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1. Introduction

In ordinary topology, Matveev [1] has introduced a topological property called inverse com-
pactness which is weaker than compactness and stronger than countable compactness. In [1, 2],
inverse countable compactness and inverse Lindelöfness have been defined and studied.

A topological space X is called inversely compact if and only if for every open cover
β of X, one can select a finite subcover γ of X which consists of the elements of β or their
complements (but of course γ is prohibited to contain bothU and X \U for anyU ∈ β).

In L-fuzzy topological spaces fuzzy compactness has been introduced by Warner and
McLean [3] and extended to arbitrary L-fuzzy sets by Kudri [4].

In this paper, we initiate fuzzy inverse compactness in L-fuzzy topological spaces which
is weaker than fuzzy compactness and introduce fuzzy inverse countable compactness and
fuzzy inverse Lindelöfness. We prove that proposed definitions are good extensions of the
corresponding notions in ordinary topology.

2. Preliminaries

We assume that the reader is familiar with the usual notations and most of the concepts of
fuzzy topology and lattice theory.
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Throughout this paper X and Y will be nonempty ordinary sets and L = L(≤,∨,∧,′) will
denote a completely distributive lattice with a smallest element 0 and a largest element 1 (0 /= 1)
and with an order-reversing involution a → a′ (a ∈ L). τ and T will denote L-fuzzy topology
and ordinary topology, respectively.

Definition 2.1 (see [5]). An element p of a lattice L is called prime if and only if p /= 1 and
whenever a, b ∈ Lwith a ∧ b ≤ p then a ≤ p or b ≤ p.

The set of all prime elements of a lattice Lwill be denoted by pr(L).

Definition 2.2 (see [5]). An element α of a lattice L is called coprime (or union irreducible) if
and only if α /= 0 and whenever a, b ∈ Lwith α ≤ a ∨ b then α ≤ p or α ≤ b.

The set of all coprime elements of a lattice Lwill be denoted by M(L).

From the definitions we have that p ∈ pr(L) ⇔ p′ ∈ M(L).

Definition 2.3 (see [3]). Let L be a complete lattice. A subset U of L is called Scott open if and
only if it is an upper set and is inaccessible by directed joins, that is,

(a) if a ∈ U and a ≤ b, then b ∈ U;

(b) if D is a directed subset of Lwith
∨
D ∈ U, then there is a d ∈ D with d ∈ U.

The collection of all Scott-open subsets of L is a topology on L and is called Scott topology of
L. The Scott topology of completely distributive lattice L is generated by the sets of the form
{x ∈ L | x � p}, where p ∈ pr(L). This means that the family {{x ∈ L | x � p} | p ∈ pr(L)}
forms a base for Scott topology on L.

A function f from (X, T) to L with its Scott topology is Scott continuous if and only if
f−1({x ∈ X | x � p}) ∈ T for every p ∈ pr(L).

Definition 2.4 (see [6]). An L-fuzzy topology on X is a subset τ of LX satisfying the following
properties:

(i) the constant functions 0 and 1 belong to τ ;

(ii) if f, g ∈ τ , then f ∧ g ∈ τ ;

(iii) if {fi : i ∈ J} ⊆ τ , then
∨

i∈Jfi ∈ τ .

The pair (X, τ) is called an L-fuzzy topological space. The elements of τ are called open L-fuzzy
sets. An L-fuzzy set h is said to be closed if and only if h′ ∈ τ .

Definition 2.5 (see [6]). Let (X, τ) and (Y, τ∗) be L-fuzzy topological spaces. A function ϕ :
(X, τ) → (Y, τ∗) is called fuzzy continuous if and only if ϕ−1(g) ∈ τ for every g ∈ τ∗. (ϕ−1(g) =
g(ϕ(x))).

