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1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akz
k, (1.1)

which are analytic in the unit disk U = {z : |z| < 1}.
If f(z) ∈ A satisfies

∣∣∣∣ arg
(
zf ′(z)
f(z)

− α

)∣∣∣∣ <
π

2
β (z ∈ U, 0 ≤ α < 1, 0 < β ≤ 1), (1.2)

then f(z) is said to be strongly starlike of order β and type α in U, and denoted by S∗(α, β).
If f(z) ∈ A satisfies

∣∣∣∣ arg
(
1 +

zf ′′(z)
f ′(z)

− α

)∣∣∣∣ <
π

2
β (z ∈ U, 0 ≤ α < 1, 0 < β ≤ 1), (1.3)
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then f(z) is said to be strongly convex of order β and type α in U, and denoted by C(α, β).
It is obvious that f(z) ∈ A belongs to C(α, β) if and if zf ′(z) ∈ S∗(α, β). Further, we note
that S∗(α, 1) ≡ S∗(α) and C(α, 1) ≡ C(α) which are, respectively, starlike and convex univalent
functions of order α.

Let P denote the class of functions of the form p(z) = 1 + p1z + · · · analytic in U which
satisfy the condition Re{P(z)} > 0.

For functions f given by (1.1) and g(z) = z +
∑∞

k=2bkz
k, let (f∗g)(z) denote the

Hadamard product (or convolution) of f(z) and g(z), defined by

(f∗g)(z) = f(z)∗g(z) = z +
∞∑

k=2

akbkz
k. (1.4)

If f and g are analytic in U, we say that f is subordinate to g, written f ≺ g or f(z) ≺ g(z), if
there exists a Schwarz function w in U such that f(z) = g(w(z)) [1].

Let f ∈ A. Denote by Dλ : A → A the operator defined by

Dλ =
z

(1 − z)λ+1
∗f(z) (λ > −1). (1.5)

It is obvious that D0f(z) = f(z), D1f(z) = zf ′(z), and

Dδf(z) =
z
(
zδ−1f(z)

)(δ)

δ!
(
δ ∈ N0 = N ∪ {0}). (1.6)

The operator Dδf is called the δth-order Ruscheweyh derivative of f . Recently, K. I. Noor [2]
and K. I. Noor and M. A. Noor [3] defined and studied an integral operator In : A → A,
analogous to Dδf(z) as follows.

Let fn = z/(1 − z)n+1, (n ∈ N0), and f
(−1)
n (z) be defined such that

fn(z)∗f (−1)
n (z) =

z

(1 − z)2
. (1.7)

Then

Inf(z) = f
(−1)
n (z)∗f(z) =

[
z

(1 − z)n+1

](−1)
∗f(z) (f ∈ A). (1.8)

We note that I0f(z) = zf ′(z), I1f(z) = f(z). The operator In is called the Noor integral of
nth order of f (see [4, 5]), which is an important tool in defining several classes of analytic
functions. In recent years, it has been shown that Noor integral operator has fundamental and
significant applications in the geometric function theory.

For real or complex numbers a, b, c other than 0,−1,−2, . . . , the hypergeometric series is
defined by

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k
(c)k(1)k

zk, (1.9)
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where (x)k is Pochhammer symbol defined by

(x)k =
Γ(x + k)
Γ(x)

= x(x + 1) · · · (x + k − 1) for k = 1, 2, 3, . . . , x ∈ C, (x)0 = 1. (1.10)

We note that the series (1.9) converges absolutely for all z ∈ U so that it represents an
analytic function in U. Also an incomplete beta function φ(a, c; z) is related to Gauss hyperge-
ometric function z2F1(a, b; c; z) as

φ(a, c; z) = z2F1(1, a; c; z), (1.11)

and we note that φ(a, 1; z) = z/(1 − z)a , where φ(2, 1; z) is Koebe function. Using φ(a, c; z), a
convolution operator [6], was defined by Carlson and Shaferr. Furthermore, Hohlov [7] intro-
duced a convolution operator using 2F1(a, b; c; z).

