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1. Introduction and preliminaries

Kubiak [1] and Šostak [2] introduced thefundamental concept of a fuzzytopological
structure, as an extension of bothcrisp topology and fuzzy topology [3], in the sensethat not
only the objectsare fuzzified, but also the axiomatics. In [4, 5], Šostak gave some rules and
showed how such an extension can be realized. Chattopadhyay et al. [6] have redefined the
same concept under the name gradation of openness. A general approach to the study of
topological-type structures on fuzzy power sets was developed in [1, 7–10].

As a generalization of fuzzy sets, the notion of intuitionisticfuzzy sets was introduced
by Atanassov [11]. By using intuitionistic fuzzy sets, Çoker [12], and Çoker and Dimirci
[13] defined the topology of intuitionisticfuzzy sets. Recently, Mondal and Samanta [14]
introduced the notion of intuitionistic gradation of openness of fuzzy sets, where to each
fuzzy subset there is a definite grade of openness and there is a grade of nonopenness.
Thus, the concept of intuitionistic gradation of openness is a generalization of the concept
of gradation of openness and the topology of intuitionistic fuzzy sets.

In this paper, we define (r, s)-quasi-T0, (r, s)-sub-T0, (r, s)-T0, and (r, s)-T1 spaces in an
intuitionistic fuzzy topological space and investigate some properties of these spaces and the
relationships between them. Moreover, we study properties of subspaces and their products.

Throughout this paper, let X be a nonempty set, I = [0, 1], and I0 = (0, 1] and I1 =
[0, 1). For α ∈ I, α(x) = α for all x ∈ X. A fuzzy point xt for t ∈ I0 is an element of IX such
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that

xt(y) =

{
t, if y = x,

0, if y /= x.
(1.1)

The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point xt ∈ λ if and only if
t < λ(x). A fuzzy set λ is quasi-coincident with μ, denoted by λqμ, if there exists x ∈ X such
that λ(x) + μ(x) > 1. If λ is not quasi-coincident with μ, we denote it by λqμ.

Definition 1.1 (see [14]). An intuitionistic gradation of openness (IGO, for short) on X is an
ordered pair (τ, τ∗) of functions from IX to I such that

(IGO1) τ(λ) + τ∗(λ) ≤ 1, for all λ ∈ IX ,

(IGO2) τ(0) = τ(1) = 1, τ∗(0) = τ∗(1) = 0,

(IGO3) τ(λ1 ∧ λ2) ≥ τ(λ1) ∧ τ(λ2) and τ∗(λ1 ∧ λ2) ≤ τ∗(λ1) ∨ τ∗(λ2), for each λ1, λ2 ∈ IX ,

(IGO4) τ(
∨

i∈Δλi) ≥
∧

i∈Δτ(λi) and τ∗(
∨

i∈Δλi) ≤
∨

i∈Δτ
∗(λi), for each λi ∈ IX, i ∈ Δ.

The triplet (X, τ, τ∗) is called an intuitionistic fuzzy topological space (IFTS, for short).
τ and τ∗ may be interpreted as gradation of openness and gradation of nonopenness,
respectively.

An IFTS (X, τ, τ∗) is called stratified if
(S) τ(α) = 1 and τ∗(α) = 0 for each α ∈ I.

Let (U,U∗) and (τ, τ∗) be IGOs on X. We say (U,U∗) is finer than (τ, τ∗) ((τ, τ∗) is
coarser than (U,U∗)) if τ(λ) ≤ U(λ) and τ∗(λ) ≥ U∗(λ) for all λ ∈ IX .

Theorem 1.2 (see [3, 15]). Let (X, τ, τ∗) be an IFTS. For each r ∈ I0, s ∈ I1, λ ∈ IX , an operator
C : IX × I0 × I1 → IX is defined as follows:

C(λ, r, s) =
∧{

μ | μ ≥ λ, τ
(
1 − μ

) ≥ r, τ∗
(
1 − μ

) ≤ s
}
. (1.2)

Then it satisfies the following properties:

(1) C(0, r, s) = 0, C(1, r, s) = 1, for all r ∈ I0, s ∈ I1;

(2) C(λ, r, s) ≥ λ;

(3) C(λ1, r, s) ≤ C(λ2, r, s), if λ1 ≤ λ2;

(4) C(λ ∨ μ, r, s) = C(λ, r, s) ∨ C(μ, r, s), for all r ∈ I0, s ∈ I1;

(5) C(λ, r, s) ≤ C(λ, r ′, s′), if r ≤ r ′, s ≥ s′, where r, r ′ ∈ I0, s, s′ ∈ I1;

(6) C(C(λ, r, s), r, s) = C(λ, r, s).

