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q-shifted multifactorials.
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1. Introduction

What is the topological string partition function of the resolved conifold? We should explain
that heuristically one can assign string theories to each Calabi-Yau threefold and some of
them such as topological A-models [1], only depend on its Kähler structure. Their topologically
invariant amplitudes are then collected into a generating function called the partition
function. Remarkably, this partition function may remain unchanged even if a threefold
undergoes a topology changing transition [2].

A traditional approach is to interpret the string partition function as the Gromov-
Witten partition function. For the resolved conifold X := O(−1) ⊕ O(−1), it was originally
computed by Faber-Pandharipande [3]; see also [4]

Z′X(a; q) =
∞∏

n=1

(
1 − aqn

)n
. (1.1)
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Here, a = e−t, q = eix, and t, x are known as the Kähler parameter and the string coupling
constant, respectively. In mathematical terms, they are just formal variables and

lnZ′X =
∞∑

g=0

∞∑

d=1

〈1〉g,dtdx2g−2, (1.2)

where 〈1〉g,d is the Gromov-Witten invariant of genus g degree d holomorphic curves in the
resolved conifold.

The incompleteness of this answer does not reveal itself until one considers dualities
that relate Gromov-Witten invariants to other invariants of Calabi-Yau threefolds. One may
notice that (1.2) is missing degree zero terms (hence the ′). This is not a slip, they cannot
be packaged into a form as nice as (1.1). This was not considered much of a problem until
the Donaldson-Thomas theory [5–7] came about, since degree zero (constant) maps are
trivial anyway. But apparently dualities have little tolerance for convenient omissions. For
the Gromov-Witten/Donaldson-Thomas duality to hold, (1.1) has to be augmented as

ZX = Z0
XZ

′
X ≈MZ′X, (1.3)

where

M(q) :=
∞∏

n=1

(
1 − qn

)−n (1.4)

is the MacMahon function, classically known as the generating function of plane partitions
[8]. In all honesty, this is not quite true as lnM(eix) has some spurious terms in its expansion
at x = 0 and only accounts for genus g ≥ 2 terms correctly (see Section 3). Also in the
Donaldson-Thomas theory, one has ZDT

X =M2Z′DT
X , not ZX =MZ′X . In a recent reformulation

of the Donaldson-Thomas theory [9], the reduced partition function Z′DT is even defined
directly, and the MacMahon function is banished altogether. Let us disregard this minor
discrepancy for now since even answer (1.3) is incomplete.

This becomes apparent in light of another duality of the Calabi-Yau threefolds, large
N duality. This one relates the Gromov-Witten invariants of the resolved conifold to the
Chern-Simons invariants of the 3-sphere. The usual formulation defines the Chern-Simons
theory as a gauge theory on a UN or SUN bundle over a real 3-manifold M. Less recognized
despite the Witten famous paper [1] is the fact that it also gives invariants of the Calabi-Yau
threefolds. As Witten pointed out, it can be viewed as a theory of open strings (holomorphic
instantons at∞ in his terminology) in the cotangent bundle T ∗M ending on its zero section.
T ∗M is canonically a symplectic manifold (even Kähler if M is real-analytic) with first Chern
class c1(T ∗M) = 0, that is, the Calabi-Yau. In particular, T ∗S3 is diffeomorphic to a quadric
x2 +y2 +z2 +w2 = 1 in C

4. One of the reasons this interpretation did not get much currency is
that the strings in question are very degenerate, they are represented by ribbon graphs, and
are not honest holomorphic curves. In fact, there are no honest holomorphic curves in T ∗M
at all except for the constant ones [1, 10]. Another reason, perhaps, is that open the Gromov-
Witten theory is still in its infancy and the powerful algebro-geometric techniques that
dominate the field cannot be directly applied. There are successful approaches that replace
open invariants with relative ones [11, 12] but only as a tool for computing closed invariants.
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In the other direction, there exists a detailed if only formal correspondence between geometry
of real-oriented 3-manifold and the Calabi-Yau threefolds and the Donaldson-Thomas theory
can be seen as a “holomorphization” of the Chern-Simons theory under this correspondence
[13]. Thus, comparing the Chern-Simons partition function ZS3 to ZX promises some useful
insight.

Once again, by ignoring some irrelevant prefactors, ZS3 can be written as ZS3 ≈ E−zZX ,
where z = itx−1 so that a = qz, and

E(q) :=
∞∏

n=1

(
1 − qn

)−1 (1.5)

is the classical Euler generating function of ordinary partitions. At this point, it is appropriate
to introduce notation that allows one to write Z′X, M, and E uniformly. Let

(a; q)(0)∞ := 1 − a, (a; q)(d)∞ :=
∞∏

i1,...,id=0

(
1 − aqi1+···+id

)
(1.6)

be the q-multifactorials then (see Section 6),

Z′X(a; q) = (aq; q)(2)∞ , M(q) =
1

(q; q)(2)∞
, E(q) = 1

(q; q)(1)∞
. (1.7)

Using q and z as variables, we see that

Z′X =
(
qz+1; q

)(2)
∞ ,

ZX ≈
1

(q; q)(2)∞

(
qz+1; q

)(2)
∞ ,

ZS3 ≈ (q; q)(1)z∞
1

(q; q)(2)∞

(
qz+1; q

)(2)
∞ .

(1.8)

After some thought one may sense a pattern here. We will see in Section 6 that it makes sense
to join one more factor to the product and consider

Gq(z + 1) :=
1

(q; q)(0) (z(z−1)/2)
∞

(q; q)(1)z∞
1

(q; q)(2)∞

(
qz+1; q

)(2)
∞ . (1.9)

This Gq is the quantum Barnes function of Nishizawa [14], and our candidate for the partition
function of the resolved conifold. All factors above are required to make it transforms as

Gq(z + 1) = Γq(z)Gq(z), (1.10)
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where Γq is the Jackson quantum gamma function deforming the classical one.This in turn
satisfies Γq(z + 1) = (z)qΓq(z) with the so-called quantum number (z)q := (1 − qz)/(1 −
q). This makes Gq a deformation of the classical Barnes function that satisfies (1.10) with
q-s removed.

The picture above is cute but not quite true, and clear-cut identities (1.8) are spoiled
by pesky disturbances discussed in Sections 3 and 5. These disturbances are a large part of
the reason why large N duality is so hard to prove even in simple cases. Still, Gq emerges
as a common factor in the Gromov-Witten, the Donaldson-Thomas, and the Chern-Simons
theories (Theorem 5.2). One may notice that we conspicuously omitted the most famous of
the Calabi-Yau dualities, mirror symmetry. This is partly because local mirror symmetry is
poorly developed, and partly because to the extent that its predictions can be divined [15]
they match the Gromov-Witten ones completely. There is a structural prediction of mirror
symmetry that seems relevant. For compact Calabi-Yau threefolds, Z is predicted to have
modular properties [16], that is, obey transformation laws under z 
→ z + 1 and z 
→ −1/z.
For open threefolds like the resolved conifold, only the first one survives and is expressed by
(1.10).

What are we to make of the above chain of augmentations? Perhaps, string theories
on the Calabi-Yau threefolds are only partial reflections of some hidden master-theory.
The Witten candidate for such a theory is the mysterious M-theory living on a seven-
dimensional manifold with G2 holonomy that projects to various string theories on the
Calabi-Yau threefolds. Another unifying view of the Gromov-Witten and the Donaldson-
Thomas theories, via noncommutative geometry, also emerged recently [17]. Different
projections are equivalent even though they may live on topologically distinct threefolds and
reflect the original each in its own way. So far, we ignored these ways relying instead on
magical changes of variables. It is time to dwell upon them a bit. This will also serve as our
justification for spending so much ink on the resolved conifold.

The relation between the Gromov-Witten and the Donaldson-Thomas invariants is
very simple [6, 7]. For the resolved conifold, we have

lnZ′X =
∞∑

n=0

∞∑

d=1

(−1)nDn,d t
dqn (1.11)

with Z′X the same as in (1.2) and Dn,d the Donaldson-Thomas invariants. In other words,
in each degree, (−1)nDn,d are simply the Taylor coefficients of Z′X at q = 0 while 〈1〉g,d are
the Laurent coefficients in x corresponding to q = 1 with q = eix. The relation with the
Chern-Simons invariants is more complicated. Traditionally, one has to take q = e2πi/(k+N),
where k,N are the two parameters of the Chern-Simons theory, rank and level. They are
positive integers making q a root of unity. Not all roots of unity are covered in this way,
but more sophisticated formulations allow one to include any root of unity. Naively, if the
duality conjectures hold the Donaldson-Thomas invariants give us an expansion at q = 0, the
Gromov-Witten invariants at q = 1 and the Chern-Simons invariants give values at roots
of unity of more or less the same function, but only naively. First of all, the Donaldson-
Thomas generating functions are a priori only formal power series and may not have a
positive radius of convergence. We need it to be at least 1 to make a comparison. Things
are nice in higher degree [9], but in degree zero it is exactly 1 and every point of the unit
circle is a singularity. This is remedied easily enough in the Gromov-Witten context since we
can interpret Z0

X(e
ix) =

∑∞
g=0〈1〉g,0x2g−2 as an asymptotic expansion at the natural boundary
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(Section 3). But the Chern-Simons invariants are not graded by degree, and the degree zero
speck turns into a wooden beam spoiling the whole partition function that we wish to
evaluate. With the resolved conifold being the simplest nontrivial case, we get a preview of
the difficulties that will arise in general. This brings us to a paradox: for large N duality
to even make sense, the formal power series better converges to holomorphic functions
extending to the unit circle or at least to roots of unity. This is not the case already for ZX and
an additional factor inZS3 appearing in (1.8) is needed to make it happen (see comments after
Corollary 6.5). This is another reason to accept the quantum Barnes function as the completed
partition function.

Since conjecturally Z0
Y = M(1/2)χ(Y ) for any Calabi-Yau threefold Y [6, 7] this

phenomenon is likely to be general. The above discussion suggests that the master-invariant
that manifests itself through dualities is a holomorphic function on the unit disk. The three
theories we discussed showcase three different ways to package information about it. The
dualities reduce to repackaging prescriptions. Physicists developed resummation techniques
that transform generating functions one into another but they lead to unwieldy computations
for the resolved conifold and do not produce conclusive results even for its cyclic quotients
[18]. Since repackaging involves transcendental substitutions, analytic continuation and
asymptotic expansions—things one does with functions and not with formal series—it makes
sense to identify the underlying holomorphic functions to establish a duality. This is the
strategy of this paper and it distinguishes it from previous approaches [2, 19, 20] that use
double expansions in genus and degree. This makes for a cleaner comparison of partition
functions with a clear view of what matches and what does not match in them (Theorem 5.2).
It is also hoped that the idea generalizes to other threefolds.

The paper is organized as follows. Section 2 is a review of basic notions of the
Gromov-Witten theory with emphasis on generating functions. In particular, we note that
free energy is a shorthand for the Gromov-Witten potential restricted to divisor invariants.
The well-known irregularities in degree zero are then naturally explained. In Section 3, the
MacMahon function is examined in detail to determine to what extent it can be viewed as the
degree zero partition function of the Gromov-Witten invariants. We describe resummation
techniques used by physicists, and then recall an old but little-known asymptotic for it due to
Ramanujan and Wright adapting it to our context. Sections 4 and 5 give a description of the
topological vertex and the Reshetikhin-Turaev calculus, diagrammatic models that compute
the Gromov-Witten and the Chern-Simons partition functions, respectively. Similarities
between the two are specifically stressed. Section 5 ends by expressing both partition
functions via the quantum Barnes function (Theorem 5.2). Since this function and its
higher analogs are relatively recent (1995), we give a self-contained exposition of their
theory in Section 6 different from the author’s [14]. In particular, we prove the alternating
formula (1.9) that connects Gq to the Calabi-Yau partition functions and appears to be
new (Theorem 6.3). In Conclusions, we point out the relations between the Calabi-Yau
dualities and holography, and share some thoughts and conjectures inspired by the resolved
conifold example. The appendix lists basic properties of the Stirling polynomials needed
in Section 6.

2. Generating functions of Gromov-Witten invariants

There are a variety of generating functions appearing in the literature: the Gromov-
Witten potential, prepotential, truncated potential, partition function, free energy, and
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so forth. In this section, we briefly review basic definitions from the Gromov-Witten
theory and relationships among some of the above generating functions. Perhaps, the only
unconventional notion is that of divisor potential which leads most naturally to the free
energy and the partition function.

Stable maps

Let X be the Kähler manifold of complex dimension N. We wish to consider holomorphic
maps f : Σ → X of the Riemann surfaces with n marked points into X that realize
certain homology class α ∈ H2(X,Z). The space of such maps is denoted Mg,n(X, α).
There is a natural (Gromov) topology on this moduli space but it is not compact in it. To
get the Gromov-Witten invariants, we need to integrate over the moduli so we have to
compactify. The appropriate compactification was discovered by Kontsevich and its elements
are called stable maps. They are holomorphic maps from prestable curves, that is, connected
reduced projective curves with at worst ordinary double points (nodes) as singularities. A
map is stable if its group of automorphisms is finite, that is, there are only finitely many
biholomorphisms σ : Σ → Σ satisfying f ◦ σ = f and σ(pi) = pi, where p1, . . . , pn are the
marked points. Intuitively, we allow Riemann surfaces to degenerate by collapsing loops
into points. Since only genus 0 and 1 curve have infinitely many automorphisms (Möbius
transformations and translations, resp.), the stability condition is nonvacuous only for them
and only if the map f is trivial, that is, maps everything into a point. It requires then that
each genus 0(1) component has at least 3(1) special points, nodes, or marked points. Under
favorable circumstances, the space of stable maps Mg,n(X, α) up to reparametrization is itself
a closed Kähler orbifold of dimension

dimvir
C Mg,n(X, α) =

〈
c1(X), α

〉
− (N − 3)(g − 1) + n. (2.1)

For instance, this is the case if X = CP
N and g = 0. Above c1(X) is the first Chern class

of the tangent bundle and 〈, 〉 the cohomology/homology pairing. The notation anticipates
that in general the moduli are neither smooth nor have the expected dimension so (2.1) is
called the virtual dimension. A deep result in the Gromov-Witten theory asserts that despite

the complications, there is a cycle of expected dimension [Mg,n(X, α)]
vir

called the virtual
fundamental class that one can integrate over.