Definition 2.6 (see [7]). Let (X, T) be an ordinary topological space. The set of all Scott continu-
ous functions from (X, T) to L with its Scott topology forms an L-fuzzy topology on X, which
will be denoted by ωL(T), that is,

ωL(T) =
{
f ∈ LX | f : (X, T) −→ L is Scott continuous

}
. (2.1)
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Definition 2.7 (see [7]). Let (X, T) be an ordinary topological space. An L-fuzzy topologi-
cal property Pf is a ”good extension” of a topological property P if and only if the topo-
logical space (X, T) has P if and only if the induced L-fuzzy topological space (X,ωL(T))
has Pf .

Definition 2.8 (see [4]). Let (X, τ) be an L-fuzzy topological space, g ∈ LX and p ∈ L. A collec-
tion β = (fi)i∈J of open L-fuzzy sets is called a p-level open cover of the L-fuzzy set g if and
only if (

∨
i∈Jfi)(x) � p for all x ∈ X with g(x) ≥ p′.

If g is the whole space X(= 1), then β is called a p-level open cover of X.
Thus β is called a p-level open cover of X if and only if (

∨
f∈βf)(x) � p for all

x ∈ X.

Definition 2.9 (see [4]). Let (X, τ) be an L-fuzzy topological space and g ∈ LX. The L-fuzzy set
g is said to be fuzzy compact if and only if every p-level open cover of g, where p ∈ pr(L), has
a finite p-level subcover of g.

If g is the whole space X, then (X, τ) is called fuzzy compact L-fuzzy topological
space.

3. Proposed definitions

Definition 3.1. Let X be nonempty set and let β, γ ⊆ LX. β is called a partial inversement of γ if
and only if β and γ can be indexedwith the same index set, sayJ : β = {fi : i ∈ J}, γ = {gi : i ∈ J}
so that for every i ∈ J either fi = g or fi = g ′

i.

Definition 3.2. Let (X, τ) be an L-fuzzy topological space and g ∈ LX. g is said to be fuzzy
inversely compact if and only if every p-level open cover of g, where p ∈ pr(L), has a partial
inversement which contains a finite p-level cover of g.

If g is the whole spaceX, then (X, τ) is called fuzzy inverse compact L-fuzzy topological
space.

This definition can be restated as follows. g is fuzzy inverse compact if and only if for
every p-level open cover β = {fi : i ∈ J} of g, where p ∈ pr(L), there exists a finite p-level
subcover γ = {gi : i ∈ J} of g such that there exist g1, g2, . . . , gn ∈ γ : (

∨n
i=1gi)(x) � p for every

x ∈ X with g(x) ≥ p′, where for each i = 1, 2, . . . , n, gi = fi, or gi = f ′
i .

Clearly, every fuzzy compact L-fuzzy set is inversely fuzzy compact.

Definition 3.3. Let (X, τ) be an L-fuzzy topological space and g ∈ LX. g is said to be fuzzy
inversely countably compact if and only if for every countable p-level open cover of g, where
p ∈ pr(L), has a partial inversement which contains a finite p-level cover of g.

If g is the whole space, then we say that the L-fuzzy topological space (X, τ) is fuzzy
inversely countably compact.

Definition 3.4. Let (X, τ) be an L-fuzzy topological space and g ∈ LX. g is said to be fuzzy
inversely Lindelöf if and only if every p-level open cover of g, where p ∈ pr(L), has a partial
inversement which contains a countable p-level cover of g.

If g is the whole space, then we say that the L-fuzzy topological space (X, τ) is fuzzy
inversely Lindelöf.
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From the definitions, it can be easily verified that every fuzzy inversely compact L-fuzzy
set g is fuzzy inversely countably compact and fuzzy inversely Lindelöf.

