for any J ∈ S/J.

The following is the main result of this paper.

Theorem 1.1. Let S =
⋃

J∈S/JM0(GJ, IJ ,ΛJ ;PJ) be a finite locally inverse semigroup. Then the semi-
group algebra R[S] is isomorphic to the direct product ofM(R[GJ]; |IJ |, |ΛJ |;PJ) with J ∈ S/J.

Based on Theorem 1.1 and [1, Lemma 5.17, page 162, and Lemma 5.18, page 163], the
following corollary is straightforward.

Corollary 1.2. Let S =
⋃

J∈S/JM0(GJ, IJ ,ΛJ ;PJ) be a finite locally inverse semigroup. Then the semi-
group algebra R[S] has an identity if and only if |IJ | = |ΛJ | and PJ is invertible in the full matrix
algebraM|IJ |(R[GJ]) for all J ∈ S/J.

Reference [1, Lemma 5.18, page 163] told us that M(R[GJ], mJ, nJ ;PJ) is isomorphic to
the full matrix algebra MnJ

(R[GJ]) if M(R[GJ], mJ, nJ ;PJ) has an identity. Now, we have the
following.

Corollary 1.3. Let S =
⋃

J∈S/JM0(GJ, IJ ,ΛJ ;PJ) be a finite locally inverse semigroup. If R[S] has
an identity, then R[S] is isomorphic to the direct product of the full matrix algebrasM|IJ |(R[GJ]) with
J ∈ S/J.

The following corollary is a consequence of Corollary 1.3.

Corollary 1.4. Let S =
⋃

J∈S/JM0(GJ, IJ ,ΛJ ;PJ) be a finite locally inverse semigroup. Then the semi-
group algebra R[S] is semisimple if and only if for all J ∈ S/J,

(1) |IJ | = |ΛJ |;
(2) PJ is invertible in the full matrix algebraM|IJ |(R[GJ]);

(3) R[GJ] is semisimple.

2. Proof of Theorem 1.1

For our purpose, we have the Möbius inversion theorem [2].

Lemma 2.1. Let (P,≤ ) be a locally finite partially ordered set (i.e., intervals are finite) in which each
principal ideal has a maximum and G be an Abelian group. Suppose that f : P → G is a function
and define g : P → G by g(x) =

∑
y≤xf(y). Then f(x) =

∑
y≤xg(y)μ(x, y), where μ is a Möbius

function.

Now assume that S is a regular semigroup and a, b ∈ S. Define

a ≤ b ⇐⇒ there exist e, f ∈ E(S) such that a = eb = bf. (2.1)
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Then ≤ is a partial order on S. Following [3], we call ≤ the natural partial order on S. Equiv-
alently, a ≤ b if and only if for every (for some) f ∈ E(Rb) (f ∈ E(Lb)), there exists e ∈
E(Ra) (e ∈ E(La)) such that e ≤ f and a = eb (a = be). Moreover, Nambooripad [3, 4] proved
that S is a locally inverse semigroup if and only if the natural partial order ≤ is compatible
with respect to the multiplication of S.

Lemma 2.2. Let S be a locally inverse semigroup and a, b ∈ S. Then for any u ≤ ab, there exist x ≤ a
and y ≤ b such that u = xy, x ∈ Ru and y ∈ Lu.

Proof. For any e ∈ E(Ra), we have ea = a and eab = ab. Let z be an inverse of ab. Clearly,
abz ∈ E(Rab). Note that eabz = abz. It is easy to check that abze ∈ E(S), abze ≤ e, and
abzRabze. Hence abzeRab and there exists g ∈ E(S) such that u = gab and g ≤ abze (≤ e).
Thus ga ≤ a. On the other hand, since R is a left congruence and since abzeRab, we have
u = gabRgabze = g; while since aRe, we have gaRge = g. These imply that uRga. Dually, we
have h ∈ E(S) such that u = abh, bh ≤ b and uLbh. Since u = gab = abh = uh = (ga) (bh), we
know that ga and bh are the required elements x and y.

Define a multiplication ⊗ on S0 = S ∪ {0} by

x ⊗ y =

{
xy if x /= 0, y /= 0, and y, xy ∈ Jx;

0 otherwise,
(2.2)

where xy is the product of x and y in S. By the arguments of [4, page 9], (S0,⊗) is a semigroup.
We denote by S⊗ the semigroup (S0,⊗). For any J ∈ S/J, we denote J0 = J ∪ {0}. It is easy
to check that (J0,⊗) is a subsemigroup of S⊗, which is isomorphic to the principal factor of S
determined by J . We will denote the semigroup (J0,⊗) by J⊗. By the definition of ⊗, it is easy
to see that in the semigroup S⊗,

(i) J⊗x ⊗ J⊗x ⊆ J⊗x for all x ∈ S;

(ii) J⊗x ⊗ J⊗y = 0 for all x, y ∈ S such that x /∈ Jy.

Thus R0[S⊗] is the direct sum of the contracted semigroup algebras R0[J⊗] with J ∈ S/J.
Note that J⊗ is isomorphic to some principal factor of S. We observe that J⊗ is a completely 0-
simple semigroup since S is a semisimple semigroup, and thus J⊗ is isomorphic to some Rees
matrix semigroup M0(GJ, IJ ,ΛJ ;PJ). By a result of [1], R0[M0(GJ, IJ ,ΛJ ;PJ)] is isomorphic to
M(R[GJ], |IJ |, |ΛJ |;PJ). Consequently, to verify Theorem 1.1, we need only to prove that R[S]
is isomorphic to R0[S⊗].