Primary invariants

Presence of marked points allows one to define evaluation maps:

evi : Mg,n(X, α) −→ X

f 
→ f
(
pi
) (2.2)
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and pullback cohomology classes γi from X to Mg,n(X, α). These pullbacks are called the
primary classes on Mg,n(X, α) [21, 22]. The primary Gromov-Witten invariants are

〈
γ1 · · · γn

〉
g,α :=

∫

[Mg,n(X,α)]
vir

ev∗1
(
γ1
)
∪ · · · ∪ ev∗n

(
γn
)
, (2.3)

where ∪ is the usual cup product and the integral denotes pairing with [Mg,n(X, α)]
vir

. Again
under favorable circumstances, the primary invariants have an enumerative interpretation.
Namely, 〈γ1 · · · γn〉g,α is the number of genus g holomorphic curves in a class α ∈ H2(X,Z)
passing through generic representatives of cycles Poincare dual to γ1, . . . , γn [19, 23]. In
general, the enumerative interpretation fails and 〈γ1 · · · γn〉g,α are only rational numbers,
this is always the case for the Calabi-Yau manifolds. Most of the primary invariants are
zero for dimensional reasons. Indeed, the complex degree of the integrand in (2.3) is
(1/2)(deg γ1 + · · ·+deg γn), and for the integral to be nonzero, it should be equal to the virtual
dimension (2.1). There are other natural classes on Mg,n(X, α) that lead to more general
Gromov-Witten invariants, gravitational descendants, and Hodge integrals [3, 19, 21], but
we need not concern ourselves with them here.

It is convenient to arrange the primary invariants into a generating function [23]. To
this end, we note that they are linear in insertions γi and we can recover all of them from
〈1〉g,α and those with insertions chosen from an integral basis h1, . . . , hm in H+(X,Z) :=
⊕n>0H

n(X,Z). One may worry about torsion, but torsion classes are not represented by
holomorphic curves and can be ignored. Thus, any 〈γ1 · · · γn〉g,α is a linear combination of

〈hp1

1 · · ·h
pm
m 〉g,α, where the “powers” pi stand for repeating hi that many times. Introduce

formal variables t1, . . . , tm for each element of the basis. Heuristically, they represent (minus)
Kähler volumes of h1, . . . , hm and are called Kähler parameters, especially in physics literature.
Analogously, let ξ1, . . . , ξk be a linear basis inH2(X,Z), and letQ1, . . . , Qkbe the corresponding
formal variables. We write 〈hp1

1 · · ·h
pm
m 〉g, �d with �d := (d1, . . . , dk) for short, when α = d1ξ1+ · · ·+

dkξk. The numbers d1, . . . dk are called degrees. Finally, we need one more variable x, the string
coupling constant, to incorporate genus. The primary Gromov-Witten potential (relative to the
above bases choices) is

F
(
t1, . . . , tm;Q1, . . . , Qk;x

)
:=

∞∑

g=0

∞∑

p1,...,pm=0

d1,...,dk=0

〈
h
p1

1 · · ·h
pm
m

〉
g, �d

t
p1

1 · · · t
pm
m

p1! · · · pm!
Qd1

1 · · ·Q
dk
k
x2g−2. (2.4)

This particular choice of a generating function is by no means obvious and is inspired
by two-dimensional topological quantum field theory. The power 2g − 2 instead of just g
has in mind the Euler characteristic −(2g − 2) of a genus g the Riemann surface. For X
Kähler F is defined as at least a formal power series in Q[tj , Qi, x] [24]. Under a change
of bases 〈hp1

1 · · ·h
pm
m 〉g, �d transforms as a tensor. One may entertain oneself by writing a tensor

potential that is an invariant, see [23]. In [21, 22], a more general Gromov-Witten potential
is considered that incorporates gravitational descendants and accordingly has more formal
variables.

Let X := O(−1) ⊕ O(−1) be the resolved conifold, the sum of two tautological line
bundles over CP

1. Being a vector bundle over CP
1, it is homotopic to its base and has the same
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homology and cohomology. In particular, H2(X,Z) = Z[CP
1] and H•(X,Z) = Z[h]/(h2),

where h is the Poincare dual to the class of a point in CP
1. Thus, H+(X,Z) is spanned by h

and H2(X,Z) is spanned by ξ := [CP
1], the fundamental class of CP

1. Hence, we need only
one t and one Q variable. The primary potential simplifies to

F(t;Q;x) :=
∞∑

p,d,g=0

〈
hp
〉
g,d

tp

p!
Qdx2g−2. (2.5)

Divisor equation and free energy

We will be interested not even in all primary invariants but also in those corresponding
to combinations of divisor classes, elements of H2(X,Z). Divisor invariants turn out to be
most relevant to large N duality. In noncompact manifolds, the name is misleading since
there is no Poincare duality. For example, the hyperplane class of CP

1 is a divisor class in
O(−1) ⊕ O(−1), despite the fact that it is not dual to any divisor. But in closed manifolds,
divisor classes are precisely Poincare duals to divisors, cycles of complex codimension one.
Invariants 〈hp1

1 · · ·h
pm
m 〉g, �d containing only divisor classes can be reduced to 〈1〉g, �d using the

so-called divisor equation. The latter is one of the universal relations among the Gromov-
Witten invariants coming from universal relations among moduli spaces of stable maps with
the same target X. One of them is [21, 22]

π∗
[
Mg,n−1(X, α)

]vir
=
[
Mg,n(X, α)

]vir
, (2.6)

where Mg,n(X, α) →
π

Mg,n−1(X, α) is the map forgetting the last marked point. Its con-

sequence is the divisor equation

〈
hγ1 · · · γn

〉
g,α = h(α)

〈
γ1 · · · γn

〉
g,α, (2.7)

where h ∈ H2(X,Z) and γi are arbitrary. There are two exceptions to the validity of (2.6)
and hence (2.7), both in degree zero. If α = 0 then Mg,n(X, 0) consists of constant maps. The
stability condition requires domains of stable maps in this case to be themselves stable, not
just prestable. But when g = 0(1), a stable curve must have at least 3(1) marked points so
the spaces of curves M0,0, M0,1, M0,2, M1,0 are empty. However, M0,3,M1,1 are not, and (2.6)
fails for (g, n) = (0, 3), (1, 1).

Since H2(X,Z) � H2(X,Z) modulo torsion and ξ1, . . . , ξk form a basis in H2(X,Z),
there are precisely k basis elements in H2(X,Z). We assume, without loss of generality,
that h1, . . . , hk are the ones and that they are dual to ξ1, . . . , ξk, that is hi(ξj) = δij . The
divisor equation may now be used to flush all the insertions out of the divisor invariants.
By induction from (2.7),

〈
h
p1

1 · · ·h
pk
k

〉
g, �d

= dp1

1 · · ·d
pk
k 〈1〉g, �d , (2.8)
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assuming �d /= 0 to avoid low-genus problems in degree zero. Define the truncated divisor
potential F′div(t1, . . . , tk;Q1, . . . , Qk;x) as in (2.4) but restricting the sum to p1, . . . , pk and �d /= 0.
Using (2.8), we compute

F′div

(
t1, . . . , tk;Q1, . . . , Qk;x

)
=
∞∑

g=0

∑

�d /= 0

〈1〉g, �dQ
d1
1 · · ·Q

dk
k
x2g−2

∞∑

p1,...,pk=0

(d1t1)
p1 · · · (dmtm)pm
p1! · · · pm!

=
∞∑

g=0

∑

�d /= 0

〈1〉g, �dQ
d1
1 · · ·Q

dk
k
x2g−2ed1t1 · · · edktk

=
∞∑

g=0

∑

�d /= 0

〈1〉g, �d(Q1e
t1)d1 · · · (Qke

tk)dkx2g−2.

(2.9)

Obviously, as far as divisor invariants go,Q1, . . . , Qk are redundant and we can set them equal
to 1. This naturally leads to another generating function [6, 7, 25].

Definition 2.1. The reduced Gromov-Witten-free energy is

F ′
(
t1, . . . , tk;x

)
:=

∞∑

g=0

∑

�d /= 0

〈1〉g, �d e
d1t1 · · · edktkx2g−2. (2.10)

Its exponent Z′(t1, . . . , tk;x) := exp(F ′(t1, . . . , tk;x)) is called the reduced the Gromov-Witten
partition function. One writes F ′X, Z

′
X when the target manifold needs to be indicated.

The reduced-free energy is nonzero only if 〈c1(X), α〉−(N−3)(g−1) = 0 for some class
α /= 0, see (2.1). If X is the Calabi-Yau, then c1(X) = 0 and if, in addition, it is a threefold then
also N = 3 and the nontriviality condition holds for all classes and genera. For a toric Calabi-
Yau X, the reduced partition function Z′X is the quantity directly computed by the topological
vertex algorithm [12, 20, 26, 27].

Degree zero

The moduli spaces Mg,n(X, 0) consist of stable maps mapping stable curves into points.
Therefore, they split [3]

Mg,n(X, 0) =Mg,n ×X. (2.11)

This reduces degree zero invariants to integrals over the spaces of curves and over X. The
divisor equation (2.7) still holds for n ≥ 4(2), for genus g = 0(1), and for all n in higher
genus. Moreover, since α = 0, now it directly implies that all the divisor invariants vanish
except possibly for those that can no longer be reduced. Therefore, in genus g ≥ 2, the only
surviving invariants are 〈1〉g,0 and in genus 0, 1, we are left with 〈h3

i 〉0,0, 〈h
2
i hj〉0,0, 〈hihjhl〉0,0,
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and 〈hi〉1,0, respectively. There is automatically no dependence on Qi, so the degree zero
divisor potential is the same as the degree zero-free energy (cf. [28]):

F0(t1, . . . , tk;x
)

:= F0(t1, . . . , tk;x
)

=

⎛
⎝

k∑

i=1

〈
h3
i

〉
0,0

t3i
6
+
∑

i /= j

〈
h2
i hj
〉

0,0

t2i tj

2
+

∑

i /= j,j /= l,l /= i

〈
hihjhl

〉
0,0 titj tl

⎞
⎠ 1

x2

+
k∑

i=1

〈
hi
〉

1,0ti +
∞∑

g=2

〈1〉g,0x2g−2.

(2.12)

Note that degree zero genus 0(1) terms are the only parts of the free energy depending on
powers of ti rather than just their exponents eti . When X is compact, these terms reflect its
classical cohomology, namely [28]:

〈
hihjhl

〉
0,0 =

∫

X

hi ∪ hj ∪ hl

〈
hi
〉

1,0 = − 1
24

∫

X

hi ∪ c2(X).

(2.13)

In particular, they vanish unless X is a threefold. Higher genus contributions were
computed in the celebrated paper of Faber-Pandharipande [3]:

〈1〉g,0 =
(−1)g |B2g ||B2g−2|

(2g − 2)! 2g(2g − 2)
· 1

2

∫

X

(
c3(X) − c1(X) ∪ c2(X)

)

=
(−1)g−1(2g − 1)B2gB2g−2

(2g − 2)(2g)!
· 1

2

∫

X

(
c3(X) − c1(X) ∪ c2(X)

)
, g ≥ 2.

(2.14)

Here, ci(X) as before are the Chern classes and Bn are the Bernoulli numbers defined via a
generating function [29]:

z

ez − 1
=:

∞∑

n=0

Bn
zn

n!
. (2.15)

The only nonzero odd-indexed number is B1 = −1/2 and B0 = 1, B2 = 1/6, B4 = −1/30,
B6 = 1/42.

One sees from (2.14) that higher genus contributions all vanish for nonthreefolds
even when nondivisor invariants are taken into account because the Chern classes integrate
to zero. However, genus 0(1) terms may still survive if X has cohomology classes of
appropriate degree to cup with c2(X) and each other. But the divisor invariants still vanish
for dimensional reasons. Also note that (2.14) simplifies for the Calabi-Yau threefolds since
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c1(X) = 0 and
∫
Xc3(X) = χ(X) are the Euler characteristics of X. Thus, for compacting Calabi-

Yau threefolds,

〈1〉g,0 =
(−1)g−1(2g − 1)B2gB2g−2

(2g − 2)(2g)!
·
χ(X)

2
, g ≥ 2. (2.16)

When X is noncompact but α /= 0, the moduli Mg,n(X, α) may still be compact. This
usually happens if geometry forces images of stable maps to stay within a fixed compact
subset of X, for example, this is the case for the resolved conifold [10, 25]. Then, the virtual
class is still defined and no new problems arise. However, if α = 0 factorization (2.11) forces
Mg,n(X, 0) to be noncompact always. To the best of our knowledge, no virtual class theory
exists for noncompact moduli so technically 〈γ1 · · · γn〉g,0 for noncompact X are not defined at
all.

Leaving the land of rigor and arguing like string theorists, we notice that for the
Calabi-Yau threefolds, (2.16) still makes sense and can be taken as the “right” answer even for
noncompact X. This is consistent with a formal localization computation [19]. Unfortunately,
for g = 0, 1, the invariants contain insertions and we really need to know how to interpret
the integrals over X in (2.13). In physics literature, it is suggested that they correspond to
integrals over “noncompact cycles” [15] that can perhaps be interpreted as duals to compact
cohomology cocycles [30]. We conclude that for the resolved conifold (χ(X) = 2), the degree
zero-free energy has the form

F0
O(−1)⊕O(−1)(t;x) =

p3(t)
x2

+ p1(t) +
∞∑

g=2

(−1)g−1 (2g − 1)B2gB2g−2

(2g − 2)(2g)!
x2g−2, (2.17)

where pi are degree i homogeneous polynomials with rational coefficients. We should
mention that there are reasonable ways [15] of assigning values to p3, p1 at least for local
curves (see [11]) from equivariant and mirror symmetry viewpoints. For the resolved
conifold, they yield

F0
O(−1)⊕O(−1)(t;x) =

t3

6
1
x2

+
t

12
+
∞∑

g=2

(−1)g−1 (2g − 1)B2gB2g−2

(2g − 2)(2g − 2)!
x2g−2, (2.18)

and this function can be recovered from the mirror geometry. However, it appears that the
Donaldson-Thomas and the Chern-Simons theories store classical cohomology information
more crudely. We will see that in genus 0, 1 this answer or even the general template (2.17) is
inconsistent with exact duality (see discussion after Corollary 3.2).