4. Other characterizations

Definition 4.1. Let α ∈ L, ζ ⊆ LX, and g ∈ LX. ζ is called an α-level centered family of g if and
only if for any h1, h2, . . . , hn ∈ ζ there exists x∈Xwith g(x)≥α such that (h1∧h2∧· · ·∧hn)(x)≥α.
Theorem 4.2. Let (X, τ) be an L-fuzzy topological space and g ∈ LX. g is fuzzy compact if and only
if for every α-level centered family ζ of closed L-fuzzy sets, where α ∈ M(L), there exists x ∈ X with
g(x) ≥ α such that (

∧
h∈ζh)(x) ≥ α.

Proof
Necessity. Let α ∈ M(L) and let ζ be α-level centered family of closed L-fuzzy sets such that for
each x ∈ X with g(x) ≥ α, there exists h ∈ ζ with h(x) � α.

Then, (
∧

h∈ζh)(x) � α for all x ∈ X with g(x) ≥ α.
Hence (

∨
h∈ζh

′)(x) � p for all x ∈ X with g(x) ≥ p′, where p = α′.
Thus, β = {h′ : h ∈ ζ} is a p-level open cover of g that has no finite p-level subcover of

g. In fact, if h′
1, h

′
2, . . . , h

′
n ∈ β, then, since ζ is α-level centered, there exists x ∈ X with g(x) ≥ α

and (
∧n

i=1hi)(x) ≥ α; hence (
∨n

i=1h
′
i)(x) ≤ p.

Sufficiency. Suppose that β is a p-level open cover of g with no finite p-level subcover of g,
where p ∈ pr(L). Then, ζ = {f ′ : f ∈ β} is a collection of closed L-fuzzy sets. Moreover, ζ is an
α-level centered family of g, where α = p′. In fact, if f ′

1, f
′
2, . . . , f

′
n ∈ ζ, then there exists x ∈ X

with g(x) ≥ p′ = α such that (
∨n

i=1fi)(x) ≤ p; hence (
∧n

i=1f
′
i)(x) ≥ α.

By the hypothesis, there exists x ∈ X with g(x) ≥ p′ with such that (
∧

f∈βf
′)(x) ≥ p′;

hence (
∨

f∈βf)(x) ≤ p which yields a contradiction.

Definition 4.3. Let ζ ⊆ LX, g ∈ LX, and α ∈ L.
ζ is called an α-level independent family of g if and only if for any finite f1, f2, . . . , fn,

g1, g2, . . . , gm ∈ ζ there exists x ∈ X with g(x) ≥ α such that (
∧n

i=1fi ∧
∧m

i=1g
′
i)(x) ≥ α.

In other words, ζ is an α-level independent family of g if and only if for every nonempty
finite partial inversement ζ∗ of ζ, there exists x ∈ X with g(x) ≥ α and (

∧
h∈ζ∗h)(x) ≥ α.

Theorem 4.4. Let (X, τ) be an L-fuzzy topological space and g ∈ LX. g is fuzzy inversely compact if
and only if for every α-level independent family ζ of closed L-fuzzy sets, where α ∈ M(L), there exists
x ∈ X with g(x) ≥ α and (

∧
h∈ζh)(x) ≥ α.

Proof
Necessity. Let α ∈ M(L). Suppose that ζ is an α-level independent family of L-fuzzy sets, such
that (

∧
h∈ζh)(x) � α for every x ∈ X with g(x) ≥ α.
Then, (

∨
h∈ζh

′)(x) � α′ for all x ∈ X with g(x) ≥ α.
Hence, β = {h′ : h ∈ ζ} is a p-level open cover of g, where p = α′.
By the fuzzy inverse compactness of g, there is a partial inversement γ of β which con-

tains a finite p-level subcover of g.
Let γ = {gi : i ∈ J} and β = {h′

i : i ∈ J , hi ∈ ζ}.
Then, there exists g1, g2, . . . , gn ∈ γ such that (

∨n
i=1gi)(x) � p for all x ∈ X with g(x) ≥ p′,

where for each i ∈ {1, 2, . . . , n}, gi = hi, or gi = h′
i.
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Let g1 = h′
1, g2 = h′

