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1. Introduction

The uncertainty principle is a metatheorem in harmonic analysis that asserts, with the use
of some inequalities, that a function and its Fourier transform cannot be sharply localized.
We refer to the survey article by Folland and Sitaram [1] and the book of Havin and Jöricke
[2] for various classical uncertainty principles of different nature which may be found in the
literature.

In [3], the authors gave q-analogues of the Heisenberg uncertainty principle for the q-
Fourier-cosine and the q-Fourier-sine transforms. One of the aims of this paper is to provide
a generalization of their work next to state local uncertainty principles for various q-Fourier
transforms.

This paper is organized as follows. In Section 2, we present some preliminaries results
and notations that will be useful in the sequel. In Section 3, we prove a density theorem and
a q-analogue of the Hausdorff-Young inequality. Then, we state a generalization of the q-
Heisenberg uncertainty principle for the q-Fourier-cosine and the q-Fourier-sine transforms.
In Section 4, we state local uncertainty principles for the q-Fourier-cosine, q-Fourier-sine, and
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q-Bessel-Fourier transforms. Then, we give a Heisenberg-Weyl-type inequality for some q-
Bessel-Fourier transform.

2. Notations and preliminaries

Throughout this paper, we assume q ∈]0, 1[. We recall some usual notions and notations used
in the q-theory (see [4, 5]). We refer to the book by Gasper and Rahman [4] for the definitions,
notations, and properties of the q-shifted factorials and the q-hypergeometric functions.

We write Rq = {±qn : n ∈ Z}, Rq,+ = {qn : n ∈ Z}, and

[x]q =
1 − qx

1 − q
, x ∈ C, [n]q! =

(q; q)n
(1 − q)n

, n ∈ N. (2.1)

The q-derivative of a function f is given by

(
Dqf
)
(x) =

f(x) − f(qx)
(1 − q)x

if x /= 0, (2.2)

(Dqf)(0) = limk→+∞(Dqf)(qk), provided that the limit exists.
The q-Jackson integrals from 0 to a and from 0 to∞, of a function f , are (see [6])

∫a

0
f(x)dqx = (1 − q)a

∞∑

n=0

f
(
aqn
)
qn,

∫∞

0
f(x)dqx = (1 − q)

∞∑

n=−∞
f
(
qn
)
qn, (2.3)

provided that the sums converge absolutely.
The q-Jackson integral in a generic interval [a, b] is given by (see [6])

∫b

a

f(x)dqx =
∫b

0
f(x)dqx −

∫a

0
f(x)dqx. (2.4)

The q -integration by parts rule is given, for suitable functions f and g, by

∫b

a

g(x)Dqf(x)dqx = f(b)g(b) − f(a)g(a) −
∫b

a

f(qx)Dqg(x)dqx. (2.5)

Jackson (see [6]) defined a q-analogue of the Gamma function by

Γq(x) =
(q; q)∞(
qx; q
)
∞
(1 − q)1−x, x /= 0,−1,−2, . . . . (2.6)

The third Jackson q-Bessel function (see [7, 8]) is

Jν
(
z; q2
)
=

zν

(1 − q2)νΓq2(ν + 1)
1ϕ1
(
0; q2ν+2; q2, q2z2

)
, (2.7)
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and the q-trigonometric functions (q-cosine and q-sine) are defined by (see [9])

cos
(
x; q2
)
=

Γq2(1/2)

q(1 + q−1)1/2
x1/2J−1/2

(
1 − q

q
x; q2
)

=
∞∑

n=0

(−1)nqn(n−1) x2n

[2n]q!
,

sin
(
x; q2
)
=

Γq2(1/2)

(1 + q−1)1/2
x1/2J1/2

(
1 − q

q
x; q2
)

=
∞∑

n=0

(−1)nqn(n−1) x2n+1

[2n + 1]q!
.

(2.8)

They verify

Dqcos
(
x; q2
)
= −1

q
sin
(
qx; q2

)
, Dq sin

(
x; q2
)
= cos

(
x; q2
)
. (2.9)

We need the following spaces and norms.