Definition 2.2. The (full) Gromov-Witten-free energy is F := F0 + F ′ and the (full) Gromov-
Witten partition function is Z := exp(F) = Z0Z′, where F ′, Z′ are reduced versions from
Definition 2.1. As before, one writes FX, ZX to indicate the target manifold if necessary.
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For the resolved conifold, we get from (2.10)

FO(−1)⊕O(−1)(t;x) = F0
O(−1)⊕O(−1)(t;x) +

∞∑

g=0
d=1

〈1〉g,d edtx2g−2. (2.19)

The positive degree part converges to a holomorphic function in an appropriate domain of
t, x (recall that t is a negative Kähler volume). The same holds for all toric the Calabi-Yau
threefolds and for them the partition function is given directly by the topological vertex [12,
20, 26, 27]. We will discuss the case of the resolved conifold in more detail in Section 4. But
the degree zero part is not so well behaved. The sum in (2.17) diverges and fast. By a classical
estimate for Bernoulli numbers,

(2g)!
π2g22g−1

<
∣∣B2g
∣∣ <

(2g)!

π2g(22g−1 − 1)
, g ≥ 1, (2.20)

and the general term in (2.17) grows factorially for any x /= 0. Coming up with a space of
formal power series, where the sum lives is neither difficult nor helpful. A helpful insight
comes from the conjectural duality with the Donaldson-Thomas theory [6, 7] that suggests to
view (2.17) as an asymptotic expansion of a holomorphic function at a natural boundary point.
The function in question is the MacMahon function M(q), the point is q = 1 and the relation
to (2.17) is q = eix. We inspect this idea in Section 3.

3. The Donaldson-Thomas theory and the MacMahon function

In this section, we clarify the relationship between degree zero the Gromov-Witten invariants
and the MacMahon function:

M(q) :=
∞∏

n=1

(
1 − qn

)−n
, |q| < 1. (3.1)

This is a classical generating function for the number of plane partitions [31] [8, I.5.13 ]. More
to the point, it appears in [5–7] in the generating function of degree zero the Donaldson-
Thomas invariants of the Calabi-Yau threefolds.

The Donaldson-Thomas invariants

The Donaldson-Thomas theory provides an alternative to the Gromov-Witten description
of holomorphic curves in the Kähler manifolds, utilizing ideal sheaves instead of stable
maps. Intuitively, an ideal sheaf is a collection of local holomorphic functions vanishing on a
curve. This avoids counting multiple covers of the same curve separately and the Donaldson-
Thomas invariants are integers unlike their Gromov-Witten cousins. Counting ideal sheaves
is at least formally analogous to counting flat connections (i.e., locally constant sheaves) on a
real 3-manifold, and the Donaldson-Thomas invariants are holomorphic counterparts of the
Casson invariant in the Chern-Simons theory [13].
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The genus g of a stable map is replaced in the Donaldson-Thomas invariant Dκ,α by
the holomorphic Euler characteristic κ of an ideal sheaf. As conjectured in [6, 7] and proved in
[32], the degree zero partition function of the Calabi-Yau threefold X is given by

Z0
X(q) :=

∞∑

κ=0

Dκ,0q
κ =M(−q)χ(X), (3.2)

where as before χ(X) is the classical Euler characteristic.
Since both kinds of invariants are meant to describe the same geometric objects, one

expects a close relationship between them. Indeed, it is proved in [6, 7] for toric threefolds and
conjectured for general ones that reduced partition functions of the Donaldson-Thomas and
the Gromov-Witten theories are the same under a simple change of variables. This equality
does not extend directly to degree zero but it is mentioned in [6, 7] that the Gromov-Witten F0

is the asymptotic expansion of lnM(eix)(1/2)χ(X) at x = 0 (note the extra 1/2 in the exponent).
A quick look at (2.17) tells one that even for the resolved conifold, this can be true at

best for g ≥ 2 since no extra variables are involved in the Donaldson-Thomas function. We
will see that this is the case but the complete asymptotic expansion involves some interesting
extra terms that are perplexing from the Gromov-Witten point of view. However, the
MacMahon factor is exactly reproduced in the Chern-Simons theory (Lemma 5.1). Moreover,
with asymptotic expansions one has to specify not just a point but also a direction in the
complex plane in which the expansion is taken, and the correct direction here is not the
obvious (real positive) one.

ζ-resummation

To avoid imaginary numbers, we first consider lnM(e−x) instead of lnM(eix). For
motivation, we start with a provocative “computation” that converts an expansion in powers
of e−x into one in powers of x for a simpler function:

e−x

1 − e−x =
∞∑

n=1

e−nx =
∞∑

n=1

∞∑

k=0

(−nx)k

k!
′=′
∞∑

k=0

(−x)k

k!

∞∑

n=1

1
n−k

′=′
∞∑

k=0

(−1)k
ζ(−k)
k!

xk. (3.3)

The last two equalities are nonsense. Of course, the interchange of sums is illegitimate and∑∞
n=1(1/n

−k) =
∑∞

n=1n
k is (very) divergent. It certainly does not converge to ζ(−k) for positive

k, although by definition ζ(s) :=
∑∞

n=1(1/n
s), Re s > 1 is the Riemann zeta function [29].

Nonetheless, the end result is almost correct. Indeed, by definition of Bernoulli numbers
(2.15),

e−x

1 − e−x =
1
x

x

ex − 1
=

1
x

∞∑

j=0

Bj
xj

j!
, (3.4)

ζ(−k) = − Bk+1

k + 1
, k ≥ 1; ζ(0) = −1

2
(3.5)
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[29], so

e−x

1 − e−x =
1
x
− 1

2
+
∞∑

j=2

Bj

j!
xj−1 =

1
x
− 1

2
−
∞∑

k=1

Bk+1

(k + 1)!
xk =

1
x
+
∞∑

k=0

(−1)k
ζ(−k)
k!

xk. (3.6)

In other words our “computation” (3.3) only missed the first term 1/x.
A similar feat can be performed with lnM(e−x). First, we compute

lnM(e−x) = −
∞∑

n=1

n ln(1 − e−nx) =
∞∑

n=1

n
∞∑

k=1

(e−nx)k

k
=
∞∑

k=1

1
k

∞∑

n=1

n(e−kx)
n

=
∞∑

k=1

1
k

e−kx

(1 − e−kx)2
=
∞∑

k=1

1
k

1

(ekx/2 − e−(kx/2))2
=
∞∑

k=1

csch2(kx/2)
4k

.

(3.7)

So far, all the manipulations are legitimate assuming x > 0, although they would not be if we
used eix instead of e−x. Next, recall the Laurent expansion at zero of csch2:

csch2(z) = −
∞∑

g=0

22g(2g − 1)B2g

(2g)!
z2g−2. (3.8)

One can now pull the same trick as in (3.3) of interchanging sums and replacing divergent
power sums of integers with zeta values. Namely,

lnM
(
e−x
)
= −

∞∑

k=1

1
4k

∞∑

g=0

4(2g − 1)B2g

(2g)!
22g−2

(
kx

2

)2g−2

′=′ −
∞∑

g=0

(2g − 1)B2g

(2g)!
x2g−2

∞∑

k=1

1
k3−2g

′=′ −
∞∑

g=0

(2g − 1)B2gζ(3 − 2g)
(2g)!

x2g−2

=
ζ(3)
x2
− ζ(1)

12
+
∞∑

g=2

(2g − 1)B2gB2g−2

(2g − 2)(2g)!
x2g−2,

(3.9)

where we used (3.5) in the last equality. This series is even more problematic than the one in
(3.3) which at least made sense and converged for |x| < 2π . Now, not only does it diverge
factorially (see (2.20)) but also ζ(1) makes no sense at all, since ζ has a pole at 1. Nonetheless,
dropping the singular term ζ(3)/x2, the “infinite constant” −(ζ(1)/12) and formally replacing
x by −ix in the sum, we get exactly the higher genus Gromov-Witten-free energy in degree
zero (2.17).

The procedure used in (3.3), (3.9) can be traced back to Euler and in a more
sophisticated guise is used in quantum field theory under the name of ζ-resummation or
ζ-regularization [33]. The amazing fact is not that this is reasonable to do in physics (one
can argue that ζ(−k) has the same operational properties as the nonexistent

∑∞
n=1n

k), but
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that it actually produces nearly mathematically correct answers. Unlike a physical situation,
where a sensible answer is taken as a definition for an otherwise meaningless quantity, here
we have an identity where both sides make perfect sense (as a holomorphic function and its
asymptotic expansion, resp.) and only the passage from left to right is odious.

Mellin asymptotics

A fix is a well-known Mellin transform technique that not only takes care of singular terms,
divergent expansions, and infinite constants but even explains why the double blunder in
(3.3) and (3.9) computes most of the asymptotic correctly [34]. We use it here to make the
relationship between the degree zero invariants and the MacMahon function precise. Recall
that given an integrable function on (0,∞) with a possible pole at 0 and polynomial decay at
∞, its Mellin transform is

Mf(s) :=
∫∞

0
xs−1f(x)dx. (3.10)

The transform is defined and holomorphic in the convergence strip Re s ∈ (α, β), when
f(x)∼O(x−α) at 0 and ∼O(x−β) at ∞, assuming α < β. It is most useful when Mf
admits a meromorphic continuation to the entire complex plane since location of the poles
determines asymptotic behavior of the function at 0 and∞ (see [34] and below). For example,
M[e−nx](s) := Γ(s)/ns in Re s ∈ (0,∞) extends meromorphically with the poles of the gamma
function located at s = 0,−1,−2, . . . . Analogously,

M

[
e−x

1 − e−x
]
(s) =

∞∑

n=1

M[e−nx](s) =
∞∑

n=1

Γ(s)
ns

= Γ(s)ζ(s) in Re s ∈ (1,∞) (3.11)

extends with one additional zeta pole at s = 1.
The inverse Mellin transform recovers f as

f(x) =
1

2πi

∫ c+i∞

c−i∞
Mf(s)x−sds for c ∈ (α, β), (3.12)

assuming absolute integrability along Re s = c. In the cases of interest to us, all the poles are
located on the real axis to the left of α. If the transform satisfies appropriate growth estimates,
one can shift the integration contour in (3.12) to run counterclockwise along the real axis
from −∞ to α and back, Figure 1. This reduces (3.12) to a sum over residues at the poles by
the Cauchy residue theorem:

f(x) =
∞∑

n=0

Ress=−γn
[
Mf(s)

]
xγn . (3.13)

If γn are integers and the series converges, f must be real-analytic on (0,∞) with at worst a
pole at 0, and the residues give its Laurent coefficients at 0. For example, one can compute
the Taylor expansion of e−x at 0 using that M[e−x](s) := Γ(s), and the poles −γn = −n of Γ are
simple with the residues (−1)n [29]. However, in most cases the series (3.13) diverges for all
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α
c

Figure 1: Barnes contour for Mellin transforms.

x /= 0 and (3.11) is such a case. Under analytic assumptions that we do not reproduce here,
the following weakening of (3.13) is still true [34]:

If −γn are order mn poles of (meromorphic continuation of) Mf(s) and its Laurent
expansions at −γn have the form

Mf(s) =
An0

s + γn
+

An1

(s + γn)
2
+
mn−1∑

k=2

Ank

(s + γn)
k+1

, (3.14)

then an asymptotic expansion of f at x = 0 is

f(x)∼
∞∑

n=0

(
An0 −An1 lnx +

mn−1∑

k=2

(−1)kAnk

k!
lnkx

)
xγn . (3.15)

Now, it becomes clear where the extra 1/x in (3.6) came from. In addition to gamma poles in
(3.11) that produce terms ((−1)n/n!)ζ(−n)xn, there is also a simple pole of ζ(s) with residue 1
that gives Γ(1) · 1/x = 1/x. Thus, (3.6) is at least an asymptotic expansion of e−x/(1 − e−x) at
0. The fact that it actually converges to the function is a rare bonus. In general, even if (3.15)
does converge, it is not necessarily to the original function, see [34].

This technique extends to general Fourier sums (or harmonic sums) of the form

f(x) =
∞∑

k=1

akg
(
ωkx
)

(3.16)

because their Mellin transforms can be easily expressed in terms of those of the base function
g [34]. One can think of them as sums of generalized harmonics with amplitudes ak and
frequencies ωk, the usual ones corresponding to g(x) = eix, ωk = ± k. Indeed,

Mf(s) =
∞∑

k=1

ak

∫∞

0
xs−1g(ωkx)dx =

∞∑

k=1

ak
ωs
k

∫∞

0
xs−1g(x)dx = D(s)Mg(s), (3.17)
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where D(s) :=
∑∞

k=1ak/ω
s
k is the Dirichlet series of the sum. If D(s) is entire and Mg(s) only

has simple poles at s = 0,−1,−2, . . . , then

f(x)∼
∞∑

n=0

Ress=−n
[
Mg(s)

]
D(−n)xn. (3.18)

If, moreover, g itself is entire and decays fast enough on R+, then g(x) =
∑∞

n=0gnx
n,

Ress=−n[Mg(s)] = gn and f(x)∼
∑∞

n=0gnD(−n)xn. The same answer can be obtained by an
(legitimate under the circumstances) interchange of sums in (3.16):

f(x) =
∞∑

k=1

ak
∞∑

n=0

gn(ωkx)
n =

∞∑

n=0

gn

(
∞∑

k=1

akω
n
k

)
xn =

∞∑

n=0

gnD(−n)xn. (3.19)

In particular, this expansion is not just asymptotic but convergent. If D(s) is not entire
but only meromorphic, the last two equalities fail. However, (3.15) still ensures that formal
interchange of sums gives the regular part of the asymptotic expansion correctly as long asD-poles are
real-part positive. This is precisely what happened in (3.3).

