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Let R be a ring and let M be a right R-module with S = End(MR). M is called almost general quasi-
principally injective (or AGQP-injective for short) if, for any 0/= s ∈ S, there exist a positive integer n
and a left ideal Xsn of S such that sn /= 0 and lS(Ker(sn)) = Ssn ⊕ Xsn . Some characterizations and
properties of AGQP-injective modules are given, and some properties of AGQP-injective modules
with additional conditions are studied.
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1. Introduction

Throughout R is an associative ring with identity, and all modules are unitary. Recall
that a ring R is called right principally injective [1] (or right P -injective for short) if, every
homomorphism from a principal right ideal of R to R can be extended to an endomorphism
of R, or equivalently, lr(a) = Ra for all a ∈ R. The concept of right P-injective rings has been
generalized by many authors. For example, in [2, 3], right P-injective rings are generalized
in two directions, respectively. Following [2], a ring R is called right GP-injective if, for any
0/=a ∈ R, there exists a positive integer n such that an /= 0 and any right R-homomorphism
from anR to R can be extended to an endomorphism of R. Note that GP-injective rings are
also called YJ-injective in [4]. From [5], we know that GP-injective rings need not to be P-
injective. Following [3], a right R-module MR with S = End(MR) is called quasiprincipally
injective (or QP-injective for short) if, every homomorphism from an M-cyclic submodule
of M to M can be extended to an endomorphism of M, or equivalently, lS(Ker(s)) = Ss
for all s ∈ S. In 1998, Page and Zhou [6] generalized the concept of GP-injective rings to
that of AGP-injective rings. According to [6], a ring R is called right AGP-injective if, for
any 0/=a ∈ R, there exist a positive integer n and a left ideal Xan such that an /= 0 and
lr(an) = Ran ⊕ Xan . In [7], the first author introduced the notion of GQP-injective modules
which can be regarded as the generalization of GP-injective rings and QP-injective modules.
According to [7], a right R-module M with S = End(MR) is called GQP-injective if, for any
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0/= s ∈ S, there exists a positive integer n such that sn /= 0 and any right R-homomorphism
from sn(M) to M can be extended to an endomorphism of M, or equivalently, for any
0/= s ∈ S, there exists a positive integer n such that sn /= 0 and lS(Ker(sn)) = Ssn. The nice
structure of AGP-injective rings and GQP-injective modules draws our attention to define
almost GQP-injective modules, in a similar way to AGP-injective rings, and to investigate
their properties.

2. Results

Definition 2.1. Let MR be a right R-module with S = End(MR). Then, M is said to be almost
general quasiprincipally injective (briefly, AGQP-injective) if, for any 0/= s ∈ S, there exist a
positive integer n and a left ideal Xsn of S such that sn /= 0 and lS(Ker(sn)) = Ssn ⊕Xsn .

Clearly, a ring R is right AGP-injective if and only if RR is AGQP-injective, GQP-
injective modules are AGQP-injective.

Our next result gives the relationship between the AGQP-injectivity of a module and
the AGP-injectivity of its endomorphism ring.

Theorem 2.2. LetMR be a right R-module with S = End(MR). Then,

(1) if S is right AGP-injective, thenMR is AGQP-injective;

(2) if MR is AGQP-injective and M generates Ker(s) for each s ∈ S, then S is right AGP-
injective.

Proof. (1) Suppose that S is right AGP-injective then for any 0/= s ∈ S, there exist a positive
integer n and a left ideal Isn of S such that sn /= 0 and lSrS(sn) = Ssn ⊕ Isn . If a ∈ lS(Ker(sn))
and b ∈ rS(sn), then snb = 0, that is, b(M) ⊆ Ker(sn). Hence, (ab)M = 0, that is, ab = 0. This
shows that lS(Ker(sn)) ⊆ lSrS(sn). Therefore, we have Ssn ⊆ lS(Ker(sn)) ⊆ Ssn ⊕ Isn , which
guarantees that

lS(Ker(sn)) = Ssn ⊕ (lS(Ker(sn)) ∩ Isn). (2.1)

Thus, (1) is proved.
(2) Suppose that MR is AGQP-injective then for any 0/= s ∈ S, there exist a positive

integer n and a left ideal Xsn of S such that sn /= 0 and lS(Ker(sn)) = Ssn ⊕ Xsn . Assume that
a ∈ lSrS(sn) and Ker(sn) =

∑
t∈T t(M) for some subset T of S. It is easy to see that at = 0 for

each t ∈ T , so we have ax = 0 for each x ∈ Ker(sn). This implies that lSrS(sn) ⊆ lS(Ker(sn)),
from which we have

Ssn ⊆ lSrS(sn) ⊆ lS(Ker(sn)) = Ssn ⊕Xsn, (2.2)

and hence

lSrS(sn) = Ssn ⊕ (lSrS(sn) ∩Xsn). (2.3)

Therefore, S is right AGP-injective.
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Recall that a module N is called M-cyclic [3], if it is a homomorphic image of M. Let
S = End(MR), following [8], we write W(S) = {s ∈ S | Ker(s)⊆essM}.