N. Shukla and P. Shukla [8] studied the mapping properties of a function fμ to be as
given in

fμ(a, b, c)(z) = (1 − μ)z2F1(a, b, c; z) + μz
(
z2F1(a, b, c; z)

)′ (μ ≥ 0), (1.12)

and investigated the geometric properties of an integral operator of the form

I(z) =
∫z

0

fμ(t)
t

dt. (1.13)

Kim and Shon [9] considered linear operator Lμ : A → A defined by Lμ(a, b, c)f(z) =
fμ(a, b, c)(z)∗f(z).

We now introduce a function (fμ)
(−1) given by

fμ(a, b, c)(z)∗
(
fμ(a, b, c)(z)

)(−1) =
z

(1 − z)λ+1
(μ ≥ 0, λ > −1), (1.14)

and obtain the following linear operator:

Iλμ(a, b, c)f(z) =
(
fμ(a, b, c)(z)

)(−1)∗f(z). (1.15)

The operator Iλμ is known as the generalized integral operator. For μ = 0 in (1.14), Iλ(a, b;
c)f(z) := Iλμ(a, b; c)f(z), which was introduced by K. I. Noor [10].

Now we find the explicit form of the function (fμ)
(−1) . It is well known that λ > −1

z

(1 − z)λ+1
=

∞∑

k=0

(λ + 1)k
k!

zk+1 (z ∈ U). (1.16)

Putting (1.9) and (1.16) in (1.14), we get

∞∑

k=0

(μk + 1)(a)k(b)k
(c)k(1)k

zk+1∗(fμ
)(−1) =

∞∑

k=0

(λ + 1)k
k!

zk+1. (1.17)
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Therefore, the function (fμ)
(−1) has the following form:

(
fμ(a, b, c)(z)

)(−1) =
∞∑

k=0

(λ + 1)k(c)k
(μk + 1)(a)k(b)k

zk+1 (z ∈ U). (1.18)

Now we note that

Iλμ(a, b, c)f(z) = z +
∞∑

k=1

(λ + 1)k(c)k
(μk + 1)(a)k(b)k

ak+1z
k+1. (1.19)

From (1.19), we note that

Iλ0 (a, λ + 1, a)f(z) = f(z), I10(a, 1, a)f(z) = zf ′(z). (1.20)

Also it can easily be verified that

z
(
Iλμ(a, b, c)f(z)

)′ = (λ + 1)Iλ+1μ (a, b, c)f(z) − λIλμ(a, b, c)f(z), (1.21)

z
(
Iλμ(a + 1, b, c)f(z)

)′ = aIλμ(a, b, c)f(z) − (a − 1)Iλμ(a + 1, b, c)f(z). (1.22)

Now we introduce the following classes in term of the new operator Iλμ(a, b, c). For λ > −1,
μ ≥ 0, 0 ≤ α < 1, and 0 < β ≤ 1, let Sλ

μ(a, b, c;α, β) be the class of functions f ∈ A satisfying

∣∣∣∣∣ arg
(

z
(
Iλμ(a, b, c)f(z)

)′

Iλμ(a, b, c)f(z)
− α

)∣∣∣∣∣ <
π

2
β (z ∈ U). (1.23)

Observe that Iλμ(a, b, c)f(z) ∈ S∗(α, β) and z(Iλμ(a, b, c)f(z))
′/Iλμ(a, b, c)f(z)/=α. Also, for λ >

−1, μ ≥ 0, 0 ≤ α < 1, and 0 < β ≤ 1, let Cλ
μ(a, b, c;α, β) be the class of functions f ∈ A satisfying

∣∣∣∣∣ arg
(
1 +

z
(
Iλμ(a, b, c)f(z)

)′′
(
Iλμ(a, b, c)f(z)

)′ − α

)∣∣∣∣∣ <
π

2
β (z ∈ U). (1.24)

Observe that Iλμ(a, b, c)f(z) ∈ C(α, β) and 1 + z(Iλμ(a, b, c)f(z))
′′/(Iλμ(a, b, c)f(z))

′
/=α.