(i) S∗q (Rq) is the space of even functions f on Rq satisfying

∀n,m ∈ N, Pn,m,q(f) = sup
x∈Rq ; 0≤k≤n

∣
∣(1 + x2)mDk

qf(x)
∣
∣ < +∞. (2.10)

(ii) Ln
q(Rq,+, x

2ν+1dqx), n ≥ 1, ν ≥ −1/2, is the set of all functions defined on Rq,+ such that

‖f‖n,ν,q =
{∫∞

0

∣∣f(x)
∣∣nx2ν+1dqx

}1/n

< ∞. (2.11)

(iii) Ln
q(Rq,+) = Ln

q(Rq,+, dqx), n ≥ 1, and ‖·‖n,q = ‖·‖n,−1/2,q.
(iv) L∞

q (Rq,+) is the set of all bounded functions on Rq,+. We write ‖f‖∞,q = supx∈Rq,+
|f(x)|.

3. Generalization of the Heisenberg uncertainty principle

The q-Fourier-cosine and the q-Fourier-sine transforms are defined as (see [8, 9])

Fq(f)(x) = cq

∫∞

0
f(t)cos

(
xt; q2

)
dqt, qF(f)(x) = cq

∫∞

0
f(t) sin

(
xt; q2

)
dqt, (3.1)

where

cq =
(1 + q−1)1/2

Γq2(1/2)
. (3.2)

Letting q ↑ 1 subject to the condition (Log(1 − q)/Log(q)) ∈ Z gives, at least formally, the
classical Fourier transforms (see [3, 10]). In the remainder of the present paper, we assume
that this condition holds.
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It was shown in [8, 9] that we have the following result.

Proposition 3.1. (1) For f ∈ L1
q(Rq,+), one has Fq(f) ∈ L∞

q (Rq,+) and

∥∥Fq(f)
∥∥
∞,q ≤

(1 + q−1)1/2

Γq2(1/2)(q; q)
2
∞
‖f‖1,q. (3.3)

(2) Fq is an isomorphism of L2
q(Rq,+) (resp., S∗,q(Rq)) onto itself. Moreover, one has F−1

q = Fq

and the following Plancherel formula:

‖Fq(f)‖2,q = ‖f‖2,q, f ∈ L2
q(Rq,+). (3.4)

Similarly, it was shown in [3, 8] that the q-Fourier-sine transform verifies the following
properties.

Proposition 3.2. (1) For f ∈ L1
q(Rq,+), one has qF(f) ∈ L∞

q (Rq,+) and

‖qF(f)‖∞,q ≤
(1 + q−1)1/2

Γq2(1/2)(q; q)
2
∞
‖f‖1,q. (3.5)

(2) qF is an isomorphism of L2
q(Rq,+) onto itself; its inverse is given by qF−1 = (1/q2)qF. One

has the following Plancherel formula:

‖qF(f)‖2,q = q‖f‖2,q, f ∈ L2
q(Rq,+). (3.6)

Let us now state the following useful density result.

Proposition 3.3. For all n ≥ 1, S∗,q(Rq) is dense in Ln
q(Rq,+).

Proof. Let n ≥ 1 and f ∈ Ln
q(Rq,+). For p ∈ N, put fp = f ·χ[qp,q−p], where χ[qp,q−p] is the

characteristic function of [qp, q−p].
It is clear that for all p ∈ N, fp ∈ S∗,q(Rq) and |f − fp|n ≤ |f |n. So, the Lebesgue theorem

implies that (fp)p converges to f in Ln
q(Rq,+).

Remark 3.4. Using the density of S∗,q(Rq) in Ln
q(Rq,+) (n ≥ 1), one can see that the q-Fourier-

cosine (resp., q-Fourier-sine) transform has a unique continuous extension on Ln
q(Rq,+), that

will also be denoted as Fq (resp., qF). We have the following q-analogue of the Hausdorff-
Young inequality.

Theorem 3.5. Let n ∈]1, 2] (resp., n = 1) and m = n/(n − 1) (resp., m = ∞) be the dual exponent of
n. For all f in Ln

q(Rq,+), the functions Fq(f) and qF(f) belong to Lm
q (Rq,+), and one has

‖Fq(f)‖m,q ≤ C1‖f‖n,q, ‖qF(f)‖m,q ≤ C2‖f‖n,q, (3.7)
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where

C1 =

(
(1 + q−1)1/2

Γq2(1/2)(q; q)
2
∞

)1−2((n−1)/n)

, C2 =

(
(1 + q−1)1/2

Γq2(1/2)(q; q)
2
∞

)1−2((n−1)/n)

q2((n−1)/n). (3.8)

Proof. The result is a direct consequence of [11, Theorem 1.3.4, page 35], and Propositions 3.1
and 3.2, by taking S∗,q(Rq) as a set of simple functions.

