
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2008, Article ID 573425, 15 pages
doi:10.1155/2008/573425

Research Article
Unsteady Stagnation-Point Flow of a Viscoelastic
Fluid in the Presence of a Magnetic Field

F. Labropulu

Luther College - Mathematics, University of Regina, Regina, SK, Canada S4S 0AZ

Correspondence should be addressed to F. Labropulu, fotini.labropulu@uregina.ca

Received 26 June 2008; Revised 29 October 2008; Accepted 20 December 2008

Recommended by Hans Engler

The unsteady two-dimensional stagnation point flow of the Walters B’ fluid impinging on an
infinite plate in the presence of a transverse magnetic field is examined and solutions are obtained.
It is assumed that the infinite plate at y = 0 is making harmonic oscillations in its own plane.
A finite difference technique is employed and solutions for small and large frequencies of the
oscillations are obtained for various values of the Hartmann’s number and the Weissenberg
number.

Copyright q 2008 F. Labropulu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

During the past few decades, non-Newtonian viscoelastic fluids have become more and more
important industrially. Among these fluids are the fluids of diffferential type such as the
Walters B’ fluid [1]. Behaviour of viscoelastic fluids cannot be accurately described by the
Newtonian fluid model. The equations of motion of non-Newtonian fluids are highly non-
linear and one order higher than the Navier-Stokes equations. For this reason, boundary
conditions in addition to the non-slip condition are required to have a well-posed problem.
Only in some special cases where the higher order nonlinear terms in these equations can be
neglected thereby reducing their order, are the “no-slip” condition sufficient to yield unique
solutions. In general, Rajagopal [2], Rajagopal and Gupta [3], Rajagopal [4] and Rajagopal
and Kaloni [5] have shown that the absence of this additional boundary condition leads to
non-unique solutions for problems involving the flow of fluids of differential type such as
Walters’ B’ fluid in a bounded domain.

The flow of an incompressible viscous fluid over a moving plate has its importance
in many industrial applications. The extrusion of plastic sheets, fabrication of adhesive
tapes and application of coating layers onto rigid substrates are some of the examples. If a
magnetic field is present, viscous flows due to a moving plate in an electro-magnetic field,
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Figure 1: Variation of F ′(η) for various We and M = 0.

ie magnetohydrodymanic (MHD) flows, are relevant to many practical applications in the
metallurgy industry, such as the cooling of continuous strips and filaments drawn through a
quiescent fluid and the purification of molten metals from non-metallic inclusions.

In the history of fluid dynamics, considerable attention has been given to the study
of 2-D stagnation point flow. Hiemenz [6] derived an exact solution of the steady flow of a
Newtonian fluid impinging orthogonally on an infinite flat plate. Stuart [7], Tamada [8] and
Dorrepaal [9] independently investigated the solutions of a stagnation point flow when the
fluid impinges obliquely on the plate. Beard and Walters [10] used boundary-layer equations
to study two-dimensional flow near a stagnation point of a viscoelastic fluid. Dorrepaal et
al. [11] investigated the behaviour of a viscoelastic fluid impinging on a flat rigid wall at an
arbitrary angle of incidence. Labropulu et al. [12] studied the oblique flow of a viscoelastic
fluid impinging on a porous wall with suction or blowing. The Hiemenz flow of a Newtonian
fluid in the presence of a magnetic field was first considered by Na [13] and later by Ariel
[14]. The flow of the non-Newtonian Walters’ B’ fluid in the presence of a transverse magnetic
field was studied by Ariel [15]. Attia [16] investigated the steady flow of a non-Newtonian
second grade fluid at a stagnation point with heat transfer in an an external uniform magnetic
field.

Furthermore, the unsteady or time dependent viscous flow near a stagnation-point
has also been widely investigated. Glauert [17] and Rott [18] studied the stagnation-point
flow of a Newtonian fluid when the plate performs harmonic oscillations in its own plane.
Srivastava [19] investigated the same problem for a non-Newtonian second grade fluid using
the Karman-Pohlhausen method. Labropulu et al. [20] used series methods to solve the
unsteady stagnation point flow of a viscoelastic fluid impinging on an oscillating flat plate.