Definition 1.3 (see [14]). A function f : (X, τ, τ∗)→ (Y,U,U∗) is said to be as follows:

(1) IF continuous if τ(f−1(μ)) ≥ U(μ) and τ∗(f−1(μ)) ≤ U∗(μ), for each μ ∈ IY ;

(2) IF open if τ(μ) ≤ U(f(μ)) and τ∗(μ) ≥ U∗(f(μ)), for each μ ∈ IX ;

(3) IF homeomorphism if and only if f is bijective and both f and f−1 are IF continuous.
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Definition 1.4 (see [16]). Let 0/∈ΘX be a subset of IX . A pair (β, β∗) of functions β, β∗ : ΘX → I
is called an IF topological base on X if it satisfies the following conditions:

(B1) β(λ) + β∗(λ) ≤ 1, ∀λ ∈ ΘX ,

(B2) β(1) = 1 and β∗(1) = 0,

(B3) β(λ1 ∧ λ2) ≥ β(λ1) ∧ β(λ2) and β∗(λ1 ∧ λ2) ≤ β∗(λ1) ∨ β∗(λ2), for each λ1, λ2 ∈ ΘX .

An IF topological base (β, β∗) always generates an IGO, (τβ, τ∗β∗) on X in the following
sense.

Theorem 1.5 (see [16]). Let (β, β∗) be an IF topological base for X. Define the functions τβ, τ∗β∗ :
IX → I as follows: for each μ ∈ IX ,

τβ(μ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∨{∧
i∈J

β
(
μi

)}
, if μ =

∨
i∈J

μi, μi ∈ ΘX,

1, if μ = 0,
0, otherwise,

(1.3)

where
∨

is taken over all families {μi ∈ ΘX | μ =
∨

i∈Jμi},

τ∗β∗(μ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∧{∨
i∈J

β∗
(
μi

)}
, if μ =

∨
i∈J

μi, μi ∈ ΘX,

0, if μ = 0,
1, otherwise,

(1.4)

where
∧

is taken over all families {μi ∈ ΘX | μ =
∨

i∈Jμi}. Then
(1) (X, τβ, τ

∗
β∗) is an IFTS;

(2) A map f : (Y, τ, τ∗)→ (X, τβ, τ
∗
β∗) is IF continuous if and only if β(λ) ≤ τ(f−1(λ)) and

β∗(λ) ≥ τ∗(f−1(λ)), for all λ ∈ ΘX .

Lemma 1.6 (see [17]). Let X be a product of the family {Xi | i ∈ Γ} of sets, and for each i ∈ Γ,
πi : X→Xi a projection map. For each λ ∈ IX , i, j ∈ Γ, and λi ∈ IXi , the following properties hold:

(1) πi(π−1
i (λi) ∧ λ) = λi ∧ πi(λ);

(2) if
∨

xi∈Xi
λi(xi) = αi for i ∈ F with each finite index subset F of Γ−{j} and put α =

∧
i∈Fαi,

then

(a)
∨

x∈X(
∧

i∈Fπ
−1
i (λi))(x) = α;

(b) πi(
∧

i∈Fπ
−1
i (λi)) = α.

Definition 1.7. Let (X, τ, τ∗) be an IFTS, μ ∈ IX , xt ∈ Pt(X), r ∈ I0, and s ∈ I1. It holds that

Q(xt, r, s
)
=
{
μ ∈ IX | xtqμ, τ(μ) ≥ r, τ∗(μ) ≤ s

}
. (1.5)

A fuzzy set μ ∈ Q(xt, r, s) is called (r, s)-Q open neighborhood of xt.



4 International Journal of Mathematics and Mathematical Sciences

2. Some properties of product intuitionistic fuzzy topological spaces

Theorem 2.1. Let {(Xi, τi, τ
∗
i )}i∈Γ be a family of IFTSs, let X be a set and for each i ∈ Γ, fi : X→Xi

a map. Let

ΘX =

{
0 /= μ =

n∧
j=1

f−1
kj

(
νkj
) | τkj(νkj) > 0, ∀kj ∈ K

}
, (2.1)

for every finite set K = {k1, . . . , kn} ⊂ Γ. Define the functions β, β∗ : ΘX → I on X by

β(μ) =
∨{ n∧

j=1

τkj
(
νkj
) | μ =

n∧
j=1

f−1
kj

(
νkj
)}

,

β∗(μ) =
∧{ n∨

j=1

τ∗kj
(
νkj
) | μ =

n∧
j=1

f−1
kj

(
νkj
)}

,

(2.2)

where
∨

and
∧

are taken over all finite subsets K = {k1, k2, . . . , kn} ⊂ Γ. Then,

(1) (β, β∗) is an IF topological base on X;

(2) the IGO, (τβ, τ∗β∗) generated by (β, β∗) is the coarsest IGO on X for which each i ∈ Γ, fi is
IF continuous;

(3) a map f : (Y, τ1, τ∗1 )→ (X, τβ, τ
∗
β∗) is IF continuous if and only if for each i ∈ Γ, fi ◦ f is IF

continuous.