The following lemma gives relations between the two Fourier q-trigonometric trans-
forms.

Lemma 3.6. (1) For f ∈ L2
q(Rq,+) such that Dqf ∈ L2

q(Rq,+), one has

qF
(
Dqf
)
(λ) = −λ

q
Fq(f)

(
λ

q

)

, λ ∈ Rq,+. (3.9)

(2) Additionally, if limn→+∞f(qn) = 0, then

Fq

(
Dqf
)
(λ) =

λ

q2
qF(f)(λ), λ ∈ Rq,+. (3.10)

Proof. The same steps as in the proof of [3, Lemma 2]; the q-integration by parts rule and the
fact that

∫∞

0
f(t)dqt = lim

n→+∞

∫q−n

qn
f(t)dqt (3.11)

give the result.

In [3], the authors proved the following q-analogues of the Heisenberg uncertainty
principle.

Theorem 3.7. Let f be in L2
q(Rq,+) such that Dqf is in L2

q(Rq,+). Then,

‖tf‖2,q ‖λFq(f)‖2,q ≥
q

q3/2 + 1
‖f‖22,q. (3.12)

In addition, if limn→+∞f(qn) = 0, one has

‖tf‖2,q ‖λ qF(f)‖2,q ≥
q

q−3/2 + 1
‖f‖22,q. (3.13)

Now, we are in a position to generalize Theorem 3.7. One obvious way to generalize it is
to replace the L2

q norms by Ln
q norms. This is the purpose of the following result.

Theorem 3.8. For 1 ≤ n ≤ 2 and f ∈ L2
q(Rq,+), one has

‖f‖22,q ≤ C′
1‖xf‖n,q ‖λFq(f)‖n,q, (3.14)

‖f‖22,q ≤ C′
2‖xf‖n,q ‖λ qF(f)‖n,q, (3.15)
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where

C′
1 = q−1+1/n

(
1 + q−(n+1)/n

)
C2, C′

2 = q−1
(
1 + q−(n+1)/n

)
C1, (3.16)

with C1 and C2 being given by (3.8).

Proof. The case n = 2 has been dealt with in Theorem 3.7. Now, assume 1 ≤ n < 2 and let m be
the dual exponent of n. Let f ∈ S∗,q(Rq) such that limt→0f(t) = 0. From the relation

Dq

(
ff
)
(t) = Dqf(t)f(t) + f(qt)Dqf(t), (3.17)

the q-integration by parts rule, and the Hölder inequality, we have, since t|f(t)|2 tends to 0 as t
tends to∞ in Rq,+,

1
q

∫∞

0

∣∣f(t)
∣∣2dqt =

∣
∣∣∣

∫∞

0
tDq(ff)(t)dqt

∣
∣∣∣

≤
∫∞

0

∣∣tDqf(t)f(t)
∣∣dqt +

∫∞

0

∣∣tf(qt)Dqf(t)
∣∣dqt

≤
(∫∞

0

∣∣tf(t)
∣∣ndqt

)1/n(∫∞

0

∣∣Dqf(t)
∣∣mdqt

)1/m

+
(∫∞

0

∣∣tf(qt)
∣∣ndqt

)1/n(∫∞

0

∣∣Dqf(t)
∣∣mdqt

)1/m

.

(3.18)

However, the change of variable u = qt gives
(∫∞

0

∣∣tf(qt)
∣∣ndqt

)1/n

= q−(n+1)/n
(∫∞

0

∣∣tf(t)
∣∣ndqt

)1/n

. (3.19)

So,
1
q

∫∞

0

∣∣f(t)
∣∣2dqt ≤

(
1 + q−(n+1)/n

)‖tf‖n,q‖Dq(f)‖m,q. (3.20)

On the other hand, we have Dq(f) = Fq

[Fq

(
Dq(f)

)]
= q−2qF[qF

(
Dq(f)

)]
since Dq(f) is in

L2
q(Rq,+). Then, by using Lemma 3.6 and the q-analogue of the Hausdorff-Young inequality, we

obtain
∥∥Dq(f)

∥∥
m,q ≤ C1

∥∥Fq

(
Dq(f)

)∥∥
n,q =

C1

q2
∥∥λ qF(f)

∥∥
n,q,

∥∥Dq(f)
∥∥
m,q ≤ q−2C2

∥∥
qF
(
Dq(f)

)∥∥
n,q = q−2C2

∥∥∥∥
λ

q
Fq(f)

(
λ

q

)∥∥∥∥
n,q

= q−2+1/nC2
∥∥λFq(f)

∥∥
n,q.