In this work, the two-dimensional unsteady stagnation point flow of the Walters B’
fluid impinging on an infinite plate in the presence of a magnetic field is examined and
solutions are obtained. It is assumed that the infinite plate at y = 0 is making harmonic
oscillations in its own plane and the magnetic field is transverse or perpendicular everywhere
in the flow field. Solutions for small and large frequencies of the oscillations are obtained
using a finite difference technique.
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2. Flow equations and boundary conditions

We consider the two-dimensional flow of an incompressible non-Newtonian Walters’ B’ fluid
against an infinite plate normal to the flow in the presence of a magnetic field. The x-axis is
along the plate and the y-axis is normal to the plate. We assume that the plate makes harmonic
oscillations on its own plane with velocity in the x-direction equal to aeiωt where a and ω are
constants. The unsteady two-dimensional flow of a viscous incompressible non-Newtonian
Walters B’ fluid in the presence of a magnetic field is governed by (see Beard and Walters [10]
and Na [13])
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where u = u(x, y, t), v = v(x, y, t) are the velocity components, p = p(x, y, t) is the pressure,
ν = μ/ρ is the kinematic viscosity, ρ is the fluid density, σ is the electrical conductivity, B0

is the magnetic field and α1 is a measure of the viscoelasticity of the fluid. It is assumed that
σB0 � 1, so that it is possible to neglect the effect of the induced magnetic field.

For this problem, the boundary conditions are given by

u = aeiωt, v = 0 at y = 0,

u = cx, v = −cy as y −→ ∞,
(2.4)

where c > 0 is a constant which has the units of inverse time. The quantity U = cx is the
velocity of the fluid outside the boundary layer.

Continuity (2.1) implies the existence of a streamfunction ψ(x, y, t) such that

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (2.5)
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Substitution of (2.5) in (2.2) and (2.3) and elimination of pressure from the resulting
equations using pxy = pyx yields
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Having obtained a solution of (2.6), the velocity components are given by (2.5).
The boundary conditions in terms of the streamfunction ψ(x, y, t) take the form
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(2.7)

The shear stress component τ12 is given by
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3. Solutions

Following Glauert [17], we seek a solution in the form

ψ = cxf(y) + aeiωtg(y) (3.1)

The boundary conditions take the form

f(0) = f ′(0) = 0, g ′(0) = 1,

f ′(∞) = 1, f(∞) = y, g ′(∞) = 0.
(3.2)

Using (3.1) in (2.6), we obtain
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(3.3)

Non-dimensionalizing using
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√
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ν
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c
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ν

c
G(η) (3.4)
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we get

F(iv) + FF ′′′ − F ′F ′′ +We

(
FF(v) − F ′F(iv)) −MF ′′ = 0,

G(iv) + FG′′′ − F ′′G′ +We

(
FG(v) − F(iv)G′) − iω

c
G′′ − iωWe

c
G(iv) −MG′′ = 0,

(3.5)

where We = a1c/μ, the Weissenberg number, is the ratio of the elastic effects over the viscous
effects and M = σB0/ρc, is the Hartmann’s number.

The asymptotic behaviour of F(y) far away from the plate (outside the boundary
layer) is given by

F(y)∼y −A as y −→ ∞, (3.6)

where A is a constant that accounts for the boundary layer displacement.
Using this asymptotic behaviour, we obtain

F ′(∞) = 1, F ′′(∞) = F ′′′(∞) = F(iv)(∞) = 0 (3.7)

Integrating (3.5) once with respect to η and using the conditions at infinity, we have
(see [10])

F ′′′ + FF ′′ − F ′2 +We

(
FF(iv) − 2F ′F ′′′ + F ′′2) −MF ′ = −1 −M,

F(0) = 0, F ′(0) = 0, F ′(∞) = 1,
(3.8)