Ramanujan-Wright expansion

The situation in (3.9) is more complicated. We compute from (3.7):

M
[

lnM(e−x)
]
(s) =

∞∑

k=1

1
k

∞∑

n=1

nM
[
e−nkx

]
(s) =

∞∑

k=1

1
k

∞∑

n=1

nΓ(s)
(nk)s

. (3.20)

Now, assume that Re s is large enough for the double series to converge absolutely, for
example, Re s > 2, and proceed

=
∞∑

k,n=1

Γ(s)
ns−1ks+1

= Γ(s)
∞∑

n=1

1
ns−1

·
∞∑

k=1

1
ks+1

= Γ(s)ζ(s − 1)ζ(s + 1). (3.21)

The extra zeta poles occur at s − 1, s + 1 = 1, that is, s = 0, 2, and s = 0 becomes a double pole.
Formula (3.15) now yields an asymptotic expansion for lnM(e−x) that we state as a theorem.
This is a particular case of asymptotic expansions for analytic series obtained by Ramanujan
who used a rough equivalent of the Mellin asymptotics, the Euler-Maclaurin summation (see
[35, Theorem 6.12]). The Ramanujan considerations were heuristic and in any case remained
unpublished until much later. The first rigorous asymptotic for lnM(e−x) is due to Wright
[36]. We sketch a proof for the convenience of the reader.

Theorem 3.1 (Ramanujan-Wright). Let M(q) :=
∏∞

n=1(1 − qn)
−n, |q| < 1 be the MacMahon

function. Then lnM(e−x) has the Mellin transform M[lnM(e−x)](s) = Γ(s)ζ(s−1)ζ(s+1), Re s >
2, and its asymptotic expansion at x = 0 along R+ is

lnM(e−x)∼ ζ(3)
x2

+
lnx
12

+ ζ′(−1) +
∞∑

g=2

(2g − 1)B2gB2g−2

(2g − 2)(2g)!
x2g−2. (3.22)
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Proof. Recall that ζ(s) has “trivial zeros” at negative even integers [29]. Poles of Γ(s) at
negative odd integers are therefore canceled by zeros of ζ(s − 1). Analytical assumptions
needed for (3.15) to hold are satisfied here by the classical estimates for Γ and ζ [29]. The
contributing poles are as follows.

(i) Gamma poles at s = −2,−4, . . . ,−2g, . . . with residues ((−1)2g/(2g)!)ζ(−2g − 1)ζ(1 −
2g).

(ii) Simple pole of ζ(s − 1) at s = 2 with residue 1 · Γ(2)ζ(3) = ζ(3).

(iii) Double pole of Γ(s), ζ(s + 1) at s = 0.

We have from the first two items and (3.5)

ζ(3)
x2

+
∞∑

g=1

1
(2g)!

ζ(−2g − 1)ζ(1 − 2g)x2g =
ζ(3)
x2

+
∞∑

g=2

(2g − 1)B2gB2g−2

(2g − 2)(2g)!
x2g−2. (3.23)

To take care of the double pole, we need more than just the residue. By the well-known
properties of Γ and ζ,

Γ(1 + s) = 1 − γs +O
(
s2),

ζ(s) =
1

s − 1
+ γ +O(s − 1),

(3.24)

where γ is the Euler constant. Thus,

Γ(s)ζ(s + 1) =
Γ(s + 1)ζ(s + 1)

s
=
(

1
s
− γ +O(s)

)(
1
s
+ γ +O(s)

)
=

1
s2

+O(1),

Γ(s)ζ(s − 1)ζ(s + 1) =
(

1
s2

+O(1)
)(
ζ(−1) + ζ′(−1)s +O(s2)

)

=
ζ(−1)
s2

+
ζ′(−1)
s

+O(1) =
−1/12
s2

+
ζ′(−1)
s

+O(1).

(3.25)

By (3.15), the corresponding terms in the asymptotic expansion are lnx/12 + ζ′(−1), and it
remains to combine the expressions.

In hindsight, it is amusing how much of (3.22) is visible in the naive expression
(3.9), not just the regular part but also ζ(3)/x2 and even 1/12 in front of the logarithm. The
only hidden term is ζ′(−1), sometimes called the Kinkelin constant [31], and for this reason
perhaps it is usually missing in physical papers.



Sergiy Koshkin 19

Stokes phenomenon and the natural boundary

As already mentioned, the relationship between q and x is q = eix not q = e−x. Replacing
formally x by −ix in (3.22), we recover the infinite sum of (2.17) along with three extra terms:

−ζ(3)
x2

+
ln(−ix)

12
+ ζ′(−1). (3.26)

How legitimate is this substitution? Had (3.22) been a convergent Laurent expansion, there
would be no such question. But it is asymptotic and represents lnM(e−x) only up to
exponentially small terms (more precisely, “faster than polynomially small” but we follow
the standard abuse of terminology). It is well-known that such expansions depend on
a direction in the complex plane in which they are taken. As one crosses certain Stokes
lines originating from the center of expansion, exponentially small terms may become
dominant and change the expansion drastically. This change is commonly known as the Stokes
phenomenon. Moreover, for an asymptotic expansion in some direction to exist, the function
must be holomorphic in a punctured local sector containing this direction in its interior.
Switching from x to −ix while keeping x real positive forces us to approach q = ei0 = 1 along
the upper arc of the unit circle, that is, along a purely imaginary direction. For an asymptotic
expansion in this direction, we need to have M(q) analytically continued beyond the unit
disk |q| < 1. But can it be continued?

Equation (3.1) does not look very promising. In fact, it strongly suggests that M(q)
has a singularity at each root of unity. But roots of unity are dense on the circle making it a
natural boundary for M(q) and no analytic continuation exists. It turns out to be quite hard to
turn this observation into a proof, but Almkvist shows [31] that if a/b is a proper irreducible
fraction, then

lnM(e2πi(a/b)e−x) ∼ ζ(3)
b3x2

+
b

12
lnx +O(1) (3.27)

for real positive x. Thus, every root of unity is indeed singular, and |q| = 1 is the natural
boundary.

This forces us to reconsider keeping x real in lnM(eix). Should x approach 0 from
the positive imaginary direction, we can set x = iy with y > 0, and Theorem 3.1 gives us an
asymptotic expansion in y. We can rewrite it as an expansion in x of course as long as it is
understood that x in it is positive imaginary. This may seem like an underhanded trick but it
is not. The natural domain of lnM(eix) is the upper half-plane, and the only distinguished
direction in its interior is the positive imaginary one.

Corollary 3.2. Asymptotic expansion of lnM(eix) at x = 0 along iR+ is (taking the principal branch
of the logarithm)

lnM(eix)∼ − ζ(3)
x2

+
ln(−ix)

12
+ ζ′(−1) +

∞∑

g=2

(−1)g−1 (2g − 1)B2gB2g−2

(2g − 2)(2g)!
x2g−2

∼ − ζ(3)
x2

+
lnx
12

+ ζ′(−1) − πi
24

+
∞∑

g=2

(−1)g−1 (2g − 1)B2gB2g−2

(2g − 2)(2g)!
x2g−2.

(3.28)
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Comparing this to (2.17), one ought to be somewhat perplexed. If we are to take (3.28)
at face value then p3(t) = −ζ(3), p1(t) = ζ′(−1) − πi/24 (?!), and there is no space for lnx/12
at all. Aside from the fact that pi-s are supposed to be homogeneous polynomials of the
corresponding degree, the numbers involved are not even rational, ζ(3) by the Apéry famous
result. Nevertheless, the MacMahon factor appears as is in the Chern-Simons partition
function, see Lemma 5.1.

The disappearance of extra variables and appearance of irrationals suggest that some
kind of averaging is involved. It would not explain lnx/12, but we may guess, that averaging
of p1(t) is divergent and has to be regularized giving rise to an anomalous term. Why the
Donaldson-Thomas theory does not reproduce the degree zero contributions in low genus
is beyond our expertise. However, from the Chern-Simons vantage point this ought to be
expected. The idea of large N duality is that the same string theory is realized on manifolds
with different topology [19, 20]. However, the degree zero terms in genus 0, 1 are exactly
the ones that record the classical cohomology of the target manifold, see (2.13). Although
some relation between topologies of manifolds supporting equivalent string theories may
be expected, the entire cohomology ring is certainly too much to survive a geometric
transition. Therefore, these classical terms cannot enter an invariant partition function except
via averages that remain unchanged by such transitions.

4. Topological vertex and partition function of the resolved conifold

This section and Section 5 are to be read in conjunction. We review the salient points of
two combinatorial models, the topological vertex [12, 20, 26, 27], and the Reshetikhin-
Turaev calculus [19, 37], highlighting the differences but more importantly the parallels
between them. The former computes the Gromov-Witten invariants of toric Calabi-Yau
threefolds, and the latter computes the Chern-Simons invariants of all closed 3 manifolds.
The reason to compare them is the conjectural large N duality between the two. Both models
encode their spaces into labeled diagrams and then assign values to them according to
the Feynman-like rules. However, the encoding and the rules are quite different despite
intriguing correspondences. The reason why we use the topological vertex instead of just
summing up (2.19) as in [3] is that it directly gives the partition function in correct variables
and in an appealing form. Comparing the answer to the Chern-Simons one, it becomes
reasonable to express it in a closed form via the quantum Barnes function (Theorem 5.2).

Toric webs

Just as the Reshetikhin-Turaev calculus [19, 37], the topological vertex is a diagrammatic state-
sum model. This means that geometry of a space is encoded into a diagram, a graph enhanced
by additional data, and the value of an invariant is computed by summing over all prescribed
labelings of the diagram. In the Reshetikhin-Turaev calculus, the diagrams are link diagrams
representing 3 manifolds via surgery [37, 38]. In the topological vertex, they are toric webs
representing toric Calabi-Yau threefolds.

A toric web is an embedding of a trivalent planar graph with compact and noncompact
edges into R

2 that satisfies some integrality conditions [12, 20, 27]. Namely, vertices have
integer coordinates, and direction vectors of edges can be chosen to have integer coordinates.
Moreover, if the direction vectors are chosen primitive (without a common factor in
coordinates), any pair of them meeting at a vertex forms a basis of Z

2, and every triple
at a vertex if directed away from it adds up to zero. Examples for the resolved conifold
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(0,1)

(−1,−1)

(1,1)

(0,−1)

(−1,−1)

(−1,1)

(−1,1)

(1,1)

Figure 2: Toric webs of O(−1) ⊕ O(−1) and local CP1 ×CP1.

0

1
1

1 1
ξ

ξ1

ξ2

ξ1

ξ2

Figure 3: Toric graphs of O(−1) ⊕ O(−1) and local CP1 ×CP1.

O(−1) ⊕ O(−1) and the local CP
1 × CP

1 (i.e., the total space of T1,0(CP
1 × CP

1)) are shown in
Figure 2, where the primitive directions of noncompact edges are also indicated. Toric webs
related by a GL2Z transformation and an integral shift represent isomorphic threefolds. For
this reason, we did not label the vertices in Figure 2, one may assume that one of them is (0, 0),
and all compact edges have the unit length. The toric web is a complete invariant of a toric
Calabi-Yau. Indeed, the moment polytope of the torus action can be recovered from it [12,
4.1] and therefore the threefold itself up to isomorphism by the Delzant classification theorem
[39]. Analogously, a 3-manifold is recovered from its link diagram up to diffeomorphism by
surgery on the link [37, 38]. Having toric webs rigidly embedded in R

2 is inconvenient, one
would prefer to treat them as abstract graphs, perhaps with additional data. This is possible
at least as far as the topological vertex is concerned although the resulting graphs may no
longer be complete invariants.

Tracing back the construction of a threefold from its web, one concludes that the
vertices correspond to fixed points of the torus action and compact edges correspond to
fixed rational curves (copies of CP

1). Being rational curves sitting inside the Calabi-Yau
threefold, their normal bundles are isomorphic to O(n − 1) ⊕ O(−n − 1), n = ± 1,± 2, . . . . The
framing number ne for each edge e is assigned the value from the normal bundle type of the
corresponding curve. This only determines ne up to sign, and the edge must be oriented
to specify it. Although on their own these orientations are chosen arbitrarily, they must be
aligned with the framing numbers, the exact rule is given in [12, 4.2].

If ξ1, . . . , ξk is an integral basis in H2(X,Z) as in Section 2, then each edge curve Ce

represents a homology class expressible as a linear combination [Ce] = m1ξ1 + · · · + mkξk,
mi ∈ Z. One requires these homology relations to be attached to the edges as well. The result
is a graph called the toric graph. Toric graphs for O(−1) ⊕ O(−1) and the local CP

1 × CP
1 are

shown in Figure 3. Framing numbers and homology relations are the only data aside from the
topology of the web used in the topological vertex. We emphasize that both can be recovered
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λ = (4, 2, 2, 1, 0, · · · )

(a)

λ′ = (4, 3, 1, 1, 0, · · · )

(b)

Figure 4: Young diagram and its conjugate.

algorithmically from the web itself without any recourse to the original threefold [40],
[12, 4.1].

Partitions and the Schur functions

We wish to briefly describe the topological vertex algorithm to see how q-bifactorials
naturally emerge from it. This requires some basic information about partitions [8] that
appear in the Reshetikhin-Turaev calculus as well. Partitions serve as labels in state sums
defining the invariants. A partition λ is an element of Z

∞
+ with only finitely many nonzero

entries that are nonincreasing, that is,

λ =
(
λ1, λ2, . . . , λN, 0, . . .