(3.21)

Thus,

‖f‖22,q ≤ q−1
(
1 + q−(n+1)/n

)
C1‖tf‖n,q

∥∥λ qF(f)
∥∥
n,q, (3.22)

‖f‖22,q ≤ q−1+1/n
(
1 + q−(n+1)/n

)
C2‖tf‖n,q

∥∥λFq(f)
∥∥
n,q.

Now, let f ∈ L2
q(Rq,+); it is easy to see that for all p ∈ N, fp = fχ[qp,q−p] ∈ S∗,q(Rq), limt→0fp(t) = 0,

and (fp)p converges to f in L2
q(Rq,+). Moreover, if the right-hand side of (3.14) (resp., (3.15)) is

finite, then the functions tf and λFq(f) (resp., λ qF(f)) are in Ln
q(Rq,+), and they are limits

in Ln
q(Rq,+) (as p tends to ∞) of tfp and λFq(fp) (resp., λ qF(fp)), respectively. Finally, the

substitution of fp in (3.22) and a passage to the limit when p tends to∞ complete the proof.
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4. Local uncertainty principles

In the literature, the first classical local inequalities were obtained by Faris (see [12]) in 1978,
and they were generalized by Price (see [13, 14]) in 1983 and 1987. In this section, we will
generalize Price’s results by giving their q-analogues.

4.1. Local uncertainty principles for the q-Fourier trigonometric transforms

Theorem 4.1. If 0 < a < 1/2, there is a constant K = K(a, q) such that for all bounded subset E of
Rq,+ and all f ∈ L2

q(Rq,+), one has

∫

E

∣∣Fq(f)(λ)
∣∣2dqλ ≤ K|E|2a∥∥xaf

∥∥2
2,q. (4.1)

Here, |E| =
∫∞
0 χE(x)dqx and K = ((c̃q/

√
[1 − 2a]q)((1 − 2a)/2a))4a(1/(1 − 2a)2), where c̃q =

(1 + q−1)1/2/Γq2(1/2)(q; q)
2
∞.

Proof. For r > 0, let χr = χ[0,r] be the characteristic function of [0, r] and χ̃r = 1 − χr .
Then, for r > 0, we have, since f ·χr ∈ L1

q(Rq,+),

(∫

E

∣∣Fq(f)(λ)
∣∣2dqλ

)1/2

=
∥∥Fq(f)χE

∥∥
2,q ≤

∥∥Fq(f ·χr)χE

∥∥
2,q +

∥∥Fq(f ·χ̃r)χE

∥∥
2,q

≤ |E|1/2∥∥Fq(f ·χr)
∥∥
∞,q +

∥∥Fq(f ·χ̃r)
∥∥
2,q,

(4.2)

and by the use of the Hölder inequality, we obtain

∥∥Fq(f ·χr)
∥∥
∞,q ≤ c̃q

∥∥f ·χr

∥∥
1,q

= c̃q
∥∥x−aχr ·xaf

∥∥
1,q ≤ c̃q

∥∥x−aχr

∥∥
2,q

∥∥xaf
∥∥
2,q ≤

c̃q
√
[1 − 2a]q

r1/2−a
∥∥xaf

∥∥
2,q.

(4.3)

On the other hand, since f ∈ L2
q(Rq,+), we have f ·χ̃r ∈ L2

q(Rq,+), and by the Plancherel formula,
we get

∥∥Fq(f ·χ̃r)
∥∥
2,q =

∥∥f ·χ̃r

∥∥
2,q =

∥∥x−aχ̃r .x
af
∥∥
2,q ≤

∥∥x−aχ̃r

∥∥
∞,q

∥∥xaf
∥∥
2,q ≤ r−a

∥∥xaf
∥∥
2,q. (4.4)