Proof. (B1) It is trivial.
(B2) Since λ = f−1

i (λ) for each λ ∈ {0, 1}, β(1) = β(0) = 1 and β∗(1) = β∗(0) = 0.
(B3) For all finite subsets K = {k1, . . . , kp} and J = {j1, . . . , jq} of Γ such that

λ =
p∧
i=1

f−1
ki

(
λki
)
, μ =

q∧
i=1

f−1
ji

(
μji

)
, (2.3)

we have

λ ∧ μ =

(
p∧
i=1

f−1
ki

(
λki
)) ∧

(
q∧
i=1

f−1
ji

(
μji

))
. (2.4)

Furthermore, we have for each k ∈ K ∩ J ,

f−1
k

(
λk
) ∧ f−1

k

(
μk

)
= f−1

k

(
λk ∧ μk

)
. (2.5)

Put λ ∧ μ =
∧

mi∈K∪Jf
−1
mi
(μi)(ρmi),where

ρmi =

⎧⎪⎪⎨
⎪⎪⎩
λmi if mi ∈ K − (K ∩ J),
μmi if mi ∈ J − (K ∩ J),
λmi ∧ μmi if mi ∈ (K ∩ J).

(2.6)
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We have

β(λ ∧ μ) ≥
∧

j∈K∪J
τj
(
ρj
)

≥
(

p∧
i=1

τki
(
λki
)) ∧

(
q∧
i=1

τji
(
μji

))
,

β∗(λ ∧ μ) ≤
∨

j∈K∪J
τ∗j
(
ρj
)

≤
(

p∨
i=1

τ∗ki
(
λki
)) ∨

(
q∨
i=1

τ∗ji
(
μji

))
.

(2.7)

Then, β(λ ∧ μ) ≥ β(λ) ∧ β(μ) and β∗(λ ∧ μ) ≤ β∗(λ) ∨ β∗(μ).
(2) For each λi ∈ IXi , one family {f−1

i (λi)}, and i ∈ Γ, we have

τβ
(
f−1
i

(
λi
)) ≥ β

(
f−1
i

(
λi
)) ≥ τi

(
λi
)
,

τ∗β∗
(
f−1
i

(
λi
)) ≤ β∗

(
f−1
i

(
λi
)) ≤ τ∗i

(
λi
)
.

(2.8)

Thus, for each i ∈ Γ, fi : (X, τβ, τ
∗
β∗) → (Xi, τi, τ

∗
i ) is IF continuous. Let fi : (X, τ◦, τ◦∗) →

(Xi, τi, τ
∗
i ) be IF continuous, that is, for each i ∈ Γ and λi ∈ IXi , τ◦(f−1

i (λi)) ≥ τi(λi) and
τ◦∗(f−1

i (λi)) ≤ τ∗i (λi). For all finite subsets K = {k1, . . . , kp} of Γ such that λ =
∧p

i=1f
−1
ki
(λki), we

have

τ◦(λ) ≥
p∧
i=1

τ◦
(
f−1
ki

(
λki
)) ≥ p∧

i=1

τki
(
λki
)
,

τ◦∗(λ) ≤
p∨
i=1

τ◦∗
(
f−1
ki

(
λki
)) ≤ p∨

i=1

τ∗ki
(
λki
)
.

(2.9)

It implies τ◦(λ) ≥ β(λ) and τ◦∗(λ) ≤ β∗(λ) for each λ ∈ IX . By Theorem 1.5(2), τ◦ ≥ τβ
and τ◦∗ ≤ τ∗β∗ .

(3) (⇒) Let f : (Y, τ1, τ∗1 )→ (X, τβ, τ
∗
β∗) be an IF continuous. For each i ∈ Γ and λi ∈ IXi ,

we have

τ1
((
fi ◦ f

)−1(
λi
))

= τ1
((
f−1(f−1

i

(
λi
))) ≥ τβ

(
f−1
i

(
λi
))) ≥ τi

(
λi
)
,

τ∗1
((
fi ◦ f

)−1(
λi
))

= τ∗1
((
f−1(f−1

i

(
λi
))) ≤ τ∗β∗

(
f−1
i

(
λi
))) ≤ τ∗i

(
λi
)
.

(2.10)

Hence, fi ◦ f : (Y, τ1, τ∗1 )→ (Xi, τi, τ
∗
i ) is IF continuous.

(⇐) For all finite subsets K = {k1, . . . , kp} of Γ such that λ =
∧p

i=1f
−1
ki
(λki), since fki ◦ f :

(Y, τ1, τ∗1 )→ (Xki , τki , τ
∗
ki
) is IF continuous,

τ1
(
f−1(f−1

ki

(
λki
))) ≥ τki

(
λki
)
, (A)

τ∗1
(
f−1(f−1

ki

(
λki
))) ≤ τ∗ki

(
λki
)
. (B)



6 International Journal of Mathematics and Mathematical Sciences

Hence, we have

τ1
(
f−1(λ)

)
= τ1

(
f−1
(

p∧
i=1

f−1
ki

(
λki
)))

= τ1

(
p∧
i=1

f−1(f−1
ki

(
λki
)))

≥
p∧
i=1

τ1
(
f−1(f−1

ki

(
λki
)))

≥
p∧
i=1

τki
(
λki
)
,
(
by (A)

)
,

τ∗1
(
f−1(λ)

)
= τ∗1

(
f−1
(

p∧
i=1

f−1
ki

(
λki
)))

= τ∗1

(
p∧
i=1

f−1(f−1
ki

(
λki
)))

≤
p∨
i=1

τ∗1
(
f−1(f−1

ki

(
λki
)))

≤
p∨
i=1

τ∗ki
(
λki
)
,
(
by (B)

)
.