G′′′ + FG′′ − F ′G′ +We
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FG(iv) − F ′G′′′ + F ′′G′′ − F ′′′G′) − iω

c

(
G′ +WeG

′′′) −MG′ = 0,

G′(0) = 1, G′(∞) = 0.
(3.9)

System (3.8) with M = 0 has been solved numerically by many authors (Beard and
Walter [10], Ariel [21]). Using the shooting method with the finite difference technique
described by Ariel [21], we find that F ′′(0) = 1.23259 when We = 0 and M = 0 which is
in good agreement with the values obtained by Hiemenz [6] and Glauert [17]. Numerical
values of F ′′(0) for different values of We and M are shown in Table 1. These values are in
good agreement with the values obtained by Ariel [21] when M = 0, Ariel [15] for all M and
Labropulu et al. [20] when M = 0. These values are also in good agreement with the values
obtained by Attia [16] when K = We = 0.0. Figure 1 shows the profiles of F ′ for various We

when M = 0. Figure 2 shows the profiles of F ′ for various M when We = 0. Figure 3 depicts
the profiles of F ′ for various M when We = 0.2. We observed that as the elasticity of the fluid
and the Hartman’s number increase, the velocity near the wall increases.

Letting φ(η) = G′(η), then system (3.9) becomes

φ′′ + Fφ′ − F ′φ +We

(
Fφ′′′ − F ′φ′′ + F ′′φ′ − F ′′′φ

)
− iω

c

(
φ +Weφ

′′) −Mφ = 0,

φ(0) = 1, φ(∞) = 0.
(3.10)
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Figure 2: Variation of F ′(η) for various M and We = 0.
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Table 1: Numerical values of F ′′(0), φ′
0(0), φ

′
1(0) and φ′

2(0) for different values of M and We = 0.

M F ′′(0) φ′
0(0) φ′

1(0) φ′
2(0)

0.0 1.23259 −0.811318 −0.49307 0.0945276

0.5 1.41976 −1.05648 −0.40999 0.0945488

1.0 1.58533 −1.2615 −0.357149 0.0582149

2.0 1.87353 −1.60113 −0.29228 0.0400542

2.25 1.93895 −1.67603 −0.280805 0.020476
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The only parameter in system (3.10) is the frequency ratio ω/c. Series solutions will be
developed, valid for small and large values of ω/c, respectively.

3.1. Small values of ω/c

Consider the case where ω = 0, which implies that the plate velocity has the constant value
a. Letting φ = φ0, then system (3.10) gives

φ′′
0 + Fφ

′
0 − F ′φ0 +We

(
Fφ′′′

0 − F ′φ′′
0 + F

′′φ′
0 − F ′′′φ0

)
−Mφ0 = 0,

φ0(0) = 1, φ0(∞) = 0.
(3.11)

This system is solved numerically using a shooting method and it is found that for
We = 0 and M = 0, φ′

0(0) = −0.811318 which is in good agreement with the value obtained
by Glauert [17]. Numerical values of φ′

0(0) for different values of We and M are shown in
Table 1. These values are in good agreement with the values obtained by Labropulu et al.
[20] for M = 0. Figure 4 depicts the profiles of φ0 for various values of We and M = 0.
Figure 5 shows the profiles of φ0 for various M when We = 0.1.