For the convenience of description, we introduce the semigroup S. Put S = {x | x ∈
S} ∪ {0}. Define a multiplication on S as follows:

x∗y = x ⊗ y, (2.3)

where wewill identify 0 with 0. It is easy to see that S is isomorphic to S⊗. Hence the contracted
semigroup algebra R0[S] is isomorphic to the contracted semigroup algebra R0[S⊗]. For J ∈
S/J, we denote J = {x | x ∈ J} ∪ {0}. It is easy to check that (J, ∗) is a subsemigroup of S
isomorphic to the semigroup J⊗. So, for any J,K ∈ S/J, we have

J∗K
{
⊆ J if K = J,

= 0 otherwise.
(2.4)
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For Theorem 1.1, it remains to prove the following lemma.

Lemma 2.3. R[S] ∼= R0[S].

Proof. We consider the mapping ϕ : R[S] → R0[S] given on the basis by ϕ(s) =
∑

t≤st (s ∈ S).
Clearly, ϕ is well defined. Of course, ϕ and • may be regarded as the mappings of the ordered
set (S,≤ ) into the additive group of R0[S]. Now, by applying the Möbius inversion theorem to
the mappings ϕ and •, we have

s =
∑

t≤s
ϕ(t)μ(t, s) = ϕ

(
∑

t≤s
tμ(t, s)

)

, (2.5)

where μ is the Möbius function for (S,≤ ). Hence ϕ is surjective.
We will prove that ϕ is injective. For α0 =

∑
x∈Sp

0
xx ∈ R[S], we denote by supp (α0)

the set {x ∈ S | p0x /= 0} and by M(α0) the set of maximal elements in the set supp(α0)
with respect to the partial order ≤. In recurrence, we define αn = αn−1 − ∑

x∈M(αn−1)p
n−1
x x,

where αn =
∑

x∈supp(αn)p
n
xx. Let βn =

∑
x∈supp(βn)q

n
xx with n = 0, 1, 2, . . . . If ϕ(αn) = ϕ(βn),

then by the definition of ϕ,
∑

x∈M(αn)pxx + Γαn
= ϕ(αn) = ϕ(βn) =

∑
y∈M(βn)

qnyy + Γβn , where
Γαn

=
∑

x∈M(αn)
∑

y∈S,y<xp
n
yy and Γβn =

∑
x∈M(βn)

∑
y∈S,y<xq

n
yy, and hence

∑
x∈M(αn)p

n
xx =

∑
x∈M(βn)

qnxx, thus M(αn) = M(βn) and pnx = qnx for any x ∈ M(αn). This can imply the fol-
lowing.

Fact 2.4. If ϕ(αn) = ϕ(βn), thenM(αn) = M(βn) and by the definition of ϕ, ϕ(αn+1) = ϕ(βn+1).

By the definition of ϕ, the following facts are immediate.

Fact 2.5. αn = βn if and only if M(αn) = M(βn) and αn+1 = βn+1.

Fact 2.6. If ϕ(αn) = ϕ(βn) andM(αn) = supp(αn),M(βn) = supp(βn), then αn = βn.

Note that |supp(α0)| < ∞ and supp(αn+1) ⊆ supp(αn). We thus have a smallest integer
k such that M(αk) = supp(αk). Clearly, αk+1 = 0. This means that k is the smallest integer t
such that αt+1 = 0. Similarly, there exists the smallest integer l such that βl+1 = 0 and M(βl) =
supp(βl). Now, assume ϕ(α0) = ϕ(β0). By using Fact 2.4 repeatedly,

ϕ
(
α1
)
= ϕ

(
β1
)
, ϕ

(
α2
)
= ϕ

(
β2
)
, . . . , ϕ

(
αk+1

)
= ϕ

(
βk+1

)
. (2.6)

But ϕ(αk+1) = 0, we have ϕ(βk+1) = 0 and by the definition of ϕ, βk+1 = 0. Thus k + 1 ≥ l + 1
by the minimality of l, and k ≥ l. Similarly, l ≥ k. Therefore k = l. Since ϕ(αk) = ϕ(βk), by
Fact 2.6, we have αk = βk sinceM(αk) = supp(αk) andM(βl) = supp(βl). Again by the hypoth-
esis ϕ(α0) = ϕ(β0), and by Fact 2.4, M(α0) = M(β0); and by (2.6), M(α1) = M(β1), M(α2) =
M(β2), . . . ,M(αk) = M(βk). By Fact 2.5, M(αk−1) = M(βk−1); and αk = βk imply αk−1 = βk−1;
moreover, by using Fact 2.5 repeatedly, αk−2 = βk−2, . . . , α1 = β1 and α0 = β0. We have now
proved that ϕ is injective.

Finally, for any s, t ∈ S, by (2.4), we have

s∗t =
{
st if s, t ∈ Jst,

0 otherwise,
(2.7)
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and by Lemma 2.2,

ϕ(s)∗ϕ(t) =
(
∑

x≤s
x

)

∗
(
∑

y≤t
y

)

=
∑

x∈Jst,x≤s

∑

y∈Jst,y≤t
x∗y

=
∑

x∈Jst,x≤s

∑

y∈Jst,y≤t
xy.

(2.8)

Moreover, by Lemma 2.2, we have

ϕ(st) =
∑

u≤st
u =

∑

x∈Jst,x≤s

∑

y∈Jst,y≤t
xy

=
∑

x≤s,x∈Jst

∑

y≤t,y∈Jst
x∗y = ϕ(s)∗ϕ(t).

(2.9)

Thus ϕ is a homomorphism of R[S] into R0[S]. Consequently, ϕ is an isomorphism of R[S]
onto R0[S].
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