(2.11)

It implies τ1(f−1(λ)) ≥ β(λ) and τ∗1 (f
−1(λ)) ≤ β∗(λ) for all λ ∈ IX . By Theorem 1.5(2),

f : (Y, τ1, τ∗1 )→ (X, τβ, τ
∗
β∗) is IF continuous.

Definition 2.2. Let (X, τ, τ∗) be an IFTS and A ⊂ X. The triple (A, τ |A, τ∗|A) is said to be a
subspace of (X, τ, τ∗) if (τ |A, τ∗|A) is the coarsest IGO onA for which the inclusion map i is IF
continuous.

Definition 2.3. Let X be the product
∏

i∈ΓXi of the family {(Xi, τi, τ
∗
i ) | i ∈ Γ} of IFTSs. The

coarsest IGO, (τ, τ∗) = (
⊗

τi,
⊗

τ∗i ) on X for which each the projections πi : X→Xi is IF
continuous, is called the product IGO of {(τi, τ∗i ) | i ∈ Γ} and (X, τ, τ∗) is called the product
IFTS.

Lemma 2.4. Let (Y,U,U∗) be an IFTS and (β, β∗) an IF topological base on X. If f :
(X, β, β∗)→ (Y,U,U∗) is a function such that β(λ) ≤ U(f(λ)) and β∗(λ) ≥ U∗(f(λ)) for all λ ∈ ΘX ,
then f : (X, τβ, τ

∗
β∗)→ (Y,U,U∗) is IF open.

Proof. Suppose there exists μ ∈ IX such that

τβ(μ) > U(f(μ)) or τ∗β∗(μ) < U∗(f(μ)), (2.12)

then there exists a family {λi ∈ ΘX | μ =
∨

i∈Γλi} such that

τβ(μ) ≥
∧
i∈Γ

β
(
λi
)
> U(f(μ)) or τ∗β∗(μ) ≤

∨
i∈Γ

β∗
(
λi
)
< U∗(f(μ)). (2.13)
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On the other hand, since β(λ) ≤ U(f(λ)) and β∗(λ) ≥ U∗(f(λ)) ∀λ ∈ ΘX , then we have

∧
i∈Γ

β
(
λi
) ≤∧

i∈Γ
U(f(λi)) ≤ U

[∨
i∈Γ

(
f
(
λi
))]

= U
[
f

(∨
i∈Γ

(
λi
))]

= U(f(μ)),
∨
i∈Γ

β∗
(
λi
) ≥∨

i∈Γ
U∗(f(λi)) ≥ U∗

[∨
i∈Γ

(
f
(
λi
))]

= U∗
[
f

(∨
i∈Γ

(
λi
))]

= U∗(f(μ)). (2.14)

It is a contradiction. Hence f is IF open.

Theorem 2.5. Let (X, τβ, τ
∗
β∗) be a product space of a family {(Xi, τi, τ

∗
i ) | i ∈ Γ} of IFTS’s. Then the

following statements are equivalent:

(1) a projection map πj : (X, τβ, τ
∗
β∗)→ (Xj, τj , τ

∗
j ) is IF open;

(2) for every μ =
∧

i∈Γπ
−1
i (λi) such that

∨
x∈Xi

λi(x) = αi for each αi ∈ I and i ∈ Γ◦ such
that a finite index subset Γ◦ of Γ − {j} and τi(λi) > 0, then

∧
i∈Γ◦τi(λi) ≤ τj(α) and∨

i∈Γ◦τ
∗
i (λi) ≥ τ∗j (α), where α =

∧
i∈Γ◦αi.

Proof. (1)⇒(2): For every μ =
∧

i∈Γπ
−1
i (λi) such that

∨
x∈Xi

λi(x) = αi for each αi ∈ I and i ∈ Γ◦
such that a finite index subset Γ◦ of Γ − {j}. By Lemma 1.6(2(b)), we have, for α =

∧
i∈Γ◦αi,

πj(μ) = πj

(∧
i∈Γ◦

π−1
i

(
λi
))

= α. (2.15)

Since μ ∈ ΘX , by Theorem 2.1, we have

∧
i∈Γ◦

τi
(
λi
) ≤ β(μ) ≤ τβ(μ),

∨
i∈Γ◦

τ∗i
(
λi
) ≥ β∗(μ) ≥ τ∗β∗(μ). (2.16)

Furthermore, since πj is IF open, we have

τβ(μ) ≤ τj
(
πj(μ)

)
= τj(α), τ∗β∗(μ) ≥ τ∗j

(
πj(μ)

)
= τ∗j (α). (2.17)

Hence,
∧

i∈Γ◦τi(λi) ≤ τj(α) and
∨

i∈Γ◦τ
∗
i (λi) ≥ τ∗j (α).