For small but non-zero values of ω/c, we let

φ(η) =
∞∑
n=0

(
iω

c

)n

φn(η) = φ0(η) +
iω

c
φ1(η) +

(
iω

c

)2

φ2(η) + · · · . (3.12)

Substituting (3.12) into (3.10), we get for n ≥ 1

φ′′
n + Fφ

′
n − F ′φn +We

(
Fφ′′′

n − F ′φ′′
n + F

′′φ′
n − F ′′′φn

)
−Mφn = φn−1 +Weφ

′′
n−1,

φn(0) = 0, φn(∞) = 0.
(3.13)
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This system can be solved numerically either by using the perturbation technique or
by a finite difference scheme. Numerical integration of system (3.13) for n = 1 using a finite
difference technique gives for We = 0 and M = 0, φ′

1(0) = −0.49307 which is in good
agreement with Glauert’s value [17]. Numerical values of φ′

1(0) for different values of We

and M are shown in Table 1. These values are in good agreement with Labropulu et al. [20]
for M = 0. Figure 6 shows the profiles of φ1 for various values of We and M = 1 and Figure 7
depicts the profiles of φ1 for various values of M and We = 0.2.

Numerical integration of system (3.13) for n = 2 using a finite difference technique
gives for We = 0 and M = 0, φ′

2(0) = 0.0945488 which is in good agreement with Glauert’s



F. Labropulu 9

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

φ
1(
η
)

0 1 2 3 4 5 6 7

η

M = 0
M = 0.5

M = 1
M = 2.25

Figure 7: Variation of φ1(η) for various M and We = 0.2.

−0.02

−0.01

0

0.01

0.02

0.03

0.04

φ
2(
η
)

0 1 2 3 4 5 6 7

η

We = 0
We = 0.1

We = 0.2
We = 0.3

Figure 8: Variation of φ2(η) for various We and M = 1.

Table 2: Numerical values of F ′′(0), φ′
0(0), φ

′
1(0), and φ′

2(0) for different values of M and We = 0.1.

M F ′′(0) φ′
0(0) φ′

1(0) φ′
2(0)

0.0 1.36946 −0.86708 −0.547301 0.065851

0.5 1.56814 −1.11269 −0.47879 0.0334295

1.0 1.74431 −1.31954 −0.43719 0.0170392

2.0 2.05118 −1.66405 −0.390321 0.0014389

2.25 2.12082 −1.74024 −0.38277 −0.0008256
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Table 3: Numerical values of F ′′(0), φ′
0(0), φ

′
1(0), and φ′

2(0) for different values of M and We = 0.2.

M F ′′(0) φ′
0(0) φ′

1(0) φ′
2(0)

0.0 1.58676 −0.947459 −0.633892 0.0221997
0.5 1.80411 −1.19217 −0.582324 −0.0092379
1.0 1.99811 −1.40046 −0.553854 −0.0265088
2.0 2.33916 −1.75019 −0.528391 −0.044982
2.25 2.41702 −1.82787 −0.525596 −0.0480166

value [17]. Numerical values of φ′
2(0) for different values of We and M are shown in

Table 1. These values are in good agreement with Labropulu et al. [20] when M = 0. Figure 8
depicts the profiles of φ2 for various values of We and M = 1 and Figure 9 shows the profiles
of φ2 for various values of M and We = 0.2.

The oscillating component of the shear stress on the wall is given by

τ12

ρa2
=
√
cν

a2
eiωt

[
φ′

0(0) +
iω

c
φ′

1(0) −WeF
′′(0)

]
, (3.14)

where F ′′(0), φ′
0(0), φ

′
1(0) and φ′

2(0) are given in Tables 1, 2, 3, and 4 for different values of
We and M. When We = 0 and M = 0, the value of the shear stress on the wall is in good
agreement with the value obtained by Glauert [17].
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Table 4: Numerical values of F ′′(0), φ′
0(0), φ

′
1(0), and φ′

2(0) for different values of M and We = 0.3.