2, . . . , gk = h′
k
, gk+1 = hk+1, gk+2 = hk+2, . . . , gn = hn. Then g ′

1, g
′
2,

. . . , g ′
k
, gk+1, . . . , gn ∈ ζ. Since ζ is an α-level independent family of g, there exists x ∈ X with

g(x) ≥ α such that

( k∧

i=1

g ′
i ∧

n∧

i=k+1

g ′
i

)

(x) =
( n∧

i=1

g ′
i

)

(x) ≥ α. (4.1)

Hence, there exists x ∈ X with g(x) ≥ p′ such that
(∨n

i=1gi
)
(x) ≤ p, which yields a

contradiction.
Sufficiency. Suppose that β is a p-level open cover of g with no partial inversement which con-
tains a finite p-level subcover of g, where p ∈ pr(L). Then, ζ = {f ′ : f ∈ β} is a collection of
closed L-fuzzy sets. Furthermore, ζ is an α-level independent family of g, where α = p′. In fact,
if f ′

1, f
′
2, . . . , f

′
k
, f ′

k+1, . . . , f
′
n ∈ ζ, then by the assumption, there exists x ∈ X with g(x) ≥ p′ and

(
∨k

i=1fi ∨
∨n

i=k+1f
′
i)(x) ≤ p; hence (

∧k
i=1f

′
i ∧

∧n
i=k+1fi)(x) ≥ α.

By the hypothesis, there exists z ∈ X with g(z) ≥ α and (
∧

f∈βf
′)(z) ≥ α; hence

(
∨

f∈βf)(z) ≤ p, which yields a contradiction.

Theorem 4.5. Let (X, τ) be an L-fuzzy topological space and g ∈ LX. g is fuzzy inversely countably
compact if and only if for every countable α-level independent family ζ of closed L-fuzzy sets, where
α ∈ M(L), there exists x ∈ X with g(x) ≥ α and (

∧
h∈βh)(x) ≥ α.

Proof. This is similar to Theorem 4.4.

Definition 4.6. Let ξ ⊆ LX and p ∈ pr(L). ξ is said to have the finite union property (for short
FUP) inG = {x ∈ X : g(x) ≥ p′} if and only if for any finite f1, f2, . . . , fk, g1, g2, . . . , gn ∈ ξ, there
exists x ∈ Gwith (

∨k
i=1fi ∨

∨n
i=1g

′
i)(x) ≤ p.

Theorem 4.7. Let (X, τ) be an L-fuzzy topological space and g ∈ LX. g is fuzzy inversely compact if
and only if no ξ ⊆ τ with the FUP in G satisfies (

∨
f∈ξf)(x) � p for all x ∈ G.

Proof
Necessity. Suppose that ξ ⊆ τ has the FUP in G such that (

∨
f∈ξf)(x) � p for all x ∈ G.

Then, ζ = {f ′ : f ∈ ξ} is an α-level independent family of closed L-fuzzy sets, where
α = p′. From Theorem 4.4, there exists x ∈ X with g(x) ≥ α and (

∧
f∈ζf

′)(x) ≥ α; hence
(
∨

f∈ξf)(x) ≤ p which yields a contradiction.
Sufficiency. Suppose that g is not fuzzy inverse compact. Then, there is an α-level independent
family ζ of closed L-fuzzy sets such that (

∧
h∈ζh)(x) � α for all x ∈ X with g(x) ≥ α, where

α ∈ M(L). Hence (
∨

h∈ζh
′)(x) � p for all x ∈ X with g(x) ≥ p′, where p = α′. Moreover,

ξ = {h′ : h ∈ ζ} is a family of open L-fuzzy sets having the FUP in G. This completes the
proof.

5. Some properties

The next theorem shows that fuzzy inverse compactness is a good extension of inverse com-
pactness in general topology.