(2)⇒(1): From Lemma 2.4, we only show that β(μ) ≤ τj(πj(λ)) and β∗(μ) ≥ τ∗j (πj(λ))
for all λ ∈ ΘX . Suppose that there exists ν ∈ ΘX such that β(ν) > τj(πj(ν)) or β∗(ν) <
τ∗j (πj(ν)). Then there exists a finite index subset Γ◦ of Γ−{j}with ν = π−1

j (λj)∧ [
∧

i∈Γ◦π
−1
i (λi)]

(if necessary, we can take λj = 1) such that

β(ν) ≥ τj
(
λj
) ∧ [∧

i∈Γ◦
τi
(
λi
)]

> τj
(
πj(ν)

)
,

β∗(ν) ≤ τ∗j
(
λj
) ∨ [∨

i∈Γ◦
τ∗i
(
λi
)]

< τ∗j
(
πj(ν)

)
.

(2.18)
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On the other hand, by Lemma 1.6(2), we have

πj(ν) = πj

[
π−1
j

(
λj
) ∧(∧

i∈Γ◦
π−1
i

(
λi
))]

= λj ∧ πj

[∧
i∈Γ◦

π−1
i

(
λi
)]

= λj ∧ α,

(2.19)

where
∨

x∈Xi
λi(x) = αi and α =

∧
i∈Γ◦αi. Since

∧
i∈Γ◦τi(λi) ≤ τj(α) and

∨
i∈Γ◦τ

∗
i (λi) ≥ τ∗j (α), we

have

τj
(
πj(ν)

)
= τj
(
λj ∧ α

)
≥ τj
(
λj
) ∧ τj

(
α
)

≥ τj
(
λj
) ∧(∧

i∈Γ◦
τi
(
λi
))

,

τ∗j
(
πj(ν)

)
= τ∗j

(
λj ∧ α

)
≤ τ∗j

(
λj
) ∧ τ∗j

(
α
)

≤ τ∗j
(
λj
) ∨(∨

i∈Γ◦
τ∗i
(
λi
))

.

(2.20)

It is a contradiction.

Theorem 2.6. Let (X, τ, τ∗) be a product space of a family {(Xi, τi, τ
∗
i ) | i ∈ Γ} of IFTSs and

(Xj, τj , τ
∗
j ) be stratified. Then, the following properties hold:

(1) (X, τ, τ∗) is stratified;

(2) a projection map πj : X→Xj is IF open.

Proof. (1) It is clear from the following: for all α ∈ I,

τ
(
α
) ≥ β

(
α
)
=
∨{∧

i∈Γ◦
τi
(
λi
) | α =

∧
i∈Γ◦

π−1
i

(
λi
)} ≥ τj

(
α
)
= 1,

τ∗
(
α
) ≤ β∗

(
α
)
=
∧{∨

i∈Γ◦
τ∗i
(
λi
) | α =

∧
i∈Γ◦

π−1
i

(
λi
)} ≤ τ∗j

(
α
)
= 0.

(2.21)

(2) Since τj(α) = 1 and τ∗j (α) = 0 for all α ∈ I, it satisfies the condition of
Theorem 2.5(2).

Theorem 2.7. Let (X, τ, τ∗) be a product space of a family {(Xi, τi, τ
∗
i ) | i ∈ Γ} of IFTSs and let

(Xj, τj , τ
∗
j ) be stratified. Then for every X̃j = Xj ×

∏{yi | i /= j} in X parallel to Xj , πj |X̃j
: X̃j →Xj

is an IF homeomorphism.
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Proof. Let X̃j = Xj ×
∏{yi | i /= j}. Since i : X̃j → X̃j and πj : X̃j →Xj are IF continuous,

πj ◦ i = πj |X̃j
is IF continuous. Moreover, πj |X̃j

is bijective.

Now we only show that πj |X̃j
is IF open. Suppose there exists μ ∈ IX̃j such that

τ |X̃j
(μ) > τj

(
πj |X̃j

(μ)
)

or τ∗|X̃j
(μ) < τ∗j

(
πj |X̃j

(μ)
)
. (2.22)

Then there exists ν ∈ IX with μ = i−1(ν) such that

τ |X̃j
(μ) ≥ τ(ν) > τj

(
πj |X̃j

(μ)
)

or τ∗|X̃j
(μ) ≤ τ∗(ν) < τ∗j

(
πj |X̃j

(μ)
)
. (2.23)

From the definition of (τ, τ∗), there exists a family {νk ∈ ΘX | ν =
∨

k∈Kνk} such that

τ(ν) ≥
∧
k∈K

β
(
νk
)
> τj
(
πj |X̃j

(μ)
)

or τ∗(ν) ≤
∨
k∈K

β∗
(
νk
)
< τ∗j

(
πj |X̃j

(μ)
)
. (C)

On the other hand, since each νk ∈ ΘX , there exists a finite index Fk of Γ − {j} with
νk = π−1

j (λkj ) ∧ (
∧

i∈Fk
π−1
i (λi)). Since π−1

i (λi)(x) = yi for i /= j, then for each x ∈ X̃j ,∧
i∈Fk

π−1
i (λi)(x) = (

∧
i∈Fk

λi)(yi). Put αk = (
∧

i∈Fk
λi)(yi). Let μk = i−1(νk) for each k ∈ K.