Theorem 2.3. LetMR be an AGQP-injective module with S = End(MR). Then,

(1) W(S) ⊆ J(S),

(2) if every nonzero submodule of M contains a nonzero M-cyclic submodule, then W(S) =
J(S).

Proof. (1) Let s ∈ W(S). Then, for each t ∈ S, ts ∈ W(S) and so 1 − ts /= 0. Since MR is AGQP-
injective, there exist a positive integer n and a left ideal X(1−ts)n such that (1 − ts)n /= 0 and
lS(Ker(1 − ts)n) = S(1 − ts)n ⊕ X(1−ts)n . Note that (1 − ts)n = 1 − u for some u ∈ W(S). Since
Ker(u) ∩Ker(1 − u) = 0, we have Ker(1 − u) = 0, and then S = S(1 − u) ⊕X1−u. So 1 = e + x for
some e ∈ S(1−u) and x ∈ X1−u, it follows that e2 = e and S(1−u) = Se⊕S(1−e)∩S(1−u) = Se.
Therefore, 1 − u = ve for some v ∈ S, since Ker(u) is essential inMR, if e /= 1, then there exists
a nonzero element (1 − e)m ∈ (1 − e)M ∩ Ker(u), and hence (1 − u)(1 − e)m = (1 − e)m. But
(1 − u)(1 − e)m = ve(1 − e)m = 0, a contradiction. So e = 1, and hence 1 − u is left invertible,
which implies s ∈ J(S).

(2) We need only to prove that J(S) ⊆ W(S). Let s ∈ J(S). If s /∈ W(S), then there
exists 0/= t ∈ S such that Ker(s) ∩ t(M) = 0 by hypothesis. Clearly, st /= 0 and Ker(st) = Ker(t).
Since MR is AGQP-injective, there exist a positive integer n and a left ideal X(st)n such that
(st)n /= 0 and

lS(Ker(st)
n) = S(st)n ⊕X(st)n . (2.4)

If m ∈ Ker(st)n, then (st)n−1m ∈ Ker(st) = Ker(t), and so m ∈ Ker(t(st)n−1). This shows
that Ker(st)n = Ker(t(st)n−1). Hence, t(st)n−1 ∈ S(st)n ⊕ X(st)n . Write t(st)n−1 = u(st)n + v,
where u ∈ S, v ∈ X(st)n . Then (1 − us)t(st)n−1 = v, which gives that (st)n = s(1 − us)−1v ∈
S(st)n ∩X(st)n = 0, a contradiction.

Corollary 2.4 (see [6, Corollary 2.3]). If R is a right AGP-injective ring, then J(R) = Z(RR).

Following [9], for a set X ⊆Hom (NR,MR), the submodule

KerX = ∩{Ker g | g ∈ X} (2.5)

of N is called an M-annihilator submodule of N. By [7, Lemma 9] and Theorem 2.3, we have
the following corollary.

Corollary 2.5. Let MR be an AGQP-injective module with S = End(MR). If every nonzero
submodule of M contains a nonzero M-cyclic submodule, and M/Soc(M) satisfies ACC on M-
annihilator submodules, then J(S) is nilpotent.

Recall that a module MR is said to be a GC2 module [10] if every submodule N ≤ M
with N ∼= M is a direct summand of M. For convenience, we write N | M to denote that N
is a direct summand of M.
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Theorem 2.6. LetMR be an AGQP-injective module. Then,

(1) if M1 and M2 are submodules of M such that M1 ⊆ M2 and M1
∼= M2 | M, then

M1 | M. In particular M is a GC2 module;

(2) ifM1 and M2 are simple submodules ofM such that M1
∼= M2 | M, thenM1 | M.