Theorem 5.1. Let (X, T) be an ordinary topological space. (X, T) is inversely compact if and only if the
L-fuzzy topological space (X,ωL(T)) is fuzzy inversely compact.
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Proof
Sufficiency. Let α ∈ M(L) and ζ be an α-level independent family of closed subsets of X. Then,
ζ∗ = {χA : A ∈ ζ} is a family of closed L-fuzzy sets. Furthermore, ζ∗ is an α-level independent
family of X. In fact, if χA1 , χA2 , . . . , χAn

, χB1,...,χBm
∈ ζ∗, then since ζ is independent,

⋂n
i=1Ai ∩⋂m

i=1B
′
i /= φ. Hence (

∧n
i=1χAi

∧∧m
i=1χ

′
Bi
) = χ⋂n

i=1Ai∩
⋂m

i=1B
′
i
/= 0. So, there is x ∈ X such that (

∧n
i=1χAi

∧
∧m

i=1χ
′
Bi
)(x) = 1 ≥ α. Since (X,ωL(T)) is fuzzy inversely compact, there exists z ∈ X with

(
∧

A∈ζχA)(z) ≥ α; hence (
∧

A∈ζχA)(z) = (χ⋂
A∈ζA)(z) = 1 and therefore z ∈ ⋂

A∈ζA. Hence (X, T)
is inversely compact.
Necessity. Let p ∈ pr(L) and β = (fi)i∈J be a p-level open cover of X consisting of basic open
L-fuzzy sets in (X,ωL(T)). Then

fi(x) =

⎧
⎨

⎩

ei ∈ L; x ∈ Ai ∈ T,

0; x /∈ Ai

(5.1)

(for each i ∈ J) and (
∨

i∈Jfi)(x) � p for all x ∈ X.
Let ζ = {Ai ⊆ X : ∃i ∈ J with ei � p and fi ∈ β}.
It is clear that ζ is an open cover of X in (X, T). Due to inverse compactness of (X, T),

there exists a partial inversement ζ∗ of ζ which contains a finite cover of X.
Let ζ∗ = {Bi : i ∈ J}. Then there exist B1, B2, . . . , Bn ∈ ζ∗ such that X =

⋃n
i=1Bi, where

Bi = Ai and Bi = A′
i (for each i ∈ {1, 2, . . . , n}).

(i) If Bi = Ai for all i ∈ {1, 2, . . . , n}, then β∗ = {f1, f2, . . . , fn} is a finite partial inverse-
ment of β. β∗ is also a p-level subcover of X in (X,ωL(T)). Hence, (X,ωL(T)) is fuzzy
inversely compact.

(ii) Suppose that there exists i0 ∈ {1, 2, . . . , n} such that Bi0 = A′
i0
.

Let β∗ = {f1, f2, . . . , fi0−1, f ′
i0
, . . . , f ′

n}. Obviously, β∗ is a partial inversement of β. Fur-
thermore, β∗ is a p-level subcover of X in (X,ωL(T)). In fact, let x ∈ X. Since X =

⋃n
i=1Bi =

Bi0 ∪
⋃n

i=1,i /= i0
Bi ⇒ x ∈ Bi0 or x ∈ ⋃n

i=1,i /= i0
Bi ⇒ x ∈ A′

i0
or x ∈ ⋃n

i=1,i /= i0
Ai.

(1◦) If x ∈ A′
i0
, then f ′

i0
(x) = 1 � p. Hence (f ′

i0
(x) ∨∨n

i=1,i /= i0
fi)(x) � p.

(2◦) If x /∈ A′
i0
, then there is i ∈ {1, 2, . . . , n} − {i0} such that x ∈ Ai. Hence fi(x) =

ei � p and therefore (f ′
i0
∨ ∨n

i=1,i /= i0
fi)(x) � p. Consequently, β∗ is p-level subcover of X in

(X,ωL(T)).

Theorem 5.2 (the goodness of fuzzy inverse countable compactness). Let (X, T) be an ordinary
topological space. (X, T) is inversely countably compact if and only if the L-fuzzy topological space
(X,ωL(T)) is fuzzy inversely countably compact.