M F ′′(0) φ′
0(0) φ′

1(0) φ′
2(0)

0.0 2.11092 −1.10873 −0.842848 −0.076115

0.5 2.34531 −1.34347 −0.806961 −0.11492

1.0 2.56139 −1.5492 −0.791711 −0.13911

2.0 2.95028 −1.90173 −0.79062 −0.170032

2.25 3.0402 −1.98085 −0.79368 −0.175938

3.2. Large values of ω/c

When ω/c is large, we let

Y =

√
iω

c
η =

√
iω

ν
y. (3.15)

Letting
√
c/iω = α, then d/dη = d/αdY and (3.10) takes the form

1
α2

d2φ

dY 2
+

1
α

[
F
dφ

dY
− dF

dY
φ

]
+

1
α3
We

[
F
d3φ

dY 3
− dF

dY

d2φ

dY 2
+
d2F

dY 2

dφ

dY
− d3F

dY 3
φ

]

− 1
α2
φ − We

α2

d2φ

dY 2
−Mφ = 0.

(3.16)

Since We is small for most fluids which behave as second order fluids (see Markovitz
and Coleman [22]), we follow Srivastava [19] and take We to be of the order of α2. Thus,
We = mα2 and (3.16) becomes

(1 −m)
d2φ

dY 2
+ α

[
F
dφ

dY
− dF

dY
φ

]
+mα

[
F
d3φ

dY 3
− dF

dY

d2φ

dY 2
+
d2F

dY 2

dφ

dY
− d3F

dY 3
φ

]
− φ −Mα2φ = 0.

(3.17)

The expansion for F(Y ) near the wall Y = 0 is

F(Y ) =
1
2
Aα2Y 2 − 1

6
(1 +M)α3Y 3 +

1
24
MAα4Y 4 − 1

6
mA2α5Y 3

+
1

120
(
A2 −M2 −M

)
α5Y 5 + · · · ,

(3.18)

where A = F ′′(0).
Since for large values of ω/c the parameter α is small, we let

φ =
∞∑
n=0

αnφn(Y ) = φ0(Y ) + αφ1(Y ) + α2φ2(Y ) + · · · . (3.19)
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The boundary conditions are

φ0(0) = 1, φn(0) = 0 if n ≥ 1, φn(∞) = 0 ∀n. (3.20)

Substituting (3.20) in (3.17) and equating the coefficients of different powers of α to
zero, we find that the boundary-value problem for φ0(Y ) is

(1 −m)
d2φ0

dY 2
− φ0 = 0, φ0(0) = 1, φ0(∞) = 0 (3.21)

with solution φ0(Y ) = exp[−(Y/
√

1 −m)] provided 0 ≤ m < 1.
The second equation gives that φ1 is zero. The next four equations for φ2(Y ),

φ3(Y ), φ4(Y ) and φ5(Y ) are

(1 −m)
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dY 2
− φ2 =Mφ0,
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dY 2
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1
2
mAY 2d
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dY 2
+
(
− 1

2
AY 2 −mA
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1
6
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2
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+
[

1
6
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2
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]
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3φ1

dY 3
+mAY

d2φ1

dY 2
−
(

1
2
AY 2 −Am

)
dφ1

dY
+AYφ1,

(1 −m)
d2φ5

dY 2
− φ5 =Mφ3 −

1
2
mAY 2d

3φ3

dY 3
= mA

d2φ2

dY 2
−
(

1
2
AY 2 +mA

)
dφ2

dY

+AYφ2 +
1
6
m(1 +M)Y 3d

3φ1

dY 3
− 1

2
m(1 +M)Y 2d

2φ1

dY 2

+
[

1
6
(1 +M)Y 3 +m(1 +M)Y

]
dφ1

dY
−
[

1
2
(1 +M)Y 2 +m(1 +M)

]
φ1

− 1
24
mAMY 4d

3φ0

dY 3
+

1
6
mAMY 3d

2φ0

dY 2

−
(

1
24
MAY 4 +

1
2
mAMY 2

)
dφ0

dY
+
(

1
6
MAY 3 +mAMY

)
φ0.