Clearly, f ∈ Cλ
μ(a, b, c;α, β) if and only if zf ′(z) ∈ Sλ

μ(a, b, c;α, β).
Note that Sλ

0(a, λ + 1, a;α, β) ≡ S∗(α, β), Sλ
0(a, λ + 1, a;α, 1) ≡ S∗(α), Cλ

0(a, λ + 1, a;α, β) ≡
C(α, β), and Cλ

0(a, λ + 1, a;α, 1) ≡ C(α).
Finally, let Kλ

μ(a, b, c;α, β, γ ;A,B) be the class of functions f ∈ A satisfying

∣∣∣∣∣ arg
(

z
(
Iλμ(a, b, c)f(z)

)′

Iλμ(a, b, c)g(z)
− α

)∣∣∣∣∣ <
π

2
β (z ∈ U) (1.25)

for λ > −1, μ ≥ 0, 0 ≤ α < 1, 0 < β ≤ 1, and g ∈ Qλ
μ(a, b, c; γ ;A,B), where

Qλ
μ(a, b, c; γ ;A,B)

=

{
g ∈ A :

1
1 − γ

(
z
(
Iλμ(a, b, c)g(z)

)′

Iλμ(a, b, c)g(z)
− γ

)
≺ 1 +Az

1 + Bz

}
(z ∈ U; 0 ≤ γ < 1, − 1 ≤ B < A ≤ 1).

(1.26)
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We also note that Kλ
0(a, λ + 1, a;α, 1, γ ; 1,−1) and Kλ

0(a, 1, a;α, 1, γ ; 1,−1) are the classes of qua-
siconvex and close-to-convex functions of order α and type γ , respectively, introduced and
studied by Noor and Alkhorasani [11] and Silverman [12].

2. Main results

In order to give our results, we need the following lemmas.

Lemma 2.1 (see [13]). Let β, γ be complex numbers. Let φ(z) be convex univalent in U with φ(0) = 1
and Re[βφ(z) + γ] > 0, z ∈ U and q ∈ A with q(z) ≺ φ(z), z ∈ U. If p ∈ P is analytic in U, then

p(z) +
zp′(z)

βq(z) + γ
≺ φ(z) (z ∈ U) (2.1)

implies

p(z) ≺ φ(z) (z ∈ U). (2.2)

Lemma 2.2 (see [14]). Let δ, η be complex numbers. Let φ(z) be convex univalent in U with φ(0) = 1
and Re[δφ(z) + η] > 0, z ∈ U. If p ∈ P is analytic in U, then

p(z) +
zp′(z)

δp(z) + η
≺ φ(z) (z ∈ U) (2.3)

implies

p(z) ≺ φ(z) (z ∈ U). (2.4)

Lemma 2.3 (see [15]). Let φ(z) be convex univalent in U and let E ≥ 0. Suppose B(z) is analytic in
U with Re B(z) ≥ E, If g ∈ P is analytic in U, then

Ez2g ′′(z) + B(z)zg ′(z) + g(z) ≺ φ(z) (z ∈ U) (2.5)

implies

g(z) ≺ φ(z) (z ∈ U). (2.6)

Theorem 2.4. Let φ(z) be convex univalent in U with φ(0) = 1 and Re φ(z) ≥ 0. If f(z) ∈ A satisfies
the condition

1
1 − γ

(
z
(
Iλ+1μ (a, b, c)f(z)

)′

Iλ+1μ (a, b, c)f(z)
− γ

)
≺ φ(z) (z ∈ U), (2.7)

then

1
1 − γ

(
z
(
Iλμ(a, b, c)f(z)

)′

Iλμ(a, b, c)f(z)
− γ

)
≺ φ(z) (z ∈ U) (2.8)

for λ > −1, μ ≥ 0, and 0 ≤ γ < 1.
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Proof. Let

p(z) =
1

1 − γ

(
z
(
Iλμ(a, b, c)f(z)

)′

Iλμ(a, b, c)f(z)
− γ

)
, (2.9)

where p ∈ P . By using (1.21) in (2.9) and then differentiating, we get

1
1 − γ

(
z
(
Iλ+1μ (a, b, c)f(z)

)′

Iλ+1μ (a, b, c)f(z)
− γ

)
= p(z) +

zp′(z)
(λ + 1)q(z)

, (2.10)

where q(z) = Iλ+1μ (a, b, c)f(z)/Iλμ(a, b, c)f(z) and q(z) ≺ φ(z). Hence by applying Lemma 2.1,
we obtain the required result.