So,

(∫

E

∣∣Fq(f)(λ)
∣∣2dqλ

)1/2

≤

⎛

⎜
⎝

c̃q
√
[1 − 2a]q

|E|1/2r1/2−a + r−a

⎞

⎟
⎠
∥∥xaf

∥∥
2,q. (4.5)

The desired result is obtained by minimizing the right-hand side of the previous inequality
over r > 0.
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Corollary 4.2. For 0 < a < 1/2 and b > 0, there is a constant Ka,b such that for all f ∈ L2
q(Rq,+), one

has

‖f‖(a+b)2,q ≤ Ka,b

∥
∥xaf

∥
∥b
2,q

∥
∥λbFq(f)

∥
∥a
2,q. (4.6)

Proof. For r > 0, put Er = [0, r[ ∩ Rq,+ and Ẽr = [r,+∞[ ∩ Rq,+. It is easy to see that Er is a
bounded subset of Rq,+ and |Er | ≤ r.

Then, from the Plancherel formula and Theorem 4.1, we have

‖f‖22,q =
∥
∥Fq(f)

∥
∥2
2,q

=
∫

Er

∣
∣Fq(f)

∣
∣2(λ)dqλ +

∫

Ẽr

∣
∣Fq(f)

∣
∣2(λ)dqλ

≤ Kr2a
∥∥xaf

∥∥2
2,q + r−2b

∥∥λbFq(f)
∥∥2
2,q.

(4.7)

Choosing r > 0 so as to minimize the right-hand side of the inequality, we obtain ‖f‖22,q ≤
(Ka,b‖xaf‖b2,q‖λbFq(f)‖a2,q)

2/(a+b)
, with Ka,b = ((a/b)b/(a+b) + (b/a)a/(a+b))

(a+b)/2
Kb/2, and K is

the constant given in Theorem 4.1.

In the same way, one can prove the following local uncertainty principle for the q-
Fourier-sine transform.

Theorem 4.3. If 0 < a < 1/2, there is a constant K′ = K′(a, q) such that for all bounded subset E of
Rq,+ and all f ∈ L2

q(Rq,+), one has

∫

E

∣∣
qF(f)(λ)

∣∣2dqλ ≤ K′|E|2a∥∥xaf
∥∥2
2,q, (4.8)

where K′ = ((c̃q/
√
[1 − 2a]q)((1 − 2a)/2qa))

4a
[1 + 2qa/(1 − 2a)]2.

Corollary 4.4. For 0 < a < 1/2 and b > 0, there is a constant K′
a,b

such that for all f ∈ L2
q(Rq,+), one

has

‖f‖(a+b)2,q ≤ K′
a,b‖xaf‖b2,q‖λbqF(f)‖a2,q, (4.9)

with K′
a,b

= ((a/b)b/(a+b) + (b/a)a/(a+b))
(a+b)/2

(K′)b/2q−(a+b).

Proof. The same steps of Corollary 4.2 give the result.

Theorem 4.5. If a > 1/2, there is a constant K1 = K1(a, q) such that for all bounded subset E of Rq,+

and f ∈ L2
q(Rq,+), one has

∫

E

∣∣Fq(f)(λ)
∣∣2dqλ ≤ K1|E|‖f‖(2−1/a)2,q

∥∥xaf
∥∥1/a
2,q , (4.10)

∫

E

∣∣Fq(f)(λ)
∣∣2dqλ ≤ K1|E|‖f‖(2−1/a)2,q

∥∥xaf
∥∥1/a
2,q . (4.11)
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The proof of this result needs the following lemmas.

Lemma 4.6. Suppose a > 1/2, then for all f ∈ L2
q(Rq,+), such that xaf ∈ L2

q(Rq,+),

‖f‖21,q ≤ K2
[‖f‖22,q +

∥∥xaf
∥∥2
2,q

]
, (4.12)

where K2 = K2(a, q) = (1 − q)((q2a, q2a,−q,−q2a−1; q2a)∞/(q, q2a−1,−q2a,−1; q2a)∞).

Proof. From [15, Example 1], and the Hölder inequality, we have

‖f‖21,q =
[∫+∞

0

(
1 + x2a)1/2|f(x)|(1 + x2a)−1/2dqx

]2
≤ K2[‖f‖22,q + ‖xaf‖22,q], (4.13)

whereK2 =
∫+∞
0 (1 + x2a)−1dqx = (1−q)((q2a, q2a,−q,−q2a−1; q2a)∞/(q, q2a−1,−q2a,−1; q2a)∞).