(3.22)
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Solving these equations and using the boundary conditions, we obtain

φ2(Y ) = − M

2
√

1 −m
Ye−(1/

√
1−m)Y ,

φ3(Y ) = − A

1 −me−(Y/
√

1−m)
[

3 + 4m
8

Y +
3

8
√

1 −m
Y 2 +

1
12(1 −m)

Y 3
]
,

φ4(Y ) =
1

8
√

1 −m
e−(Y/

√
1−m)

{[
1
2
(3 + 4m)(1 +M) +M2

]
Y +

[
1
2
(3 + 4m)(1 +M) +M2

]
Y 2

+
1 +M√

1 −m
Y 3 +

1

6(1 −m)3/2
Y 4

}
,

φ5(Y ) =
AM

8
√

1 −m
e−(Y/

√
1−m)

{−12m3 + 25m2 − 30m + 9

4
√

1 −m
Y +

12m2 − 13m + 9
8

Y 2

+
4m2 − 5m + 6

6(1 −m)3/2
Y 3 +

3m + 1

12(1 −m)2
Y 4 − 1

30(1 −m)3/2
Y 5

}

(3.23)

provided 0 ≤ m < 1. If m = 0 and M = 0, we recover the solutions for the Newtonian fluid
obtained by Glauert [13] and if M = 0, we recover the solutions obtained by Labropulu et al.
[16].

The oscillating component of the shear stress on the wall is given by

τ12

ρa2
= −

√
cν

a2
eiωt

[
1

α
√

1 −m
+

M

2
√

1 −m
α +

(3 + 12m − 8m2)A
8(1 −m)

α2

− (3 + 4m)(1 +M)) + 2M2

16
√

1 −m
α3 + · · ·

]
.

(3.24)

If m = 0 and M = 0, the shear stress is in good agreement with the result obtained by Glauert
[13].

4. Conclusions

The unsteady stagnation-point flow of a viscoelastic Walters’ B’ fluid in the presence of
a magnetic field is examined. Results for this flow are obtained for various values of the
Hartmann’s number M and the Weissenberg number We. At the higher frequencies, the
perturbation is a shear layer, exactly as on a plate oscillating in a fluid at rest. Figure 1
shows the variation of F ′(η) for various Weissenberg numbers when the Hartmann’s number
M = 0. The effect of the Weissenberg number is to increase the velocity F ′(η) near the wall
as it increases. Figures 2 and 3 show the variation of F ′(η) for various Hartmann’s number
M when We = 0 and We = 0.2. The effect of the Hartmann’s number is to increase the
velocity F ′(η) near the wall as it increases. Figures 4 and 5 show that φ0(η) decreases near the
wall as M and We are increasing. Also, from Tables 1 to 4, F ′′(0) increases with Hartmann’s
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number M and Weissenberg number We. The reason for this behaviour is that the magnetic
field B0 induces a force along the surface which supports the motion. As a result, the velocity
along the surface increases everywhere and hence the shear stress on the wall increases with
increasing Hartmann’s number and Weissenberg number.

These conclusions are presented for the Walters’ B’ fluid. Future works will examine
the unsteady stagnation-point flow in the presence of a magnetic field of other viscoelastic
fluids.

Acknowledgment

The author would like to thank the reviewers for their valuable suggestions.

References

[1] K. Walters, “Non-Newtonian effects in some general elastico-viscous liquids,” in Second-Order Effects
in Elasticity, Plasticity and Fluid Dynamics (Internat. Sympos., Haifa, 1962), pp. 507–519, Jerusalem
Academic Press, Jerusalem, Israel, 1964.

[2] K. R. Rajagopal, “On boundary conditions for fluids of the differential type,” in Navier-Stokes Equations
and Related Nonlinear Problems (Funchal, 1994), A. Sequeira, Ed., pp. 273–278, Plenum Press, New York,
NY, USA, 1995.

[3] K. R. Rajagopal and A. S. Gupta, “An exact solution for the flow of a non-Newtonian fluid past an
infinite porous plate,” Meccanica, vol. 19, no. 2, pp. 158–160, 1984.