Theorem 2.5. Let φ(z) be convex univalent in U with φ(0) = 1 and Re φ(z) ≥ 0. If f(z) ∈ A satisfies
the condition

1
1 − γ

(
z
(
Iλμ(a, b, c)f(z)

)′

Iλμ(a, b, c)f(z)
− γ

)
≺ φ(z) (z ∈ U), (2.11)

then

1
1 − γ

(
z
(
Iλμ(a + 1, b, c)f(z)

)′

Iλμ(a + 1, b, c)f(z)
− γ

)
≺ φ(z) (z ∈ U) (2.12)

for λ > −1, μ ≥ 0, and 0 ≤ γ < 1.

Proof. By using the same technique in the proof of Theorem 2.4 and using (1.22) and applying
Lemma 2.2, we obtain the required result.

Taking φ(z) = (1 + Az)/(1 + Bz) (−1 ≤ B < A ≤ 1) in Theorem 2.4 and in Theorem 2.5,
we have the following.

Corollary 2.6. It holds that

Qλ+1
μ (a, b, c; γ ;A,B) ⊂ Qλ

μ(a, b, c; γ ;A,B),

Qλ
μ(a, b, c; γ ;A,B) ⊂ Qλ

μ(a + 1, b, c; γ ;A,B)
(2.13)

for λ > −1, μ ≥ 0, 0 ≤ γ < 1, and Re a > 1 − γ .

Also, by taking φ(z) = ((1 + z)/(1 − z))β (0 < β ≤ 1) in Theorem 2.4 and in Theorem 2.5,
we have the following.

Corollary 2.7. It holds that

Sλ+1
μ (a, b, c; γ, β) ⊂ Sλ

μ(a, b, c; γ, β),

Sλ
μ(a, b, c; γ, β) ⊂ Sλ

μ(a + 1, b, c; γ, β)
(2.14)

for λ > −1, μ ≥ 0, 0 ≤ γ < 1, and Re a > 1 − β.
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Corollary 2.8. For λ > −1, μ ≥ 0, 0 ≤ γ < 1, and Re a > 1 − β, one has

Cλ+1
μ (a, b, c; γ, β) ⊂ Cλ

μ(a, b, c; γ, β),

Cλ
μ(a, b, c; γ, β) ⊂ Cλ

μ(a + 1, b, c; γ, β).
(2.15)

Proof. Wewill proof the first relation and by the same method we can proof the second relation

f(z) ∈ Cλ+1
μ (a, b, c; γ, β) ⇐⇒ zf ′(z) ∈ Sλ+1

μ (a, b, c; γ, β)

⇐⇒ zf ′(z) ∈ Sλ
μ(a, b, c; γ, β)

⇐⇒ Iλμ(a, b, c)
(
zf ′(z)

) ∈ S∗(γ, β)

⇐⇒ z
(
Iλμ(a, b, c)f(z)

)′ ∈ S∗(γ, β)

⇐⇒ Iλμ(a, b, c)f(z) ∈ C(γ, β)

⇐⇒ f(z) ∈ Cλ
μ(a, b, c; γ, β).

(2.16)

Theorem 2.9. Let φ(z) be convex univalent in U with φ(0) = 1 and Re φ(z) ≥ 0. If f(z) ∈ A satisfies
the condition

1
1 − γ

(
z
(
Iλμ(a, b, c)f(z)

)′

Iλμ(a, b, c)f(z)
− γ

)
≺ φ(z) (0 ≤ γ < 1; z ∈ U), (2.17)

then

1
1 − γ

(
z
(
Iλμ(a, b, c)F(z)

)′

Iλμ(a, b, c)F(z)
− γ

)
≺ φ(z) (0 ≤ γ < 1; z ∈ U), (2.18)

where F be the integral operator defined by

F(z) =
c + 1
zc

∫z

0
tc−1f(t)dt (c > −1). (2.19)