Lemma 4.7. Suppose a > 1/2, then for all f ∈ L2
q(Rq,+), such that xaf ∈ L2

q(Rq,+), one has

‖f‖1,q ≤ K3‖f‖(1−1/2a)2,q

∥∥xaf
∥∥1/2a
2,q , (4.14)

where K3 = K3(a, q) = [2aK2(2aq − q)1/2a−1]
1/2

.

Proof. For s ∈ Rq,+, define the function fs by fs(x) = f(sx), x ∈ Rq,+.
We have ‖fs‖1,q = s−1‖f‖1,q, ‖xafs‖22,q = s−2a−1‖xaf‖22,q.
Replacement of f by fs in Lemma 4.6 gives

‖f‖21,q ≤ K2[s‖f‖22,q + s−2a+1‖xaf‖22,q]. (4.15)

Now, for all r > 0, put α(r) = Log(r)/Log(q) − E(Log(r)/Log(q)).We have s = (r/qα(r)) ∈ Rq,+

and r ≤ s < r/q. Then, for all r > 0,

‖f‖21,q ≤ K2

[
r

q
‖f‖22,q + r−2a+1

∥
∥xaf

∥
∥2
2,q

]
. (4.16)

The right-hand side of this inequality is minimized by choosing

r = (2a − 1)1/2aq1/2a‖f‖−1/a2,q

∥∥xaf
∥∥1/a
2,q . (4.17)

When this is done, we obtain the result.

Proof of Theorem 4.5. Since the proofs of the two statements are similar, it is sufficient to prove
(4.11).

Let E be a bounded subset of Rq,+. When the right-hand side of the inequality (4.11) is
finite, Lemma 4.6 implies that f ∈ L1

q(Rq,+); so Fq(f) is defined and bounded on Rq,+. Using
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Proposition 3.1, Lemma 4.7, and the fact that
∫

E

|Fq(f)(λ)|2dqλ ≤ |E|‖Fq(f)‖2∞,q, (4.18)

we obtain the result with K1 = ((1 + q−1)/Γ2
q2
(1/2)(q; q)4∞)K

2
3.

Remark 4.8. By the same technique as in the proof of Corollary 4.2, we can show that
Theorem 4.5 leads to inequalities (4.6) and (4.9)with some different constants.

4.2. Local uncertainty principles for the q-Bessel-Fourier transform

The q-Bessel-Fourier transform is defined (see [16]) for f ∈ L1
q(Rq,+, x

2ν+1dqx) by

Fν,q(f)(λ) = cν,q

∫∞

0
f(x)jν

(
λx; q2

)
x2ν+1dqx, (4.19)

where

jν
(
z; q2
)
=
(
1 − q2

)ν
Γq2(ν + 1)

(
(1 − q)q−1z

)−ν
Jν
(
(1 − q)q−1z; q2

)
(4.20)

is the normalized third Jackson q-Bessel function, and

cν,q =

(
1 + q−1

)−ν

Γq2(ν + 1)
. (4.21)

It was shown in [10] that for ν ≥ −1/2, we have the following result.

Theorem 4.9. (1) For f ∈ L1
q(Rq,+, x

2ν+1dqx), one has Fν,q(f) ∈ L∞
q (Rq,+) and

∥∥Fν,q(f)
∥∥
∞,q ≤

cν,q

(q; q2)2∞
‖f‖1,ν,q. (4.22)

(2) Fν,q is an isomorphism of L2
q(Rq,+, x

2ν+1dqx) onto itself, F−1
ν,q = q4ν+2Fν,q, and one has the

following Plancherel formula:

∀f ∈ L2
q

(
Rq,+, x

2ν+1dqx
)
,
∥∥Fν,q

∥∥
2,ν,q = q2ν+1‖f‖2,ν,q. (4.23)

The following result states a local uncertainty principle for the q-Bessel-Fourier transform.