Proof. (1) Let S = End(MR). It is trivial in case M1 = 0. Now suppose that M1 /= 0 and M2

f∼=
M1. ThenM1 = aM andM2 = eM, where e2 = e ∈ S and a = fe. SinceMR is AGQP-injective,
there exist a positive integer n and a left idealXan such that an /= 0 and lS(Ker(an)) = San⊕Xan .
Let a0 = e, then f−1(ai+1M) = aiM (i = 0, 1, . . . , n − 1) since M1 ⊆ M2 = eM. So we have

aiM | ai−1M ⇐⇒ f−1(ai+1M) | f−1(aiM) ⇐⇒ ai+1M | aiM (i = 1, . . . , n − 1). (2.6)

Consequently, aM | eM ⇔ a2M | aM ⇔ · · · ⇔ anM | an−1M. Thus, to show aM | M, it
suffices to show that anM | M. Note that a|eM : eM → eM is monic and an(m) = an(em)

for every m ∈ M, eM
an∼= anM and hence Ker(an) = Ker(e). It follows that e ∈ lS(Ker(e)) =

lS(Ker(an)) = San ⊕ Xan . Now, let e = ban + x with b ∈ S and x ∈ Xan , then an = ane =
anban + anx = anban. Finally, let g = anb, then g2 = g and anM = gM as required.

(2) Let M2 = e1M, where e21 = e1 ∈ S, and let M2

f1∼= M1. Then M1 = a1M, where
a1 = f1e1. Since MR is AGQP-injective, there exist a positive integer n1 and a left ideal Xa

n1
1

such that an1
1 /= 0 and lS(Ker(a

n1
1 )) = San1

1 ⊕Xa
n1
1
. Note that 0/=an1

1 M ⊆ a1M, and a1M is simple.
We have an1

1 M = a1M. Clearly, Ker(e1) = Ker(a1) because f1 is a monomorphism. Since a1M
is simple, Ker(a1) is a maximal submodule of M. But Ker(a1) ⊆ Ker(an1

1 )/=M, so Ker(a1) =
Ker(an1

1 ) and then Ker(e1) = Ker(an1
1 ). It follows that e1 ∈ lS(Ker(e1)) = lS(Ker(a

n1
1 )) = San1

1 ⊕
Xa

n1
1
. Now, let e1 = b1a

n1
1 + y with b1 ∈ S and y ∈ Xa

n1
1
, then an1

1 = an1
1 e1 = an1

1 b1a
n1
1 + an1

1 y =
an1
1 b1a

n1
1 . Finally, let g1 = an1

1 b1, then g2
1 = g1 and M1 = a1M = an1

1 M = g1M as required.

Recall that a module M is said to be weakly injective [11] if, for any finitely generated
submodule N ≤ E(M), there exists X ≤ E(M) such that N ⊆ X ∼= M.

Corollary 2.7. LetM be a finitely generated module. Then,M is injective if and only ifM is weakly
injective and AGQP-injective. In particular, a ring R is right self-injective if and only if RR is weakly
injective and AGP-injective.

Proof. We need only to prove the sufficiency. Let x ∈ E(M). Then, there existsX ⊆ E(M) such
that M + xR ⊆ X ∼= M. Hence, X is AGQP-injective and M | X follows from Theorem 2.6(1).
But M is essential in E(M), so M = X and hence x ∈ M.

Corollary 2.8. LetMR be an AGQP-injective module with S = End(MR).

(1) IfMR is of finite Goldie dimension, then S is semilocal.

(2) IfMR is a noetherian self-generator, then S is semiprimary.

Proof. (1) Since MR is AGQP-injective, it satisfies the GC2-condition by Theorem 2.6(1) and
then (1) follows immediately by [12, Lemma 1.1].

(2) By (1) and Corollary 2.5.
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Recall that if M and U are two right R-modules, then U is called M-projective in case
for each epimorphism g : MR → NR and each homomorphism γ : UR → NR, there is an
R-homomorphism γ : UR → MR such that γ = gγ . A module MR is called quasiprojective if it
isM-projective.

Let R be a ring. Recall that an element a ∈ R is called π-regular if there exists a positive
integer m such that am = ambam [13] for some b ∈ R. An element x ∈ R is called generalized
π-regular if there exists a positive integer n such that xn = xnyx for some y ∈ R. A ring
R is called π-regular (resp., generalized π-regular) if every element in R is π-regular (resp.,
generalized π-regular). If A is a subset of R, then we say that A is regular if every element in
A is regular.

Proposition 2.9. Let MR be quasiprojective with S = End(MR). Then, S is regular if and only if
MR is AGQP-injective and s(M) isM-projective for every s ∈ S.