Then,

πj |X̃j

(
μk

)(
xj) =∨{μk(x) | x ∈ X̃j , πj |X̃j

(x) = xj}
=
∨{

i−1
(
νk
)
(x) | x ∈ X̃j , πj(x) = xj(μk = i−1

(
νk
))}

=
∨{

νk(x) | x ∈ X̃j , πj(x) = xj}

=
∨{

π−1
j

(
λkj
)
(x) ∧

(∧
i∈Fk

π−1
i

(
λi
)
(x) | x ∈ X̃j , πj(x) = xj

)}

=
∨{

λkj
(
πj(x)

) ∧(∧
i∈Fk

λi

)(
πi(x)

) | x ∈ X̃j , πj(x) = xj

}

= λkj
(
xj) ∧(∧

i∈Fk

λi

)
yi

= λkj
(
xj) ∧ αk

=
(
λkj ∧ αk

)(
xj).

(2.24)
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Hence, πj |X̃j
(μk) = λkj ∧ αk. Thus,

τj
(
πj |X̃j

(
μk

))
= τj
(
λkj ∧ αk

)
≥ τj
(
λkj
) ∧ τj

(
αk

)
= τj
(
λkj
)

≥ τj
(
λkj
) ∧(∧

i∈Fk

λi

)
,

τ∗j
(
πj |X̃j

(
μk)) = τ∗j

(
λkj ∧ αk

)
≤ τ∗j

(
λkj
) ∨ τ∗j

(
αk

)
= τ∗j

(
λkj
)

≤ τ∗j
(
λkj
) ∨(∧

i∈Fk

λi

)
.

(2.25)

From the definition of (β, β∗), it implies

τj
(
πj |X̃j

(
μk

)) ≥ β
(
νk
)
, τ∗j

(
πj |X̃j

(
μk

)) ≤ β∗
(
νk
)
. (2.26)

Thus,

τj
(
πj |X̃j

(μ)
) ≥ ∧

k∈K
τj
(
πj |X̃j

(
μk

)) ≥ ∧
k∈K

β
(
νk
)
,

τ∗j
(
πj |X̃j

(μ)
) ≤ ∨

k∈K
τ∗j
(
πj |X̃j

(
μk

)) ≤ ∨
k∈K

β∗
(
νk
)
.

(2.27)

It is a contradiction for (C).

In an IFTS {(Xi, τi, τ
∗
i ) | i ∈ Γ}, X̃j = Xj ×

∏{yi | i /= j} need not be homeomorphic to
X from the following example.

Example 2.8. Let X = {x1, x2, x3}, Y = {y1, y2}, and Z = {z1, z2} be sets and W = X × Y × Z
a product set. Let π1 : W →X, π2 : W →Y, and π3 : W →Zbe the projection maps. Define
τ1, τ

∗
1 : IX → I by

τ1(λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if λ = 0, 1,

1
2

if λ = λ1,

0 otherwise,

τ∗1 (λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if λ = 0, 1,

1
2

if λ = λ1,

1 otherwise,

(2.28)
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where λ1(x1) = 0.5, λ1(x2) = 0.2, and λ1(x3) = 0.3. Also, X̃j = {(x, y2, z2) : x ∈ X}, define
τ |X̃j

, τ∗|X̃j
: IX̃j → I by

τ |X̃j
(μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if μ = 0, 1,
1
2

if μ = μ1,

2
3

if μ = 0.1,

1
4

if μ = 0.7,

0 otherwise,

τ∗|X̃j
(μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if μ = 0, 1,
1
2

if μ = μ1,

1
3

if μ = 0.1,

3
4

if μ = 0.7,

1 otherwise,

(2.29)

where μ1(x1, y2, z2) = 0.5, μ1(x2, y2, z2) = 0.2, and μ1(x3, y2, z2) = 0.3. Then the projection
map πj |X̃j

: X̃j →X is bijective IF continuous, but πj |X̃j
is not IF open, because

2
3
= τ |X̃j

(
0.1
)
/≤ τ1
(
π1|X̃j

(
0.1
))

= 0. (2.30)

Hence, X̃j and X are not homeomorphic.