Theorem 4.10. For ν ≥ −1/2 and 0 < a < ν + 1, there is a constantKa,ν = K(a, ν, q) such that for all
f ∈ L2

q(Rq,+, x
2ν+1dqx) and all bounded subset E of Rq,+, one has

∫

E

∣∣Fν,q(f)(λ)
∣∣2λ2ν+1dqλ ≤ Ka,ν|E|a/(ν+1)ν

∥∥xaf
∥∥2
2,ν,q. (4.24)

Here, |E|ν =
∫∞
0 χE(x)x2ν+1dqx, c̃ν,q = cν,q/(q; q2)

2
∞, and

Ka,ν =

⎛

⎜
⎝

c̃ν,q
√
[2ν + 2 − 2a]q

⎞

⎟
⎠

2a/(ν+1)[(
aq2ν+1

ν + 1 − a

)1−a/(ν+1)
+ q2ν+1

(
aq2ν+1

ν + 1 − a

)−a/(ν+1)]2

.

(4.25)
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Proof. Let ν ≥ −1/2, 0 < a < ν + 1, f ∈ L2
q(Rq,+, x

2ν+1dqx), and let E be a bounded subset of Rq,+.
For r > 0, we have, since f.χr ∈ L1

q(Rq,+, x
2ν+1dqx),

(∫

E

∣∣Fν,q(f)(λ)
∣∣2λ2ν+1dqλ

)1/2

=
∥∥Fν,q(f)χE

∥∥
2,ν,q

≤ ∥∥Fν,q(f ·χr)χE

∥
∥
2,ν,q +

∥
∥Fν,q(f ·χ̃r)χE

∥
∥
2,ν,q

≤ |E|1/2ν

∥∥Fν,q(f ·χr)
∥∥
∞,q +

∥∥Fν,q(f ·χ̃r)
∥∥
2,ν,q.

(4.26)

However, by the use of the Hölder inequality, we obtain

∥∥Fν,q

(
f ·χr

)∥∥
∞,q ≤ c̃ν,q

∥∥f ·χr

∥∥
1,q

= c̃q
∥∥x−aχr.x

af
∥∥
1,ν,q

≤ c̃ν,q
∥∥x−aχr

∥∥
2,ν,q

∥∥xaf
∥∥
2,ν,q.

(4.27)

Now, if k is the integer such that qk ≤ r < qk−1, we get, since a < ν + 1,

∥∥x−aχr

∥∥2
2,ν,q =

∫∞

0
x−2aχr(x)x2ν+1dqx =

∫qk

0
x2ν+1−2adqx =

q2k(ν+1−a)

[2ν + 2 − 2a]q
≤ r2(ν+1−a)

[2ν + 2 − 2a]q
.

(4.28)

Then,

∥∥Fν,q(f ·χr)
∥∥
∞,q ≤

c̃ν,q
√
[2ν + 2 − 2a]q

r(ν+1−a)
∥∥xaf

∥∥
2,ν,q. (4.29)

On the other hand, since f ∈ L2
q(Rq,+, x

2ν+1dqx), we have f.χ̃r ∈ L2
q(Rq,+, x

2ν+1dqx), and by the
Plancherel formula (4.23), we obtain

∥∥Fν,q

(
f ·χ̃r

)∥∥
2,ν,q = q2ν+1

∥∥f ·χ̃r

∥∥
2,ν,q = q2ν+1

∥∥x−aχ̃r ·xaf
∥∥
2,ν,q

≤ q2ν+1
∥∥x−aχ̃r

∥∥
∞,q

∥∥xaf
∥∥
2,q ≤ q2ν+1r−a

∥∥xaf
∥∥
2,ν,q.

(4.30)

So,

(∫

E

∣∣Fν,q(f)(λ)
∣∣2λ2ν+1dqλ

)1/2

≤

⎛

⎜
⎝

c̃ν,q
√
[2ν + 2 − 2a]q

|E|1/2ν r(ν+1−a) + q2ν+1r−a

⎞

⎟
⎠
∥∥xaf

∥∥
2,ν,q.

(4.31)

By minimization of the right-hand side of the previous inequality over r > 0 and by easy
computation, we obtain the desired result.
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Theorem 4.11. For ν ≥ −1/2 and a > ν + 1, there exists a constant K′
a,ν such that for all bounded

subset E of Rq,+ and all f in L2
q(Rq,+, x

2ν+1dqx), one has
∫

E

∣∣Fν,q(f)(λ)
∣∣2λ2ν+1dqλ ≤ K′

a,ν|E| ‖f‖2(1−(ν+1)/a)2,ν,q

∥∥xaf
∥∥2((ν+1)/a)
2,ν,q . (4.32)

Proof. Since a > ν + 1, the same steps as in the proof of Theorem 4.5 and the relation (4.22) give
the result with

K′
a,ν =

(q2a, q2a,−q2ν+2,−q2(a−ν−1); q2a)∞
(q2ν+2, q2(a−ν−1),−q2a,−1; q2a)∞

c′ν,q,

c′ν,q = (1 − q)

(
cν,q

(q; q2)2∞

)2(
a

ν + 1
− 1

)(ν+1)/a(
a

a − ν − 1

)

q−2(ν+1)((a−ν−1)/a).