Proof. From (2.19), we have

z
(
Iλμ(a, b, c)F(z)

)′ = (c + 1)Iλμ(a, b, c)f(z) − cIλμ(a, b, c)F(z). (2.20)

Now, let

p(z) =
1

1 − γ

(
z
(
Iλμ(a, b, c)F(z)

)′

Iλμ(a, b, c)F(z)
− γ

)
, (2.21)

where p ∈ P . Then by using (2.20), we get

(1 − γ)p(z) + c + γ =
(c + 1)Iλμ(a, b, c)f(z)

Iλμ(a, b, c)F(z)
. (2.22)
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Differentiating both sides of (2.22) logarithmically, we obtain

p(z) +
zp′(z)

c + γ + (1 − γ)p(z)
=

1
1 − γ

(
z
(
Iλμ(a, b, c)f(z)

)′

Iλμ(a, b, c)f(z)
− γ

)
. (2.23)

Then, by Lemma 2.2, we obtain that

1
1 − γ

(
z
(
Iλμ(a, b, c)f(z)

)′

Iλμ(a, b, c)f(z)
− γ

)
≺ φ(z) (0 ≤ γ < 1; z ∈ U).

(2.24)

Now, by letting φ(z) = (1 +Az)/(1 + Bz) (−1 ≤ B < A ≤ 1) in Theorem 2.9, we have the
following.

Corollary 2.10. For λ > −1, μ ≥ 0, c > −γ , and 0 ≤ γ < 1. If f ∈ Qλ
μ(a, b, c; γ ;A,B), then F ∈

Qλ
μ(a, b, c; γ ;A,B), where F given by (2.19).

Also, by taking φ(z) = ((1 + z)/(1 − z))β (0 < β ≤ 1) in Theorem 2.9, we have the
following.

Corollary 2.11. For λ > −1, μ ≥ 0, c > −β, 0 < β ≤ 1, and 0 ≤ γ < 1. If f ∈ Sλ
μ(a, b, c; γ, β), then

F ∈ Sλ
μ(a, b, c; γ, β).

Corollary 2.12. For λ > −1, μ ≥ 0, c > −β, 0 < β ≤ 1, and 0 ≤ γ < 1. If f ∈ Cλ
μ(a, b, c; γ, β), then

F ∈ Cλ
μ(a, b, c; γ, β).

Proof. It holds that

f(z) ∈ Cλ
μ(a, b, c; γ, β) ⇐⇒ F

(
zf ′(z)

) ∈ Sλ
μ(a, b, c; γ, β)

⇐⇒ z
(
F(z)

)′ ∈ Sλ
μ(a, b, c; γ, β)

⇐⇒ F(z) ∈ Cλ
μ(a, b, c; γ, β).

(2.25)

Theorem 2.13. Let f ∈ A. Then

Kλ+1
μ (a, b, c;α, β, γ ;A,B) ⊂ Kλ

μ(a, b, c;α, β, γ ;A,B) (2.26)

for Re a > 1 − β, 0 < β ≤ 1, 0 ≤ α < 1, 0 ≤ γ < 1, and −1 ≤ B < A ≤ 1.

Proof. Let f ∈ Kλ+1
μ (a, b, c;α, β, γ ;A,B), then by the definition, we can write

1
1 − α

(
z
(
Iλ+1μ (a, b, c)f(z)

)′

Iλ+1μ (a, b, c)g(z)
− α

)
≺
(
1 + z

1 − z

)β

(z ∈ U) (2.27)

for some g ∈ Qλ+1
μ (a, b, c; γ ;A,B).
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Letting h(z) = z(Iλμ(a, b, c)f(z))
′/Iλμ(a, b, c)g(z) and H(z) = z(Iλμ(a, b, c)g(z))

′Iλμ(a, b,
c)g(z), we observe that h(z),H(z) ∈ P(z). Now by Corollary 2.6, g ∈ Qλ

μ(a, b, c; γ ;A,B) and so
Re H(z) > γ . Also, note that

z
(
Iλμ(a, b, c)f(z)