Proof. This is similar to the proof of the goodness of fuzzy inverse compactness.

Theorem 5.3 (the goodness of fuzzy inverse Lindelöfness). Let (X, T) be an ordinary topological
space. (X, T) is an inverse Lindelöf space if and only if the L-fuzzy topological space (X,ωL(T)) is fuzzy
inverse Lindelöf space.

Proof. This is similar to the proof of the goodness of fuzzy inverse compactness.

Theorem 5.4. Let (X, τ) be an L-fuzzy topological space. If g ∈ LX is fuzzy inversely compact and
h ∈ LX closed, then g ∧ h is also fuzzy inversely compact.
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Proof. Let p ∈ pr(L) and let β = (fi)i∈J ⊆ LX be a p-level open cover of g∧h; that is, (∨i∈Jfi)(x) �
p for all x ∈ X with (g ∧ h)(x) ≥ p′. So β∗ = (fi)i∈J ∪ {h′} is p-level family of g. In fact, if

h(x) ≥ p′ =⇒
(∨

i∈J
fi

)

(x) � p ∀x ∈ X with (g ∧ h)(x) ≥ p′

=⇒
(∨

k∈β∗
k

)

(x) =
(∨

i∈J
fi

)

(x) ∨ h′(x) � p

h(x) � p′ =⇒ h′(x) � p =⇒
(∨

k∈β∗
k

)

(x) � p.

(5.2)

Since g is fuzzy inversely compact, β∗ has a partial inversement γ∗ which contains a finite
p-level subcover of g.

Let γ∗ = {gi : i ∈ J} ∪ {h′} and β∗ = {fi : i ∈ J} ∪ {h′}.
Then there exists g1, g2, . . . , gn ∈ γ∗ such that (

∨n
i=1gi ∨ h′)(x) � p for all x ∈ X with

g(x) ≥ p′ where for each i ∈ {1, 2, . . . , n}, gi = fi or gi = f ′
i .

So (
∨n

i=1gi)(x) � p for all x ∈ X with (g ∧ h)(x) ≥ p′. In fact x ∈ X with (g ∧ h)(x) ≥ p ⇒
g(x) ≥ p′ and h(x) ≥ p′,

g(x) ≥ p′ =⇒
( n∨

i=1

gi ∨ h′
)

(x) � p

=⇒
( n∨

i=1

gi

)

(x) ∨ h′(x) � p

=⇒
( n∨

i=1

gi

)

(x) � p.

(5.3)

Corollary 5.5. Let (X, τ) be an L-fuzzy topological space. If g is a fuzzy inversely compact L-fuzzy set
and h is a closed L-fuzzy set with h ≤ g, then h is fuzzy inversely compact as well.

Proof. This follows directly from the previous theorem.

Corollary 5.6. Let (X, τ) be an L-fuzzy topological space. If (X, τ) is fuzzy inversely compact, then
every closed L-fuzzy set on X is fuzzy inversely compact.

Proof. This follows from Theorem 5.4.

Proposition 5.7. Let (X, τ) be an L-fuzzy topological space and g, h ∈ LX with h ≤ g. If g is fuzzy in-
versely countably compact (fuzzy inversely Lindelöf) and h is closed, then h is fuzzy inversely countably
compact (fuzzy inversely Lindelöf).

Proof. This is similar to Theorem 5.4.