(4.33)

Corollary 4.12. For ν ≥ −1/2 and a, b > 0, there is a constant Ka,b,ν = K(a, b, ν, q) such that for all
f ∈ L2

q(Rq,+, x
2ν+1dqx), one has

‖f‖(a+b)2,ν,q ≤ Ka,b,ν‖xaf‖b2,ν,q‖λbFν,q(f)‖a2,ν,q, (4.34)

with

Ka,b,ν=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
b

a

)a/(a+b)

+
(
a

b

)b/(a+b)
](a+b)/2

(Ka,ν)
b/2 q−(2ν+1)(a+b)

([2ν + 2]q)
ab/2(ν+1)

if a < ν + 1,
(

K′
a,ν

[2ν + 2]q

)ab/(2ν+2)(

q−(4ν+2)
[(

b

ν + 1

)(ν+1)/(ν+b+1)

+
(

b

ν + 1

)−b/(ν+b+1)])a(ν+b+1)/2(ν+1)

if a > ν + 1,
(4.35)

where Ka,ν (resp., K′
a,ν) is the constant given in Theorem 4.10 (resp., Theorem 4.11).

Proof. For r > 0, we put Er = [0, r[ ∩ Rq,+ and Ẽr = [r,+∞[ ∩ Rq,+.
We have Er is a bounded subset of Rq,+ and |Er |ν ≤ r2ν+2/[2ν + 2]q. Then, the Plancherel

formula (4.23) and Theorems 4.10 and 4.11 lead to

q4ν+2‖f‖22,ν,q =
∥∥Fν,q(f)

∥∥2
2,ν,q =

∫

Er

∣∣Fν,q(f)
∣∣2(λ)λ2ν+1dqλ +

∫

Ẽr

∣∣Fν,q(f)
∣∣2(λ)λ2ν+1dqλ

≤

⎧
⎪⎨

⎪⎩

Ka,ν

∣∣Er

∣∣a/(ν+1)
ν

∥∥xaf
∥∥2
2,ν,q + r−2b

∥∥λbFν,q(f)
∥∥2
2,ν,q if a < ν + 1,

K′
a,ν

∣∣Er

∣∣‖f‖2(a−ν−1)/a2,ν,q

∥∥xaf
∥∥2(ν+1)/a
2,ν,q + r−2b

∥∥λbFν,q(f)
∥∥2
2,ν,q if a > ν + 1,

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ka,ν

[2ν + 2]a/(ν+1)q

r2a
∥∥xaf

∥∥2
2,ν,q + r−2b

∥∥λbFν,q(f)
∥∥2
2,ν,q if a < ν + 1,

K′
a,ν

r2ν+2

[2ν + 2]q
‖f‖2(a−ν−1)/a2,ν,q

∥∥xaf
∥∥2(ν+1)/a
2,ν,q + r−2b

∥∥λbFν,q(f)
∥∥2
2,ν,q if a > ν + 1.

(4.36)

The desired result follows by minimizing the right expressions over r > 0.
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Remark that when a = b = 1, we obtain a Heisenberg-Weyl-type inequality for the q-
Bessel-Fourier transform.

Corollary 4.13. For ν ≥ −1/2, ν /= 0, one has for all f ∈ L2
q(Rq,+, x

2ν+1dqx),

‖f‖22,ν,q ≤ K1,1,ν‖xf‖2,ν,q
∥∥λFν,q(f)

∥∥
2,ν,q. (4.37)

Acknowledgment

The authors would like to thank the reviewers for their helpful remarks and constructive
criticism.

References

[1] G. B. Folland and A. Sitaram, “The uncertainty principle: a mathematical survey,” Journal of Fourier
Analysis and Applications, vol. 3, no. 3, pp. 207–238, 1997.
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