[4] K. R. Rajagopal, “Flow of viscoelastic fluids between rotating disks,” Theoretical and Computational
Fluid Dynamics, vol. 3, no. 4, pp. 185–206, 1992.

[5] K. R. Rajagopal and P. N. Kaloni, “Some remarks on boundary conditions for flows of fluids of
the differential type,” in Continuum Mechanics and Its Applications (Burnaby, BC, 1988), pp. 935–942,
Hemisphere, New York, NY, USA, 1989.

[6] K. Hiemenz, “Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten
geraden Kreiszylinder,” Dingler’s Polytechnic Journal, vol. 326, pp. 321–410, 1911.

[7] J. T. Stuart, “The viscous flow near a stagnation point when the external flow has uniform vorticity,”
Journal of Aerospace Science and Technology, vol. 26, pp. 124–125, 1959.

[8] K. Tamada, “Two-dimensional stagnation-point flow impinging obliquely on a plane wall,” Journal of
the Physical Society of Japan, vol. 46, no. 1, pp. 310–311, 1979.

[9] J. M. Dorrepaal, “An exact solution of the Navier-Stokes equation which describes nonorthogonal
stagnation-point flow in two dimensions,” Journal of Fluid Mechanics, vol. 163, pp. 141–147, 1986.

[10] B. W. Beard and K. Walters, “Elastico-viscous boundary layer flows. I. Two-dimensional flow near
a stagnation point,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 60, no. 3, pp.
667–674, 1964.

[11] J. M. Dorrepaal, O. P. Chandna, and F. Labropulu, “The flow of a visco-elastic fluid near a point of
re-attachment,” Zeitschrift für Angewandte Mathematik und Physik, vol. 43, no. 4, pp. 708–714, 1992.

[12] F. Labropulu, J. M. Dorrepaal, and O. P. Chandna, “Viscoelastic fluid flow impinging on a wall with
suction or blowing,” Mechanics Research Communications, vol. 20, no. 2, pp. 143–153, 1993.

[13] T. Y. Na, Computational Methods in Engineering Boundary Value Problems, vol. 145 of Mathematics in
Science and Engineering, Academic Press, New York, NY, USA, 1979.

[14] P. D. Ariel, “Hiemenz flow in hydromagnetics,” Acta Mechanica, vol. 103, no. 1–4, pp. 31–43, 1994.
[15] P. D. Ariel, “A new finite-difference algorithm for computing the boundary layer flow of viscoelastic

fluids in hydromagnetics,” Computer Methods in Applied Mechanics and Engineering, vol. 124, no. 1-2,
pp. 1–13, 1995.

[16] H. A. Attia, “Hiemenz magnetic flow of a non-Newtonian fluid of second grade with heat transfer,”
Canadian Journal of Physics, vol. 78, no. 9, pp. 875–882, 2000.

[17] M. B. Glauert, “The laminar boundary layer on oscillating plates and cylinders,” Journal of Fluid
Mechanics, vol. 1, pp. 97–110, 1956.

[18] N. Rott, “Unsteady viscous flow in the vicinity of a stagnation point,” Quarterly of AppliedMathematics,
vol. 13, pp. 444–451, 1956.

[19] A. C. Srivastava, “Unsteady flow of a second-order fluid near a stagnation point,” Journal of Fluid
Mechanics, vol. 24, no. 1, pp. 33–39, 1966.



F. Labropulu 15

[20] F. Labropulu, X. Xu, and M. Chinichian, “Unsteady stagnation point flow of a non-Newtonian second-
grade fluid,” International Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 60, pp. 3797–
3807, 2003.

[21] P. D. Ariel, “A hybrid method for computing the flow of viscoelastic fluids,” International Journal for
Numerical Methods in Fluids, vol. 14, no. 7, pp. 757–774, 1992.

[22] H. Markovitz and B. D. Coleman, “Incompressible second-order fluids,” in Advances in Applied
Mechanics, vol. 8, pp. 69–101, Academic Press, New York, NY, USA, 1964.