)
, λi ∈ Z+, λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. (4.1)

Let denote the set of all partitions. The number of nonzero entries l(λ) is called the length of
a partition, and the sum of all entries |λ| := λ1 + λ2 + · · · + λN is called its size (or weight).
Partitions are visualized by Young diagrams, rows of boxes stacked top down with λi boxes
in ith row, Figure 4. The conjugate partition λ′ is obtained visually by transposing the Young
diagram along the main diagonal and analytically as λ′i := max{j | λj ≥ i}. Note that λ′′ = λ
and λ′1 = l(λ), |λ′| = |λ|. Another relevant characteristic of a partition, sometimes called its
quadratic Casimir, is

κ(λ) :=
∞∑

i=1

λi
(
λi − 2i + 1

)
,κ(λ′) = −κ(λ), κ(λ) ∈ 2Z. (4.2)

Partitions represent possible states of compact edges in a toric graph and a combination of
partition labels for each edge represents a state of the graph [27]. The partition function is
then obtained by summing over all possible states.

Amplitudes (see Definition 4.2) of a labeled graph are defined via a specialization of
the Schur functions sλ indexed by partitions. They are symmetric “functions” in the sense
of Macdonald [8], that is, formal infinite sums of monomials in countably many variables
that become symmetric polynomials if all but finitely many variables are set equal to zero
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(more technically, if monomials containing any variable outside of a finite set are discarded
from the sum). For instance, if

λ= (1n) :=

⎛
⎝1, 1, . . . , 1︸ ︷︷ ︸

n times

, 0, . . .

⎞
⎠ (4.3)

then s(1n) is the nth elementary symmetric function:

s(1n)(x) = en(x) :=
∑

1≤i1<···<in<∞
xi1 · · ·xin . (4.4)

In general, sλ are polynomials in the elementary symmetric functions given by the Jacobi-
Trudy formula sλ = det(eλ′i−i+j), 1 ≤ i, j ≤ l(λ′) = λ1. For example,

s(2,1,0,...)(x) =

∣∣∣∣∣
e2 e0

e3 e1

∣∣∣∣∣ = e1e2 − e0e3 =
∞∑

i=1

xi ·
∞∑

i<j=1

xixj −
∞∑

i<j<k=1

xixjxk. (4.5)

Since en are homogeneous of degree n, the Jacobi-Trudy formula implies that sλ are also
homogeneous of degree |λ|, that is, sλ(ax) = a|λ|sλ(x). Moreover, sλ, λ ∈ P form a linear
basis in the space of symmetric functions, in particular sλsμ =

∑
ν∈Pc

λ
μνsν. It turns out that

cλμν are nonnegative integers that vanish unless |ν| = |λ| + |μ|. They are the famous Littlewood-
Richardson coefficients [8].

Specializations of the Schur functions appearing in the topological vertex are obtained
by specializing the formal variables xi to elements of a geometric series possibly modified at
finitely many entries. Such specializations were extensively studied by Zhou [4]. Define the
Weyl vector ρ by

ρ :=
(
− 1

2
,−3

2
, . . .

)
=
(
− i + 1

2

)∞

i=1
. (4.6)

Note that ρ is not a partition. Introduce a new formal variable q and for any vector ξ set
qξ := (qξ1 , qξ2 , . . .), so, in particular, qρ = (q−(1/2), q−(3/2), . . .) is a geometric series.

Definition 4.1. One-, two-, and three-point functions of the topological vertex are, respectively
[4, 12],

Wλ(q) := sλ(qρ) =Wλ0(q),

Wλμ(q) := sλ(qρ)sμ
(
qλ+ρ
)
,

Wλμν(q) := q(κ(μ)+κ(ν))/2
∑

α,β,γ∈P
cλαγc

ν′

γβ

Wμ′α(q)Wμβ′(q)
Wμ0(q)

.

(4.7)

There is a shorter expression for the three-point function via the skew Schur functions
[4, 27] but we do not need it here and (4.7) is somewhat reminiscent of the Verlinde formula in
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the Chern-Simons theory [41]. We assume q ∈ C\R− and q1/2 is then defined by the principal
branch of the square root. One can see by inspection from (4.4) that en(qλ+ρ) converges for
|q| > 1. Since the Schur “functions” sμ are polynomials in en, they are also well defined as
honest functions of q upon specializing to qλ+ρ.

To be consistent with the usual basic hypergeometric notation [42], we wish to switch
from |q| > 1 to |q| < 1. This can be done using a symmetry of the two-point functions [4]

Wλμ(q) = (−1)|λ|+|μ|Wλ′μ′(q−1) = (−1)|λ|+|μ|sλ′(q−ρ)sμ′
(
q−λ

′−ρ). (4.8)

This identity is a curious one since the two sides never converge simultaneously (both diverge
for |q| = 1). It has the same meaning as a more familiar identity:

∞∑

i=1

qi =
q

1 − q = − 1
1 − q−1

= −
∞∑

i=0

q−i = −q
∞∑

i=1

q−i, (4.9)

where the two sides never converge simultaneously either. In fact, Wλμ(q) are rational
functions of q1/2 and can be analytically continued to C \ R−, (4.8) expresses this analytic
continuation.

The appearance of q-bifactorials in partition functions is due to the Cauchy identity for
the Schur functions [4, 8]

∑

λ∈P
sλ(x)sλ′(y)u|λ| =

∞∏

i,j=1

(
1 + uxiyj

)
. (4.10)

If xi = qi−1, yj = qj−1, the right-hand side of (4.10) becomes

∞∏

i,j=1

(
1 + uqi−1qj−1) =

∞∏

i,j=0

(
1 + uqi+j

)
= (u; q)(2)∞ . (4.11)

Note that although (4.10) is a formal identity if both sides converge as in (4.11), it holds as a
function identity.

Partition functions as state sums

Let us now inspect the state sums appearing in the topological vertex. Let V and Ec denote
the sets of vertices and compact edges of a toric graph, respectively. Choose an arbitrary
orientation for each element of Ec, this determines the sign of the framing numbers. Assign
a formal variable ai to each element of a basis ξi ∈ H2(X,Z), and set ae := am1

1 · · ·a
mk

k for
the corresponding edge curve [Ce] = m1ξ1 + · · · + mkξk. Finally, label all compact edges by
arbitrarily chosen partitions λe ∈ P and noncompact ones by the trivial partition 0 ∈ P.
Triples of partitions �λv := (λ1, λ2, λ3) are then assigned to each vertex according to the
following rule.

Starting with any of the three edges and going counterclockwise around the vertex
pick, the edge label if the arrow on the edge is outgoing and its conjugate if the
arrow is incoming, Figure 5.
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λ

ν μ

υ

Figure 5: Partition triple at a vertex �λv := (λ′, μ′, ν).

Noncompact edges present no problem since 0′ = 0. This determines the triple up to cyclic
permutation which is enough sinceW�λv

:=Wλ1λ2λ3 has cyclic symmetry.

Definition 4.2. Amplitude of a labeled toric graph relative to a basis ξ1, . . . , ξk ∈ H2(X,Z) is
given by [12, 27]

A{λe}
(
a1, . . . , ak; q

)
:=
∏

e∈Ec
(−1)|λe |(ne+1)qneκ(λe)/2a

|λe |
e ·
∏

v∈V
W�λv

(q). (4.12)

The main result of [12] can be stated as follows.

Theorem 4.3. The reduced Gromov-Witten partition function of a toric Calabi-Yau threefold X
relative to a basis ξ1, . . . , ξk ∈ H2(X,Z) is given by a state sum:

Z′X
(
a1, . . . , ak; q

)
=
∑

{λe}λe∈P

A{λe}
(
a1, . . . , ak; q

)
=

∑

λ1,...,λ|Ec |∈P
Aλ1,...,λ|Ec |

(
a1, . . . , ak; q

)
, (4.13)

assuming in the second sum that the edges are numbered and λi := λei .

Partition function of the resolved conifold

Here, H2(X,Z) is one-dimensional and ξ = [CP
1]. There is only one a variable and only one

edge. The amplitude Aλ for λ ∈ P is (see Figure 3 and (4.8))

Aλ(a; q) := (−1)|λ|a|λ| ·Wλ00(q)Wλ′00(q) = (−a)|λ|Wλ(q)Wλ′(q)

= (−a)|λ|(−1)|λ|+|λ
′ |sλ′(q−ρ)sλ(q−ρ).

(4.14)
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Recalling that |λ′| = |λ|, − ρ = (i − (1/2))∞i=1 and sλ is homogeneous of degree |λ|, we compute
further

(−a)|λ|sλ′
(
qi−(1/2))sλ

(
qj−(1/2)) = (−a)|λ|q(|λ|+|λ′ |)/2sλ′

((
qi
))
sλ
((
qj
))

=
(
− aq−1)|λ|sλ′

((
qi
))
sλ
((
qj
))
.

(4.15)

Suppose that a is small enough for
∑

λ∈PAλ(a; q) to converge then, we get by Theorem 4.3
and the Cauchy identity (4.10)

Z′X
(a; q) =

∑

λ∈P
Wλ(q)Wλ′(q)(−a)|λ| =

∑

λ∈P
sλ′
((
qi
))
sλ
((
qj
))(
− aq−1)|λ|, (4.16)

=
∞∏

i,j=1

(
1 +
(
− aq−1)qiqj

)
=
∞∏

i,j=0

(
1 − aqqi+j

)
= (aq; q)(2)∞ . (4.17)

If we accept the MacMahon function as the degree zero partition function of the resolved
conifold (despite the issues discussed after Corollary 3.2), then

Z0
X(q) =M(q)χ(X)/2 =

1
∏∞

n=1(1 − qn)
n =

1

(q; q)(2)∞
. (4.18)

We conclude that the (full) Gromov-Witten partition function of the resolved conifold is

ZX(a; q) = Z0
X(q)Z

′
X(a; q) =

(aq; q)(2)∞
(q; q)(2)∞

, (4.19)

as used in Section 1.

5. Reshetikhin-Turaev calculus and partition function of the 3-sphere

As explained in the beginning of Section 4, this one is complementary to it. We briefly
review the slNC Reshetikhin-Turaev calculus [19, 37] in a form that invites analogies with the
topological vertex. In particular, we forgo the usual terminology of dominant weights and
irreducible representations of slNC, and rephrase everything directly in terms of partitions.
The immediate goal is to compute the partition function of S3 in a suitable form and compare
it to the one for the resolved conifold (Theorem 5.2).

Whereas computation of the Gromov-Witten invariants in all degrees and genera is an
open problem (beyond the cases of toric Calabi-Yau threefolds [12] and local curves [11]),
the Reshetikhin-Turaev calculus provides an algorithm for computing the Chern-Simons
invariants for arbitrary closed 3 manifolds, especially effective for the Seifert-fibered ones
[43]. This circumstance combined with explicit large N dualities for the toric Calabi-Yau
threefolds is the secret behind physical derivation of the topological vertex. To be sure,
there is a catch. The Reshetikhin-Turaev model (or equivalently Atiyah-Turaev-Witten TQFT
[37, 44]) is not a single model but a countable collection of them, one for each pair of positive
integers k,N known as level and rank. This would not be much of a hindrance if not for
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∅

Figure 6: Blow up/down and handle slide over a trefoil knot.

the tenuous connection between invariants for different k and N. As a rule, geometers are
interested in asymptotic behavior for large k [45] and physicists in both large k and large N
behavior. The Reshetikhin-Turaev sums with ranges depending explicitly on k and N are not
exactly custom-made for those types of questions. In fact, they require significant work even
in simplest cases to be converted into asymptotic-friendly form. No general method exists;
most common ad hoc procedures use the Poisson resummation [43] or finite group characters
[19, 46].

The idea of the Reshetikhin-Turaev construction (related but different from the Witten
original one [41] as formalized by Atiyah [44]) is to combine some deep topological results
of Likorish-Wallace and Kirby with the representation theory of quantum groups [19, 37].
A theorem of Likorish and Wallace asserts that any closed 3-manifold can be obtained by
surgery on a framed link in S3 [38]. This is complemented by the Kirby characterization [47]
of links that produce diffeomorphic manifolds as those related by a sequence of Kirby moves:
blow up/down and handle-slide. Blow up/down adds/removes an unknotted unlinked
component with a single twist and handle-slide pulls any component over any other one,
Figure 6. Thus, if one can find an invariant of framed links that remains unchanged under
Kirby moves, it automatically becomes an invariant of closed 3-manifolds via surgery.

Hopf and twist matrices

Framed links can be represented up to isotopy by plane diagrams with under- and
overcrossings and twists as in Figure 6 providing a combinatorial model of 3-manifolds.
Slicing a link diagram bottom to top and avoiding slicing through cups, caps, twists, or
crossings, one gets arrays of basic elements Figure 7 stacked on top of each other.

This decomposition fits nicely with structure of a linear representation category.
Placing elements next to each other corresponds to tensoring and stacking corresponds
to composition. It remains to find an object with representation category meeting all the
invariance requirements. It turns out that it is extremely hard to find one producing nontrivial
invariant. Classical Lie groups and algebras do not work unfortunately. One has to deform
the universal enveloping algebras of, say, slNC into quantum groups and then specialize the
deformation parameter q to a root of unity q = e2πi/(k+N). As if that were not enough, the
tensor product of representations has to be modified as well. The end result [19, 37, 46] is a
representation-like category with only a finite number of irreducible representations. For slNC at
level k, they are indexed by partitions with the Young diagrams in the (N − 1) × k rectangle,
that is,

PkN−1 := {λ ∈ P | l(λ) ≤N − 1, l(λ′) = λ1 ≤ k}. (5.1)
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Figure 7: Basic elements and slicing of an Hopf link.

In the equivalent language of dominant weights, this corresponds to the weights in the
Weyl alcove of the Cartan-Stiefel diagram of slNC scaled by k, see [19]. The Reshetikhin-
Turaev invariants are computed as state sums over labelings of a link diagram with each link
component labeled by a partition from PkN−1, a finite set.