)′ =
(
Iλμ(a, b, c)g(z)

)
h(z). (2.28)

Differentiating both sides in (2.28) yields

z
(
Iλμ(a, b, c)f(z)

)′

Iλμ(a, b, c)g(z)
=
z
(
Iλμ(a, b, c)g(z)

)′

Iλ+1μ (a, b, c)g(z)
h(z) + zh′(z) = H(z)h(z) + zh′(z). (2.29)

Now by using the identity (1.21), we obtain

z
(
Iλ+1μ (a, b, c)f(z)

)′

Iλ+1μ (a, b, c)g(z)

=
Iλ+1μ (a, b, c)

(
zf ′(z)

)

Iλ+1μ (a, b, c)g(z)

=
z
(
Iλμ(a, b, c)

(
zf ′(z)

))′ + λIλμ(a, b, c)
(
zf ′(z)

)

z
(
Iλμ(a, b, c)g(z)

)′ + λIλμ(a, b, c)g(z)

=
z
(
Iλμ(a, b, c)

(
zf ′(z)

))′
/Iλμ(a, b, c)g(z) + λ

(
Iλμ(a, b, c)

(
zf ′(z)

)
/Iλμ(a, b, c)g(z)

)

z
(
Iλμ(a, b, c)g(z)

)′
/Iλμ(a, b, c)g(z) + λ

=
H(z)h(z) + zh′(z) + λh(z)

H(z) + λ

= h(z) +
zh′(z)

H(z) + λ
.

(2.30)

From (2.27), (2.28), and (2.30), we conclude that

1
1 − α

(
h(z) +

zh′(z)
H(z) + λ

− α

)
≺
(
1 + z

1 − z

)β

. (2.31)

Letting E = 0 and B(z) = (1/(1 − α))(1/(H(z) + λ)), we obtain

Re
[
B(z)

]
=

1
1 − α

1
∣∣H(z) + λ

∣∣2
Re

[
H(z) + λ

]
> 0. (2.32)

The above inequality satisfies the conditions required by Lemma 2.3. Hence φ(z) ≺ ((1 + z)/
(1 − z))β and so the proof is complete.

Theorem 2.14. Let f ∈ A. Then

Kλ
μ(a, b, c;α, β, γ ;A,B) ⊂ Kλ

μ(a + 1, b, c;α, β, γ ;A,B) (2.33)

for Re a > 1 − β, 0 < β ≤ 1, 0 ≤ α < 1, 0 ≤ γ < 1, and −1 ≤ B < A ≤ 1.
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Proof. By using the same technique as in the proof of Theorem 2.13, we get

1
1 − α

(
h(z) +

zh′(z)
H(z) + (α − 1)

− α

)
≺
(
1 + z

1 − z

)β

. (2.34)

By letting E = 0 and B(z) = (1/(1 − α))(1/(H(z) + (a − 1))), we obtain

Re
[
B(z)

]
=

1
1 − α

1
∣∣H(z) + (a − 1)

∣∣2
Re

[
H(z) + (a − 1)

]
> 0. (2.35)

Then, by applying Lemma 2.3, we obtain the required result.

Theorem 2.15. Let c > −β, 0 < β ≤ 1, 0 ≤ α < 1, 0 ≤ γ < 1, and −1 ≤ B < A ≤ 1. If f ∈
Kλ

μ(a, b, c;α, β, γ ;A,B), then F ∈ Kλ
μ(a, b, c;α, β, γ ;A,B), where F is given by (2.19).

Proof. Also, by using the same technique as in the proof of Theorem 2.13, we get

1
1 − α

(
zh′(z)

H(z) + c
+ h(z) − α

)
≺
(
1 + z

1 − z

)β

. (2.36)

By letting E = 0 and B(z) = (1/(1 − α))(1/(H(z) + c)), we obtain

Re
[
B(z)

]
=

1
1 − α

1
∣∣H(z) + c

∣∣2
Re

[
H(z) + c

]
> 0. (2.37)

Then, applying Lemma 2.3, we obtain the required result.
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