Theorem 2.9. Let (X, τ, τ∗) be a product space of a family {(Xi, τi, τ
∗
i ) | i ∈ Γ} of IFTSs. Then, the

following properties hold:

(1) Cτ,τ∗(
∏

i∈Γλi, r, s) ≤
∏

i∈ΓCτi,τ
∗
i
(λi, r, s), ∀λi ∈ IXi , r ∈ I0, s ∈ I1;

(2) if Cτi,τ
∗
i
(λi, r, s) = λi, ∀λi ∈ IXi , r ∈ I0, s ∈ I1, then Cτ,τ∗(

∏
i∈Γλi, r, s) =

∏
i∈Γλi.

Proof. (1) Suppose Cτ,τ∗(
∏

i∈Γλi, r, s)/≤
∏

i∈ΓCτi,τ
∗
i
(λi, r, s). Then there exist x ∈ X and t ∈ (0, 1)

such that

Cτ,τ∗

(∏
i∈Γ

λi, r, s

)
(x) ≥ t >

∏
i∈Γ

Cτi,τ
∗
i

(
λi, r, s

)
(x). (D)

Since
∏

i∈ΓCτi,τ
∗
i
(λi, r, s) < t, there exists j ∈ Γ such that

∏
i∈ΓCτi,τ

∗
i
(λi, r, s) ≤

π−1
j (Cτi,τ

∗
i
(λi, r, s)) < t. Put πj(x) = xj . It implies Cτj ,τ

∗
j
(λj , r, s)(xj) < t. From the definition

of Cτj ,τ
∗
j
, there exists μj ∈ IXj with λj ≤ μj and τj(1 − μj) ≥ r, τ∗j (1 − μj) ≤ s such that

Cτj ,τ
∗
j

(
λj , r, s

)(
xj) ≤ μj

(
xj) < t. (2.31)

On the other hand, we have

λj ≤ μj =⇒ π−1
j

(
λj
) ≤ π−1

j

(
μj

)
=⇒
∏
i∈Γ

λi =
∧
i∈Γ

π−1
j

(
λi
) ≤ π−1

j

(
μj

)

=⇒ Cτ,τ∗

(∏
i∈Γ

λi, r, s

)
≤ π−1

j

(
μj

)
,

(2.32)
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because τ(1−π−1
j (μj)) = τ(π−1

j (1−μj)) ≥ τj(1−μj) ≥ r and τ∗(1−π−1
j (μj)) = τ∗(π−1

j (1−μj)) ≤
τ∗j (1 − μj) ≤ s. Hence,

Cτ,τ∗

(∏
i∈Γ

λi, r, s

)
(x) ≤ π−1

j

(
μj

)
(x) = μj

(
xj) < t. (2.33)

It is a contradiction for (D). Hence,

Cτ,τ∗

(∏
i∈Γ

λi, r, s

)
≤
∏
i∈Γ

Cτi,τ
∗
i

(
λi, r, s

)
. (2.34)

(2) It is clear from the following:

∏
i∈Γ

λi ≤ Cτ,τ∗

(∏
i∈Γ

λi, r, s

)
≤
∏
i∈Γ

Cτi,τ
∗
i

(
λi, r, s

)
=
∏
i∈Γ

λi. (2.35)

3. Some properties of (r, s)-T0 and (r, s)-T1 spaces

Definition 3.1. An IFTS (X, τ, τ∗) is said to be as follows.

(1) (r, s)-quasi-T0 space if for each xt, xm ∈ Pt(X) and t < m, there exists λ ∈ Q(xm, r, s)
such that xtqλ.

(2) (r, s)-sub-T0 space if for each x /= y ∈ X, there exists t ∈ I0 such that there exists
λ ∈ Q(xt, r, s) such that ytqλ, or there exists μ ∈ Q(yt, r, s) such that xtqμ.

(3) (r, s)-T0 space if for each xt, ym ∈ Pt(X), there exists λ ∈ Q(xt, r, s) such that ymqλ,
or there exists μ ∈ Q(ym, r, s) such that xtqμ.

(4) (r, s)-T1 space if for each xt, ym ∈ Pt(X) such that xt /≤ym, there exists λ ∈ Q(xt, r, s)
such that ymqλ.

Theorem 3.2. Let (X, τ, τ∗) be an IFTS. Then the following statements are equivalent:

(1) (X, τ, τ∗) is (r, s)-T0 space;

(2) for each xt, ym ∈ Pt(X), Q(xt, r, s) /= Q(ym, r, s);

(3) for each xt, ym ∈ Pt(X), then xt /∈Cτ,τ∗(ym, r, s) or ym /∈Cτ,τ∗(xt, r, s).