Thus, unlike in the topological vertex, where sums are taken over all partitions and
are infinite, in the Reshetikhin-Turaev calculus sums are finite with explicit dependence
on k, N. Once a diagram is labeled, morphisms between irreducible representations and
their tensor products are assigned to the elements from Figure 7, and then assembled
by tensoring, composing, and eventually taking traces (corresponding to caps) to obtain
numerical invariants. The hardest ones to compute are the crossing morphisms for they
depend on the so-called R-matrix of a quantum group [19, 37]. Good news is that for a large
class of 3-manifolds, the Seifert-fibered ones and others, the use of crossing morphisms can
be avoided entirely in computing the invariants [41, 43] (but not in proving their invariance).
In terms of conformal field theory, they are completely determined by fusion rules without
involving the braiding matrices [46]. This means that the only algebraic inputs are the Hopf
and twist matrices S and T :

Sλμ = S00Wλμ; Tλμ = T00q
(1/2)C2(λN)δλμ∗ . (5.2)

The notation is as follows.

Wλμ is the normalized quantum invariant of the Hopf link Figure 7 with
components labeled by partitions λ, μ (see more below);

μ∗ is the partition slN-dual to μ, μ∗i := μ1 − μN−i+1 for 1 ≤ i ≤ N − 1 and μ∗i := 0 for
i ≥N (not to be confused with the conjugate partition μ′);

λN denotes the glN coordinates of (N − 1) × k partition λ, λNi := λNi − |λ|/N, in
particular ρNi := (1/2)(N − 2i + 1);

C2(λN) := λN · (λN+2ρN) is the quadratic Casimir of λ as a dominant weight closely
related to the quadratic Casimir κ(λ) of a partition λ:

C2
(
λN
)
= κ(λ) +N|λ| − |λ|

2

N
. (5.3)

We will say more about the normalization constants S00, T00 below.
Formulas for Wλμ were originally obtained by Kac and Peterson in 1984 in the

context of affine Lie algebras. Their relevance to the Chern-Simons theory was discovered
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by Witten [41]. In 2001, Lukac [48] realized that they are specializations of the Schur functions
of N variables, namely,

Wλμ(N; q) := sλ
(
qρ

N)
sμ
(
qλ

N+ρN) with q = e2πi/(k+N). (5.4)

This should be compared to the two-point functions (4.7) of the topological vertex. This
realization led among other things to the physical derivation of the topological vertex, where
Wλμ(q) are obtained as some loosely interpreted limits of Wλμ(N; q) [20, 26, 40]. Let us
emphasize the differences though. In (4.7), q is a formal variable whereas in (5.4) it is a
number. Moreover, the number of variables in sλ, sμ before specialization is infinite whereas
here it is N <∞. This last circumstance dramatically simplifies many computations withWλμ

compared to their analogs with Wλμ because infinite specializations often have nice analytic
expressions [8].

The twist matrix T also has a vertex counterpart in the form of the framing numbers
ne that contribute factors of qneκ(λe)/2 to the amplitude (4.12). Incidentally, this explains their
name. In the Reshetikhin-Turaev sums, Tλμ factors account for twists in link diagrams that
in their turn represent framing of a link, that is, trivialization of its normal bundle up to
homotopy. If one thinks of strands as thin ribbons, the signed number of twists gives exactly
the signed number of full twists in a ribbon.

The two-point functions are symmetric Wλμ =Wμλ, and the one-point functions Wλ :=
Wλ0 = W0λ are called the quantum dimensions of representations indexed by λ. The quantum
diameter is

D2 :=
∑

λ∈PkN−1

Wλ(N; q)2, (5.5)

and S00 is simply its inverse S00 := D−1. Analogously, T00 is the inverse of the charge factor
ζ := e2πic/24, where c := k dimC(slNC)/(k +N) is the so-called central charge from conformal
field theory [46]. Thus, explicitly, T00 := ζ−1 = q−k(N

2−1)/24. These normalizations are needed
to make the S and T matrices satisfy the defining relations of SL2Z :

(ST)3 = S2, S2T = TS2, S4 = I. (5.6)

Note that unlike Wλμ and q(1/2)C2(λN) that depend on k only via q = e2πi/(k+N) this is no longer
the case for the normalizing constants S00, T00, and this causes major problems in relating the
Chern-Simons expressions to the Gromov-Witten ones [19].

Reshetikhin-Turaev invariants

Let Jλ1,...,λn(L) denote the colored HOMFLY polynomial of an n-component link L, that is, the
amplitude of the link diagram computed as outlined above after labeling the link components
by partitions (colors) λ1, . . . , λn, see [19, 37] for specifics. Then the Reshetikhin-Turaev invariant
of the 3-manifold M surgered on L from S3 is

τ(M) := ζ−3σD−n−1
∑

λ1,...,λn∈PkN−1

Jλ1,...,λn(L)Wλ1 · · ·Wλn, (5.7)
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where σ is the signature of the linking matrix of L [38]. Since S3 can be obtained from itself
by surgery on the empty link ∅ with J(∅) = 1, n = 0 components and 0 linking matrix, we
have

ZS3 := τ(S3) = D−1 = S00 =

⎛
⎝
∑

λ∈PkN−1

Wλ(N; q)2

⎞
⎠
−(1/2)

. (5.8)

This is the Chern-Simons partition function of the 3-sphere to be identified after Witten [1]
and Gopakumar-Vafa [2] with the string partition function of T ∗S3. Note that (5.5) bears
some resemblance to the expression (4.16) for the reduced partition function of the resolved
conifold especially if we interpret (−a)|λ| as a convergence factor needed to extend the sum
from PkN−1 to all partitions. However, unlike (4.16) that gives Z′X directly formula (5.5) gives
Z−2
S3 , so naively one does not expect these partition functions to be nearly equal.

The normalization adopted in (5.7) is the one that makes τ(M) into an honest
invariant. It is due to Reshetikhin and Turaev and is known to differ from the physical
normalization of Witten [41] coming from the path integral. Although the physical
normalization gives better agreement with the Gromov-Witten theory [49], it has not been
consistently defined in general. In the known examples, it is discerned by comparing τ(M)
to heuristic path integral expansions [45].

Partition function of S3

Although we used q above as much as possible, one should not forget that in the context of the
Chern-Simons theory this is simply a shorthand for e2πi/(k+N) and all the relevant quantities
are only defined for positive integers k, N. Large N duality predicts among other things
that it should be possible to interpret τ(M) as restrictions of holomorphic in q functions to
these special values, perhaps up to some parasite factors stemming form misnormalizations.
It is these holomorphic functions that should correspond to the Gromov-Witten generating
functions in q. According to this philosophy, we should try to transform the right-hand side
of (5.5) into an explicit function of q and Nas far as possible. A clean way of doing this is
not known to the author, the problem being the rogue range of summation PkN−1. The known
ways via Poisson resummation [43, 4.2 ] or group characters [19, Theorem 10] are rather
down and dirty and we do not reproduce them here. An intermediate answer is

D2 = (−1)N(N−1)/2 N(k +N)N−1
∏

1≤i<j≤N

(
q(1/2)(j−i) − q−(1/2)(j−i))−2

, (5.9)

and it fulfils our wish only partially. One could replace k +N by ln q/2πi but this does not
lead to anything useful.

In fact, N(k +N)N−1 is the volume of the fundamental parallelepiped of a rescaled
root lattice Λr of slNC, namely, of (k +N)1/2Λr . Ooguri and Vafa [49, 2.1 ] replace it with the
volume of UN in their normalization. Thus, we ignore N(k +N)N−1 as a parasite factor and
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focus on the product following it instead. Since
∑

1≤i<j≤N1 =N(N −1)/2 and
∑

1≤i<j≤N(j − i) =
N(N2 − 1)/12, we have

∏

1≤i<j≤N

(
q(1/2)(j−i) − q−(1/2)(j−i)) = q−(2N(N2−1)/24)

∏

1≤i<j≤N

(
1 − qj−i

)
. (5.10)

Note that q−(2N(N2−1)/24) = ζ−2N/k, and a power of ζ appears explicitly in the Reshetikhin-
Turaev normalization (5.7). We get for the partition function

ZS3 := τ
(
S3) = iN(N−1)/2q−(N(N2−1)/12)(N(k +N)N−1)−(1/2) ∏

1≤i<j≤N

(
1 − qj−i

)
. (5.11)

The first two factors are 1 in absolute value and can be regarded as framing corrections and we
already discussed the third (volume) factor. In any case, it turns out that only the last product
is relevant in the context of large N duality as we now demonstrate (cf. [50, appendix]).

Lemma 5.1. For any |q| < 1,

∏

1≤i<j≤N

(
1 − qj−i

)
=

N−1∏

n=1

(
1 − qn

)N−n = (q; q)N∞
(qN+1; q)(2)∞
(q; q)(2)∞

, (5.12)

where (a; q)∞ := (a; q)(1)∞ is the usual q-shifted factorial [42], and (a; q)(d)∞ was defined in Section 1
(see (1.6)).

Proof. First, we arrange the factors according to the powers of q:

∏

1≤i<j≤N

(
1 − qj−i

)
=

N−1∏

n=1

(
1 − qn

)∑N−1
i=1 1{i|n+i≤N} =

N−1∏

n=1

(
1 − qn

)N−n
, (5.13)

where 1S denotes the characteristic function of a set S. A finite product can be written as a
ratio of two infinite ones as long as the latter converge, in particular

N−1∏

n=1

(
1 − qn

)N−n =
∏∞

n=1(1 − qn)
N−n

∏∞
n=N(1 − qn)N−n

=
∏∞

n=1(1 − qn)
N−n

∏∞
n=0(1 − qN+n)−n

=
∞∏

n=1

(1 − qn)N
∏∞

n=1(1 − qN+n)n
∏∞

n=N(1 − qn)n
= (q; q)N∞

(qN+1; q)(2)∞
(q; q)(2)∞

.

(5.14)

Setting a = qN in (5.12) and comparing to the partition function of the resolved
conifold (4.19), we see that the Chern-Simons theory reproduces both the reduced partition
function and the MacMahon factor. It also produces an additional one (q; q)N∞ aside from
the parasite factors discussed above. This extra factor appears naturally though in the
quantum Barnes function Gq. Its most characteristic property is the functional equation
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Gq(z + 1) = Γq(z)Gq(z), where Γq is the quantum gamma function of Jackson [29]. Γq
is a q-deformation of the classical Euler Γ, and the classical Barnes function satisfies the
same equation with q-s removed [14]. As we derive in Section 6 (Theorem 6.3) to have this
property, Gq must be the product

Gq(z + 1) = (1 − q)−(z(z−1)/2)(q; q)z∞
(qz+1; q)(2)∞
(q; q)(2)∞

, (5.15)

that is, reproduce the right-hand side of (5.12) with z =N up to a power of 1 − q. Emergence
of the same expressions from a simple functional equation is quite intriguing as well as the
fact that they are the ones common in the Chern-Simons and the Gromov-Witten theories. We
summarize the observations made in Sections 4 and 5 as a theorem.

Theorem 5.2. Quantum Barnes function Gq is the common factor of the partition functions of the
resolved conifold X and the 3-sphere, namely,

(1 − q)z(z−1)/2ZX

(
qz; q
)
= (q; q)−z∞ Gq(z + 1), (5.16)

(1 − q)z(z−1)/2ZS3(z; q) = iz(z−1)/2q−(z(z
2−1)/12)z−(1/2)

(
ln q
2πi

)−((z−1)/2)

Gq(z + 1). (5.17)

In (5.16), q is the usual variable of the topological vertex, and a := qz is the degree variable [12]. In
(5.17) , q = e2πi/(k+N) and z = N, where k, N are level and rank. Equivalently, if t is the Kähler
parameter and x the string coupling constant of [20], then q = eix, qz = e−t.

6. Quantum multigamma Hierarchy

In this section, we give a self-contained introduction into the theory of the quantum Barnes
function and its higher order analogs, quantum multigammas. The main result is the
alternating formula (6.14) for G(d)

q that displays its graded product structure. Along the way,
we describe connections to other special functions that came into the spotlight lately, q-shifted
multifactorials and quantum polylogarithms.

Quantum multigammas

Quantum multigammas emerge naturally if one iterates two classical constructions. One is
the construction of factorials from natural numbers with subsequent analytic continuation to
complex values via the functional equation Γ(z+1) = zΓ(z). The other is a q-deformation of Γ
first performed by Jackson, thoroughly forgotten and then revived by Askey in the 1970s, see
[29]. The Euler construction was iterated by Kinkelin in the 1860s who turned Γ(z) into a new
z, that is, considered the equation G(z+1) = Γ(z)G(z) but only for positive integers z. Barnes
in the 1900s introduced G(z) from entirely different considerations that define it for complex
values directly and lead to a hierarchy of functions with G(0)(z) = z, G(1)(z) = Γ(z), G(2)(z) =
G(z), . . . , G(d)(z + 1) = G(d−1)(z)G(d)(z). Nowadays, G(z) is known as the (classical) Barnes
function and G(d) as multigamma functions [51].
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It is clear that the hierarchy of functional equations together with a normalization
G(d)(1) = 1 uniquely define G(d) on all natural numbers. Extension to complex values cannot
be unique even for Γ because there are entire functions that vanish on all integers, sin(πz), for
example. However, Bohr and Mollerup proved in the 1920s that if a log-concavity condition
is added (d2/dx2)Γ(x) ≥ 0 for x ≥ 0, then the Euler Γ is the only possibility [29]. In 1963
Dufresnoy and Pisot generalized the Bohr-Mollerup existence and uniqueness result to a
wide class of functional equations of the type f(z + 1) − f(z) = φ(z). It constructs not only
G(d) but also the Jackson deformation of the Euler Γ that satisfies Γq(z + 1) = (z)qΓq(z) with
(z)q := (1 − qz)/(1 − q) called the quantum number [8, 42]. For higher order multigammas,
the log-concavity condition has to be replaced with log-positivity of order d + 1, that is,
(dd+1/dxd+1) ln Γ(x) ≥ 0 for x ≥ 0. After q-deformations of the Barnes multigammas appeared
in the context of integrable hierarchies [52] Nishizawa realized that the same iteration works
for them as well [14]. In other words, there exists a unique hierarchy of meromorphic
functions satisfying

(i) G(d)
q (1) = 1, G

(0)
q (z) =

1 − qz

1 − q ,

(ii) G(d)
q (z + 1) = G(d−1)

q (z)G(d)
q (z),

(iii)
dd+1

dxd+1
lnGq(x) ≥ 0 for x ≥ 0, 0 < q < 1.