Proof. Assume that S is regular. Then, every right ideal of S is a direct summand of SS,
and so every homomorphism from a principal right ideal of S to S can be extended to
an endomorphism of S. Hence, S is right P-injective and then right AGP-injective. By
Theorem 2.2, MR is AGQP-injective. The regularity of S also implies that s(M) is a direct
summand ofM by [14, Theorem 37.7]. ButM is quasiprojective, so s(M) isM-projective for
every s ∈ S.

Conversely, suppose MR is AGQP-injective and s(M) isM-projective for every s ∈ S.
Then for any 0/=a ∈ S, by the AGQP-injectivity of MR, there exist a positive integer n and a
left ideal Xan of S such that an /= 0 and lS(Ker(an)) = San ⊕ Xan . Since anM is M-projective,
Ker(an) = eM for some e2 = e ∈ S. Then, we have S(1−e) = lS(eM) = lS(Ker(an)) = San⊕Xan ,
and so 1− e = ban +x for some b ∈ S and x ∈ Xan . Thus, an = an(1− e) = anban +anx = anban.
This proves that S is π-regular and hence generalized π-regular. Clearly, N1(S) = {0/=a ∈
S | a2 = 0} is regular (in this case, n must be equal to 1). Therefore or, S is regular by [13,
Theorem 2.2].

Recall that a moduleMR is called an IN-module [15] if lS(A∩B) = lS(A)+ lS(B) for any
submodules A and B of M, where S = End(MR).

Proposition 2.10. LetMR be an AGQP-injective IN-module with S = End(MR). Then, S is regular
if and only ifW(S) = 0.

Proof. By Theorem 2.3, we need only to prove the sufficiency. Let 0/=a ∈ S. Since MR is
AGQP-injective, there exist a positive integer n and a left ideal Xan of S such that an /= 0 and
lS(Ker(an)) = San ⊕Xan . SinceW(S) = 0, Ker(an) is not essential inM and then there exists a
nonzero submodule K such that Ker (an) ⊕K is essential in M. Moveover, we also have

lS(Ker(an)) + lS(K) = lS(Ker(an) ∩K) = S,

lS(Ker(an)) ∩ lS(K) ⊆ lS(Ker(an) +K) = 0,
(2.7)

because MR is an IN-module and W(S) = 0. Thus,

S = lS(Ker(an)) ⊕ lS(K) = San ⊕Xan ⊕ lS(K). (2.8)
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Let 1 = ban + x with b ∈ S, x ∈ Xan ⊕ lS(K), then an = anban. It follows that S is regular by the
last part of the proof of Proposition 2.9.

Lemma 2.11. Let MR be an AGQP-injective module in which every nonzero submodule contains a
nonzeroM-cyclic submodule and S = End(MR). If s /∈ W(S), then the inclusion Ker(s) ⊆ Ker(s −
sts) is strict for some t ∈ S.

Proof. If s /∈ W(S), then Ker(s)∩K = 0 for some nonzero submoduleK ofM, and so Ker(s)∩
s′(M) = 0 for some 0/= s′ ∈ S by hypothesis. Clearly, ss′ /= 0. Since MR is AGQP-injective,
there exist a positive integer n and a left ideal X(ss′)n such that (ss′)n /= 0 and lS(Ker(ss′)

n) =
S(ss′)n ⊕X(ss′)n . Thus,

s′(ss′)n−1 ∈ lS(Ker(s′(ss′)
n−1) = lS(Ker(ss′)

n) = S(ss′)n ⊕X(ss′)n . (2.9)

Write s′(ss′)n−1 = t(ss′)n + x,where t ∈ S and x ∈ X(ss′)n , then (1 − ts)s′(ss′)n−1 = x and hence

(1 − st)(ss′)n = (s − sts)s′(ss′)n−1 = sx ∈ S(ss′)n ∩X(ss′)n . (2.10)

This means that (s − sts)s′(ss′)n−1 = 0. It is obvious that Ker (s) ⊆ Ker(s − sts). Note that
s′(ss′)n−1M is contained in Ker (s − sts) but not contained in Ker(s), the inclusion Ker (s) ⊆
Ker (s − sts) is strict.

Theorem 2.12. Let MR be AGQP-injective with S = End(MR). If every nonzero submodule of M
contains a nonzero M-cyclic submodule, then the following conditions are equivalent:

(1) S is right perfect;

(2) for any sequence {s1, s2, . . .} ⊆ S, the chain Ker(s1) ⊆ Ker(s2s1) ⊆ · · · terminates.

Proof. By Theorem 2.3, Lemma 2.11, and [16, Lemma 2.8], one can complete the proof in a
similar way to that of [16, Theorem 2.9].
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