Theorem 5.8. Let (X, τ) be an L-fuzzy topological space and g, h ∈ LX. If g and h are fuzzy inversely
compact, then g ∨ h is fuzzy inversely compact as well.
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Proof. Suppose that g ∨ h is not fuzzy inverse compact.
Then, there exists an α-level independent family ζ of g ∨ h consisting of closed L-fuzzy

sets such that (
∧

f∈ζf)(x) ≥ α for all x ∈ X with (g ∨ h)(x) ≥ α, where α ∈ M(L).
Since α ∈ M(L) we have (g ∨ h)(x) ≥ α ⇔ g(x) ≥ α or h(x) ≥ α.
Let f1, f2, . . . , fk, fk+1, . . . , fn ∈ ζ. Since ζ is an α-level independent family of g ∨ h, there

exists x ∈ X with (g ∨ h)(x) ≥ α and (
∧k

i=1fi ∧
∧n

i=k+1f
′
i)(x) ≥ α. That is, there exists x ∈ X with

g(x) ≥ α or h(x) ≥ α such that (
∧k

i=1fi ∧
∧n

i=k+1f
′
i)(x) ≥ α.

Assume that g(x) ≥ α. Then, ζ is α-level independent family of g consisting of closed
L-fuzzy sets. Furthermore, (

∧
f∈ζf)(x) � α for all x ∈ X with g(x) ≥ α.

So, g is not fuzzy inversely compact.

Proposition 5.9. Let (X, τ) be an L-fuzzy topological space and g, h ∈ LX. If g and h are fuzzy
inversely countably compact (fuzzy inversely Lindelöf), then g ∨h is fuzzy inversely countably compact
(fuzzy inversely Lindelöf).

Proof. This is similar to Theorem 5.8.

Theorem 5.10. Let (X, τ) and (Y, τ∗) be L-fuzzy topological spaces and let ϕ : (X, τ) → (Y, τ∗) be a
fuzzy continuous function such that ϕ−1(y) is finite for every y ∈ Y . If g ∈ LX is fuzzy inversely com-
pact in (X, τ), then ϕ(g) ∈ LY is fuzzy inversely compact in (Y, τ∗), where ϕ(g)(y) =

∨
x∈ϕ−1(y)g(x).

Proof. Let α ∈ M(L) and ζ is an α-level independent family of ϕ(g) consisting of closed L-fuzzy
sets in (Y, τ∗). Let ζ∗ = {ϕ−1(h) : h ∈ ζ}.

Since ϕ is fuzzy continuous, ζ∗ is a family of closed L-fuzzy sets in (X, τ). Further-
more, ζ∗ is an α-level independent family of g. In fact, if ϕ−1(h1), ϕ−1(h2), . . . , ϕ−1(hk),
ϕ−1(hk+1), . . . , ϕ−1(hn) ∈ ζ∗, then there exists y ∈ Y with ϕ(g)(y) ≥ α and (

∧k
i=1hi∧

∧n
i=k+1h

′
i)(y) ≥

α because ζ is an α−level independent family of ϕ(g). ϕ(g)(y) =
∨

x∈ϕ−1(y)g(x) ≥ α implies
that there exists x ∈ X with g(x) ≥ α and ϕ(x) = y because α ∈ M(L) and ϕ−1(y) is finite.
Hence, (

∧k
i=1ϕ

−1(hi) ∧
∧n

i=k+1ϕ
−1(h′

i))(x) = (
∧k

i=1hi ∧
∧n

i=k+1h
′
i)(ϕ(x)) ≥ α. From the fuzzy in-

verse compactness of g, there exists z ∈ X with g(z) ≥ α and (
∧

h∈ζϕ
−1(h))(z) ≥ α. Then,

(
∧

h∈ζh)(ϕ(z)) ≥ α. This means that ϕ(g) is fuzzy inversely compact in (Y, τ∗).

Theorem 5.11. Let (X, τ) and (Y, τ∗) be L-fuzzy topological spaces and let ϕ : (X, τ) → (Y, τ∗) be
a fuzzy continuous function such that ϕ−1(y) is finite for every y ∈ Y . If g ∈ LX is fuzzy inversely
countable compact (fuzzy inversely Lindelöf) in (X, τ), then ϕ(g) ∈ LY is fuzzy inversely countably
compact (fuzzy inversely Lindelöf) in (Y, τ∗).

Proof. This is similar to the proof of Theorem 5.10.
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