(6.1)

The last condition is only required to hold for real positive q but it is understood that G(d)
q are

continued analytically to other values of q.

Definition 6.1 (quantum multigammas). The functions G(d)
q defined by (6.1) are called q-mul-

tigamma functions, in particular Γq := G
(1)
q is the Jackson’ quantum gamma function and

Gq := G(2)
q is the quantum Barnes (or q-Barnes) function.

For |q| < 1, we will show the existence of G(d)
q independently by deriving explicit

expressions for it. In addition to integrable hierarchies, these functions also appear in analytic
number theory, see [53, Remark 3].

q-multifactorials

In [14], Nishizawa derives an explicit combinatorial formula for G
(d)
q (see (6.26)). A

more illuminating formula for our purposes can be expressed in terms of q-shifted
multifactorials, q-multifactorials for short (Theorem 6.3). We streamline the Nishizawa
approach by introducing them and systematically using generating functions.

The classical q-shifted factorial as defined by Euler is (a; q)∞ :=
∏∞

i=0(1 − aqi).
This notation is widely used in the theories of basic hypergeometric series [42], modular
forms, and partitions [8]. A natural generalization essentially due to Appell is as
follows.
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Definition 6.2 (q-multifactorials). A q-shifted d-factorial is

(a; q)(0)∞ := 1 − a (no q dependence),

(a; q)(d)∞ :=
∞∏

i1,...,id=0

(
1 − aqi1+···+id

)
, |q| < 1, d = 1, 2, . . . .

(6.2)

For finite N, one sets

(a; q)(d)N :=
(a; q)(d)∞

(aqN ; q)(d)∞
. (6.3)

Our indexing convention is in line with [53] but differs from [54], our (a; q)(d)∞ is
the Nishizawa (a; q)(d−1)

∞ . Also one should not confuse our q-multifactorials with multiple q-
factorials that have a separate variable qk for each index. Our definition is recovered if all qk
are set equal to q. We already used (a; q)(2)∞ to write partition functions in a closed form.

Unlike the case d = 1, the finite version (a; q)(d)N is no longer a finite product of (1−aqi)
unless d divides N. Nevertheless, we have

∏∞
i1,...,id=0(1 − aqi1+···+id)∏∞

i1,...,id=0(1 − aqN+i1+···+id)
=

∏∞
id=0
∏∞

i1,...,id−1=0(1 − aqi1+···+id)∏∞
id=N
∏∞

i1,...,id−1=0(1 − aqN+i1+···+id)

=
∏∞

i=0(aq
i; q)(d−1)

∞
∏∞

i=N(aqi; q)(d−1)
∞

=
N−1∏

i=0

(
aqi; q

)(d−1)
∞ ,

(6.4)

and by definition

(a; q)(d)N =
N−1∏

i=0

(
aqi; q

)(d−1)
∞ , d ≥ 1. (6.5)

A similar calculation gives another useful identity

(aq; q)(d)∞ =
(a; q)(d)∞
(a; q)(d−1)

∞

. (6.6)

Also q-multifactorials can be expressed as a single product if we group the factors by powers
of q. To this end, it is convenient to introduce the Stirling polynomials

(
z

0

)
:= 1

(
z

n

)
:=

z(z − 1) · · · (z − n + 1)
n!

, n ≥ 1, (6.7)
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that reduce to the binomial coefficients when z = N ≥ n is a positive integer. Some of their
properties are reviewed in the appendix. From a generating function for Stirling polynomials
(A.4),

∞∑

i1,...,id=0

ti1+···+id =
∞∑

n=0

(
∑

i1+···+id=n
1

)
tn =

(
∞∑

i=0

ti
)d

= (1 − t)−d =
∞∑

n=0

(
d + n − 1

n

)
tn.

(6.8)

In other words, ( d+n−1
n ) is the number of arrangements of d nonnegative integers adding up

to n. As a consequence, we have single-product representations:

(a; q)(d)∞ :=
∞∏

i1,...,id=0

(
1 − aqi1+···+id

)
=
∞∏

n=0

(
1 − aqn

)(d+n−1
n

)
,

(aq; q)(d)∞ =
∞∏

n=1

(
1 − aqn

)(d+n−2
n−1 )

.

(6.9)

In particular, 1/(q; q)(2)∞ =
∏∞

n=1(1 − qn)
−(n1 ) = M(q) as we claimed before. They also imply

that − ln (a; q)(d)∞ is nothing other than the quantum polylogarithm of Kirillov [55, Example
2.5.8], [54] defined for |a|, |q| < 1 as

Lis(a; q) :=
∞∑

k=1

ak

k(1 − qk)s−1
. (6.10)

Indeed, by (A.4)

− ln (a; q)(d)∞ = −
∞∑

n=0

(
d + n − 1

n

)
ln
(
1 − aqn

)
=
∞∑

n=0

(
d + n − 1

n

)
∞∑

k=1

(aqn)k

k

=
∞∑

k=1

ak

k

∞∑

n=0

(
d + n − 1

n

)
(
qk
)n

=
∞∑

k=1

ak

k

(
1 − qk

)−d
= Lid+1(a; q).

(6.11)

The identity holds for any a ∈ C by analytic continuation.

Closed formulas for G(d)
q

Typically, when a classical object is q-deformed, its theory becomes more complicated.
Refreshingly, q-multigammas for |q| < 1 are an exception. Their theory is much
simpler than its classical counterpart. The underlying reason is that it is possible to
write finite products as ratios of infinite ones (6.3), the latter having a straightfor-
ward extension from integers N to complex values z. An analogous attempt to write
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N! = (1 · 2 · 3 · · · )/((N + 1) · (N + 2) · (N + 3) · · · ) leads to a nonsensical product of all natural
numbers. The closest classical imitation is the Gauss product formula

Γ(z + 1) = lim
n→∞

(n + 1)!
(z + 1) · · · (z + n + 1)

nz, (6.12)

that requires the rather involved theory of the Weierstrass products. One can fruitfully turn
things around and derive product formulas for Γ and classical higher multigammasG(d) from
the q-deformed ones via a limiting procedure [51].

We leave as an exercise to the reader to iterate the functional equation for G(d)
q and

derive by induction from (6.5) that for nonnegative integers N,

G
(d)
q (N + 1) = (q; q)

(0)−(N
d
)

∞ (q; q)
(1) ( N

d−1 )
∞ · · · (q; q)

(d) (−1)d+1(N0 )
∞ (qN+1; q)

(d) (−1)d

∞

=
d∏

i=0

(q; q)
(i) (−1)i+1( N

d−i )
∞ (qN+1; q)

(d) (−1)d

∞ .

(6.13)

Now,N can be painlessly replaced with any complex z as long as we stipulate that q ∈ D\R−.
This way first the infinite products converge since q is inside the unit disk D, and second
qz := ez ln q is defined by choosing the principal branch of the logarithm. Of course, a priori,
there is no guarantee that the function so extended coincides with G

(d)
q of Definition 2.1. We

now prove that this is the case.

Theorem 6.3 (alternating formula). Let q ∈ D \ R− with D the open unit disk in C. Then G(d)
q (z)

is an entire function of z given by

G
(d)
q (z + 1) =

d∏

i=0

(q; q)
(i)(−1)i+1( z

d−i )
∞ (qz+1; q)

(d) (−1)d

∞ , (6.14)

where (q; q)(i)∞ are the q-multifactorials (6.2), and ( zn ) are the Stirling polynomials (6.7). In particular,
for quantum gamma and the Barnes functions (d = 1, 2),

Γq(z + 1) =
1

(q; q)(0)z∞
(q; q)(1)∞

1

(qz+1; q)(1)∞
, (6.15)

Gq(z + 1) =
1

(q; q)(0) (z(z−1)/2)
∞

(q; q)(1)z∞
1

(q; q)(2)∞

(
qz+1; q

)(2)
∞ . (6.16)

Recall that (q; q)(0)∞ := 1 − q, (q; q)(1)∞ := (q; q)∞.

Proof. We have to verify that the right-hand side of (6.14) satisfies all three conditions of
(6.1). For the duration of the proof, we use G

(d)
q only as an alias for this right-hand side.
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Normalizations (i) follow by direct substitution of values. (ii) For the functional equation,
we compute

G
(d−1)
q (z)G(d)

q (z) =
d−1∏

i=0

(q; q)
(i) (−1)i+1( z−1

d−i−1 )
∞

d∏

i=0

(q; q)
(i) (−1)i+1( z−1

d−i )
∞ ·

(
qz; q
)(d−1) (−1)d−1

∞
(
qz; q
)(d) (−1)d

∞

=
d−1∏

i=0

(q; q)
(i)(−1)i+1[( z−1

d−i−1 )+(
z−1
d−i )]

∞ (q; q)(d)(−1)d+1

∞

(
(qz; q)(d)∞
(qz; q)(d−1)

∞

)(−1)d

.

(6.17)

By (A.6) with n = d − i, the sum in brackets is just ( z
d−i ) so the first two factors combine into

∏d
i=0(q; q)

(i)(−1)i+1( z
d−i )

∞ . For the last factor, (6.6) with a = qz yields

(qz; q)(d)∞
(qz; q)(d−1)

∞

=
(
qz+1; q

)(d)
∞ , (6.18)

so (6.17) becomes

G
(d−1)
q (z)G(d)

q (z) =
d∏

i=0

(q; q)
(i)(−1)i+1( z

d−i )
∞

(
qz+1; q

)(d)
∞ = G(d)

q (z + 1). (6.19)

(iii) It remains to verify the log-positivity condition. Taking the logarithm, we have

lnG(d)
q (z + 1) =

d∑

i=0

(−1)i+1 ln (q; q)(i)∞

(
z

d − i

)
+ (−1)d ln

(
qz+1; q

)(d)
∞ . (6.20)

Since ( z
d−i ) is a polynomial in z of degree d− i, the sum above is a polynomial of degree d and

its d + 1 st derivative vanishes. Recalling (6.11), one obtains

dd+1

dzd+1
lnG(d)

q (z) = (−1)d+1 d
d+1

dzd+1
Lid+1

(
qz; q
)
. (6.21)

It is helpful to notice that (d/dz)f(qz) = ln q x(df/dx)|x=qz and iterating

(−1)d+1 d
d+1

dzd+1
f
(
qz
)
= (− ln q)d+1

(
x
d

dx

)d+1

f(x)
∣∣∣∣
x=qz

. (6.22)

Now, for |x| < 1 by (6.10)

(
x
d

dx

)d+1

Lid+1(x; q) =
∞∑

n=1

1

n(1 − qn)d

(
x
d

dx

)d+1

xn =
∞∑

n=1

nd+1

n(1 − qn)d
xn, (6.23)
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and therefore

dd+1

dzd+1
lnG(d)

q (z) = (− ln q)d+1
∞∑

n=1

(
n

1 − qn
)d
qnz for

∣∣qz
∣∣ < 1. (6.24)

If 0 < q < 1 and z is real positive, then − ln q > 0 and 0 < qz < 1 so the last expression is
positive by inspection.

The structure of G(d)
q is perhaps most transparent in (6.20). We have the main term

(−1)d ln (qz+1; q)(d)∞ that depends on a = qz only and the anomaly term polynomial in z

of degree d. For d = 2, we recognize ln (qz+1; q)(2)∞ as exactly the reduced-free energy of
the resolved conifold, see (4.17). The main/anomaly structure of G(d)

q becomes even more
transparent if we introduce a generating function for the entire hierarchy:

∞∑

d=0

lnG(d)
q (z + 1)td = (1 + t)z

∞∑

d=0

(−1)dLid+1(q; q)td −
∞∑

d=0

(−1)dLid+1
(
qz+1; q

)
td. (6.25)

One can check that the sum converges for |q|, |qz| < 1, |t| < 1 − |q|. This formula displays very
clearly the alternating nature of G(d)

q and the distinction between the main and the anomaly
terms. The dependence of the anomaly on z is regulated by a universal term (1 + t)z that
explains the convolution structure of the anomaly sum in (6.20).

This structure is quite common for functions appearing in quantum field theory. The
main terms usually reflect the expected symmetry of a system while anomalies require
additional choices to be defined. For instance, the Witten Chern-Simons path integral is not
a 3-manifold invariant because of the framing anomaly [41, 44] but can be turned into one by
choosing the canonical 2-framing to cancel the anomaly [37]. In our case, the obvious extra
choice is that of a logarithm branch to define z := logqa. Disregarding anomalies comes at a

price. Fixing the canonical 2-framing would complicate the gluing rules, and G
(d)
q would not

obey a simple functional equation. The Reshetikhin-Turaev normalization may be to blame
for nasty prefactors in (5.17) that spoil the duality. It might be of interest to find an analog of
2-framings on the Gromov-Witten side and compare answers without making choices, even
canonical ones.

From the alternating formula (6.14), we now derive a single-product formula for G(d)
q

originally given by Nishizawa [14].

Theorem 6.4 (Nishizawa product). Let q ∈ D \ R− then quantum multigammas are given by

G
(d)
q (z + 1) = (1 − q)−(

z
d )
∞∏

n=1

(1 − qn)(
z−n
d−1 )

(1 − qz+n)(
−n
d−1 )

for d ≥ 1. (6.26)
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In particular, for quantum gamma and Barnes functions (d = 1, 2):

Γq(z + 1) = (1 − q)−z
∞∏

n=1

(
1 − qz+n

1 − qn
)−1

, (6.27)

Gq(z + 1) = (1 − q)−(z(z−1)/2)
∞∏

n=1

(1 − qz+n)n

(1 − qn)−z+n
. (6.28)

Proof. Applying (6.9) to the first product in (6.14), we get

d∏

i=0

(q; q)
(i) (−1)i+1( z

d−i )
∞ =

d∏

i=0

∞∏

n=0

(
1 − qn+1)(−1)i+1(n+i−1

n
)( z
d−i )

=
∞∏

n=0

(
1 − qn+1)

∑d
i=0(−1)i+1(n+i−1

n
)( z
d−i ).

(6.29)

As shown in the appendix (A.7), when d ≥ 1

d∑

i=0

(−1)i+1

(
n + i − 1

n

)(
z

d − i

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝z − n − 1

d − 1

⎞
⎠ , n ≥ 1

⎛
⎝z − 1

d − 1

⎞
⎠ −

⎛
⎝z

d

⎞
⎠ , n = 0.

(6.30)

Splitting the n = 0 and n ≥ 1 factors in (6.29), we see that it equals

(1 − q)(
z−1
d−1 )−(

z
d )

∞∏

n=1

(
1 − qn+1)( z−n−1

d−1 )
= (1 − q)−(

z
d )

∞∏

n=0

(
1 − qn+1)( z−n−1

d−1 )

= (1 − q)−(
z
d )

∞∏

n=1

(
1 − qn

)( z−nd−1 ).

(6.31)

The second factor in (6.14) can be transformed into a single product using (6.9) again

∞∏

n=1

(
1 − qz+n

)(−1)d(d+n−2
d−1 ) =

∞∏

n=1

(
1 − qz+n

)( −nd−1 ), (6.32)

where we also applied (A.3) and (A.6) to get the second expression. Multiplying the right-
hand sides of the last two formulas gives the claim.

Formula (6.27) is the standard expression given for the quantum gamma function, see,
for example, [29], and (6.28) is its closest quantum Barnes analog. Although the Nishizawa
product (6.26) may appear prettier than the alternating formula (6.14), it completely hides
the graded structure of q-multigammas.
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What about |q| = 1?

By Theorem 6.3, q-multigammas are entire functions of z for |q| < 1. Things change if we
venture onto the unit circle. As one can judge by the example of the classical Euler Γ, where
q = 1, (6.1) still defines a unique function of z but this time it is only meromorphic. The
appearance of poles prevents infinite products (6.26) from converging. When |q| = 1 but q
is not a root of unity G(1)

q = Γq is constructed explicitly in [56] via the Shintani double sine
function (see [53]). This case is complementary to the classical one q = 1, and the poles are
located at the points −n − m/τ with n,m ∈ Z, and q = e2πiτ . Clearly, it is desirable to have
a similar construction for G(2)

q = Gq, especially when q is a root of unity. Indeed, this case is
most relevant to the Chern-Simons theory, where Gq is essentially the partition function of S3

by Theorem 5.2, and probably appears as a factor in partition functions of other manifolds.
There is a small window through which we can peak at what happens on the unit circle

for any q. When z = N is a nonnegative integer, the product (6.26) terminates. In the context
of the Chern-Simons theory, N is the rank of slNC and we already saw this phenomenon
for the quantum Barnes function in Lemma 5.1. This also generalizes the fact that although
Γ(z+1) cannot be simply expressed as an infinite product for complex z,we have nonetheless
Γ(N + 1) = 1 · · ·N.

Corollary 6.5 (Nishizawa). For a nonnegative integerN and any q ∈ C, one has

G
(d)
q (N + 1) = (1 − q)−(

N
d
)
N∏

n=1

(
1 − qn

)(N−n
d−1 )

. (6.33)

Proof. By the Nishizawa product for G(d)
q ,

(1 − q)(
N
d
)
G

(d)
q (N + 1) =

∏∞
n=1(1 − qn)

(N−n
d−1 )

∏∞
n=1(1 − qn+N)(

−n
d−1 )

=
∏∞

n=1(1 − qn)
(N−n
d−1 )

∏∞
n=N+1(1 − qn)

(−(n−N)
d−1

)

=
N∏

n=1

(
1 − qn

)(N−n
d−1 )

.

(6.34)

This gives a proof for |q| < 1 but since the right-hand side is a polynomial in q, the general
case follows by analytic continuation.

Note that by (6.33) G(d)
q (N + 1) = 0 for N > n if q is an nth root of unity but this

never affects the Chern-Simons invariants since for them n = k +N with positive integer k.
This termination phenomenon sheds some light on why so far the Chern-Simons invariants
have only been defined for integral z = N, when it can be interpreted as the rank of a
quantum group or an affine Lie algebra. To include complex z, one should probably study
more involved algebraic/analytic structures. Reversing the perspective, we observe that
termination is what makesGq meaningful in the Chern-Simons theory that in its current form

produces values only at roots of unity. Note that with the exception of (1 − q)−(
z
d ), all anomaly

terms in (6.16) are required for termination. In particular, the ratio (aq; q)(2)∞ /(q; q)(2)∞ with
qz = a, that we recover from the Gromov-Witten/Donaldson-Thomas theory, does not suffice
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for duality to even make sense. It does not terminate for z =N and becomes meaningless for
q = e2πi/(k+N), which is where the Chern-Simons invariants are defined.

7. Conclusions

Recently, the phenomenon of holography has become prominent in physics [57]. Roughly, the
idea is that to every theory on a bulk space there corresponds an equivalent theory living on
its boundary. The most famous example is the AdS/CFT correspondence of Maldacena but
one can certainly trace the analogy back to the classical potential theory, where a harmonic
function is recovered from its boundary values. We see a toy example of holography playing
out on the ranges of the Calabi-Yau invariants. The master-invariant is a holomorphic function
in the bulk (the unit disk) and the Donaldson-Thomas theory comes closest to being a bulk
theory by giving its Taylor coefficients at 0. The Chern-Simons theory gives its values on the
boundary (the unit circle) and the Gromov-Witten theory also lives on the boundary but via
asymptotic coefficients at 1. Recall that q = eix and in terms of the string coupling constant x,
we are dealing with periodic holomorphic functions on the upper half-plane. Their Fourier
coefficients are given by the Donaldson-Thomas invariants and values at the cusps of SL2Z

are given by the Chern-Simons invariants. This brings to mind the classical modular forms
[58] and indeed the relationship between them and the corresponding boundary objects was
interpreted recently as an example of the holographic correspondence [59]. Although our
functions are not modular in the classical sense, they do have some modular transformation
properties [60]. This links large N duality to a well-known problem in analytic number
theory and perhaps this can aid in its proof.

There are some serious difficulties to be resolved. First, values of a holomorphic
function at roots of unity are not enough to recover it uniquely. There are plenty of
holomorphic functions on the unit disk that vanish at all roots of unity. Take a modular cusp-
form f on the upper half-plane [58], for example, and consider f(ln q/2πi). The same is true
of an asymptotic expansion at a point on the unit circle or even a collection of asymptotic
expansions at every root of unity [60]. In other words, absent extra data the Chern-Simons
and the Gromov-Witten theories do not recover the master-invariant. The Donaldson-Thomas
theory has a converse problem. It sure gives a function on the unit disk but one that is
singular at each point of the unit circle. For the resolved conifold, we reconciled the results by
“completing a pattern” by hand but this will not work in general. A large part of the problem
in proving equality of partition functions is that as mathematically defined they are not quite
equal.

We contrived to make large N duality work for the resolved conifold. What about
other cases? Similarities between the topological vertex and the Reshetikhin-Turaev calculus
outlined in Sections 4 and 5 are promising but there is a vast difference between toric webs
and link diagrams representing the dual objects. This ought to be expected of course since not
all large N duals to 3-manifolds are toric and certainly most toric Calabi-Yaus are not dual to
any 3-manifold. However, not all is lost. Link invariants are known to extend to invariants of
knotted trivalent graphs [61], and these include toric graphs that are also trivalent but planar.
Then there is the case of lens spaces (cyclic quotients of S3 [38]), where the duals are known
and toric [18, 40]. Moreover, there exist physical generalizations of the topological vertex to
nontoric threefolds [62] some of which are dual to noncyclic spherical quotients.

Even if diagrammatic presentations are reconciled, there is yet another hurdle to
wrestle with. Topological vertex expressions are infinite sums over all partitions. The
Reshetikhin-Turaev expressions are finite sums over partitions in the (N − 1) × k rectangle
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PkN−1, and ad hoc tricks are required to turn them into functions of q = e2πi/(k+N). Note that
the Reshetikhin-Turaev building blocks Wλμ(N; q) are already expressed in a desirable form.
It is when the gluing rules are applied that q has to be specialized to a root of unity to render
the sums finite. Analogous infinite sums naively diverge but so would sums of Wλμ(q) in
the topological vertex without the convergence factors like (−a)|λ| in (4.16). After the sum is
performed, it is a again possible to turn it into a function of N, q up to framing and volume
factors. Recall that values at roots of unity do not in themselves determine a holomorphic
function on the unit disk appearing in the dualities, and the Donaldson-Thomas theory as a
bulk theory is incomplete. An enticing possibility is that the Chern-Simons theory itself can
be turned into a bulk theory.

Conjecture 7.1. There exists a universal Chern-Simons TQFT that assigns holomorphic functions of
q, z to links and 3-manifolds with q ∈ D. These functions extend to roots of unity in q and specialize to
ordinary Chern-Simons invariants at rankN and level k upon specializing to z = N, q = e2πi/(k+N)

up to normalization factors. Partitions serve as colors of link components and the gluing rules are
expressed via sums over all partitions. The Donaldson-Thomas invariants of the dual Calabi-Yau
threefolds are the Taylor coefficients at q = 0 of these functions, and the Gromov-Witten invariants
are their asymptotic coefficients at q = 1.

This conjecture formalizes the idea that extra extension data for invariants comes from
algebraic restrictions required by the axioms of TQFT [44]. A corollary of this conjecture that
seems to be within reach is that sums of the type

∑

λ1,...,λn∈PkN−1

Wλλ1Wλ1λ2 · · ·Wλnμ (7.1)

can be represented as boundary values of sums

∑

λ1,...,λn∈P
Wλλ1Wλ1λ2 · · ·Wλnμ r

|λ1|+···+|λn|, (7.2)

where r is a convergence factor. These and similar sums appear in the Chern-Simons
invariants of the Seifert-fibered 3-manifolds [43, 45], and such representation would facilitate
a proof of large N duality for them.

Appendix

Stirling polynomials

The Stirling polynomials [8, I.2.11] are defined as

(
z

0

)
:= 1

(
z

n

)
:=

z(z − 1) · · · (z − n + 1)
n!

, n ≥ 1 (A.1)
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and reduce to the binomial coefficients when z =N ≥ n is a positive integer. Their generating
function is

∞∑

n=0

(
z

n

)
tn = (1 + t)z. (A.2)

In agreement with (A.2), we always assume (Nn ) = 0 for n < 0 or n > N. Negative z is also
allowed:

(
−z
n

)
= (−1)n

(
z + n − 1

n

)
. (A.3)

Combining with the generating function (A.2), we have

∞∑

n=0

(
z + n − 1

n

)
tn = (1 − t)−z. (A.4)

The coefficients s(n, k) in

(
z

n

)
=

n∑

k=0

s(n, k)
n!

zk,

(
z + n − 1

n

)
=

n∑

k=0

(−1)n−k
s(n, k)
n!

zk (A.5)

are known as the Stirling numbers of the first kind [8, I.2.11]. The following identity is easily
derived via generating functions:

(
z

n − 1

)
+

(
z

n

)
=

(
z + 1

n

)
. (A.6)

For the convenience of the reader, we prove a harder one needed in Theorem 6.4, namely,

d∑

i=0

(−1)i+1

(
n + i − 1

n

)(
z

d − i

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝z − n − 1

d − 1

⎞
⎠ , n ≥ 1,

⎛
⎝z − 1

d − 1

⎞
⎠ −

⎛
⎝z

d

⎞
⎠ , n = 0.

(A.7)
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Proof. Consider the generating function

∞∑

d=0

td
(

d∑

i=0

(−1)i+1

(
n + i − 1

n

)(
z

d − i

))
=
∞∑

i,j=0

ti+j(−1)i+1

(
n + i − 1

n

)(
z

j

)

=
∞∑

i=0

(−1)i+1

(
n + i − 1

n

)
ti ·

∞∑

j=0

(
z

j

)
tj .

(A.8)

The second factor is obviously (1 + t)z by (A.2). Assuming n > 0 so that ( n−1
n ) = 0, the first

factor can be rewritten as

t
∞∑

i=1

(
i − 1 + (n + 1) − 1

i − 1

)
(−t)i−1 = t(1 + t)−n−1, (A.9)

by (A.4). Multiplying them and expanding in the powers of t,

t(1 + t)z−n−1 =
∞∑

d=1

(
z − n − 1

d − 1

)
td. (A.10)

We may conclude for n ≥ 1,

d∑

i=0

(−1)i+1

(
n + i − 1

n

)(
z

d − i

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛
⎝z − n − 1

d − 1

⎞
⎠ , d ≥ 1,

0, d = 0.

(A.11)

The case n = 0 is special since ( i−1
0 ) = 1 by definition. Therefore,

∞∑

i=0

(−1)i+1

(
i − 1

0

)
ti = −(1 + t)−1, (A.12)

and expanding as above, we obtain for n = 0 and all d

d∑

i=0

(−1)i+1

(
0 + i − 1

0

)(
z

d − i

)
= −
(
z − 1

d

)
. (A.13)

By assumption, we have d ≥ 1 so applying (A.6),

−
(
z − 1

d

)
=

(
z − 1

d − 1

)
−
(
z

d

)
. (A.14)
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