Proof. (1)⇒(2): It is trivial.
(2)⇒(3): Let λ ∈ Q(xt, r, s) and λ/∈Q(ym, r, s). Since λ/∈Q(ym, r, s), we have

ym ≤ 1 − λ, τ(λ) ≥ r, τ∗(λ) ≤ s. (3.1)

By Theorem 1.2, we have Cτ,τ∗(ym, r, s) ≤ 1 − λ. Since xtqλ and λ ≤ 1 − Cτ,τ∗(ym, r, s), then
xtq[1 − Cτ,τ∗(ym, r, s)]. Hence, xt /∈Cτ,τ∗(ym, r, s).
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(3)⇒(1): Let xt, ym ∈ Pt(X) and xt /∈Cτ,τ∗(ym, r, s). Then t > Cτ,τ∗(ym, r, s)(x) implies
xtq[1 − Cτ,τ∗(ym, r, s)]. Since Cτ,τ∗(ym, r, s) =

∧{μ | μ ≥ ym, τ(1 − μ) ≥ r, τ∗(1 − μ) ≤ s}. Since
τ(
∨
(1 − μ)) ≥ ∧ τ(1 − μ) and τ∗(

∨
(1 − μ)) ≤ ∨ τ∗(1 − μ), we have τ(1 − Cτ,τ∗(ym, r, s)) ≥ r and

τ∗(1 − Cτ,τ∗(ym, r, s)) ≤ s. Hence, [1 − Cτ,τ∗(ym, r, s)] ∈ Q(xt, r, s). Since ym ∈ Cτ,τ∗(ym, r, s) and
ymq[1 − Cτ,τ∗(ym, r, s))]. Thus, (X, τ, τ∗) is (r, s)-T0 space.

We can prove the following corollaries as a similar method as Theorem 3.2.

Corollary 3.3. Let (X, τ, τ∗) be an IFTS. Then the following statements are equivalent:

(1) (X, τ, τ∗) is (r, s)-quasi-T0 space;

(2) for each xt, xm ∈ Pt(X), Q(xt, r, s) /= Q(xm, r, s);

(3) for each xt, xm ∈ Pt(X), then xt /∈Cτ,τ∗(xm, r, s) or xm /∈Cτ,τ∗(xt, r, s).

Corollary 3.4. Let (X, τ, τ∗) be an IFTS. Then the following statements are equivalent:

(1) (X, τ, τ∗) is (r, s)-sub-T0 space;

(2) for each x /= y ∈ X, there exists t ∈ I0 such that Q(xt, r, s) /= Q(yt, r, s);

(3) for each x /= y ∈ X, there exists t ∈ I0 such that xt /∈Cτ,τ∗(yt, r, s) or yt /∈Cτ,τ∗(xt, r, s).

Example 3.5. Let X = {x, y} be a set. We define an IGO (τ, τ∗) on X as follows:

τ(λ) =

⎧⎪⎪⎨
⎪⎪⎩
1 if λ = 1 or 0,
1
2

if λ = x0.7,

0 otherwise,

τ∗(λ) =

⎧⎪⎪⎨
⎪⎪⎩
0 if λ = 1 or 0,
1
2

if λ = x0.7,

1 otherwise.

(3.2)

For each x /= y ∈ X, there exists 0.4 ∈ I0 such that x0.7 ∈ Q(x0.4, 1/2, 1/2) and y0.4qx0.7.
Hence, (X, τ, τ∗) is (1/2, 1/2)-sub-T0 space. On the other hand, since Q(y0.5, 1/2, 1/2) =
Q(y0.6, 1/2, 1/2) = {1}, by Corollary 3.3(2), (X, τ, τ∗) is not (1/2, 1/2)-quasi-T0 space.

Theorem 3.6. Let (X, τ, τ∗) be an IFTS. Then the following statements are equivalent:

(1) (X, τ, τ∗) is (r, s)-T1 space;

(2) for each xt ∈ Pt(X), xt = Cτ,τ∗(xt, r, s);

(3) for each λ ∈ IX , λ =
∧{μ | λ ≤ μ, τ(μ) ≥ r, τ∗(μ) ≤ s}.

Proof. (1)⇒(2): We only show that Cτ,τ∗(xt, r, s) ≤ xt. Let ym ∈ Cτ,τ∗(xt, r, s). Suppose that
ym /≤xt. Since (X, τ, τ∗) is (r, s)-T1 space, there exists λ ∈ Q(ym, r, s) such that xtqλ. It implies
xt ≤ 1 − λ with τ(λ) ≥ r and τ∗(λ) ≤ s. Hence, Cτ,τ∗(xt, r, s) ≤ 1 − λ. Since ym ∈ Cτ,τ∗(xt, r, s) ≤
1 − λ, we have λ/∈Q(ym, r, s). It is a contradiction. Hence, ym ≤ xt. Since ym ∈ Cτ,τ∗(xt, r, s)
implies ym ≤ xt, then Cτ,τ∗(xt, r, s) ≤ xt.

(2)⇒(3): Let ρ =
∧{μ | λ ≤ μ, τ(μ) ≥ r, τ∗(μ) ≤ s}. We only show that ρ ≤ λ. Suppose

there exist x ∈ X and t ∈ (0, 1) such that

ρ(x) > 1 − t ≥ λ(x). (3.3)
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Then, λ ≤ 1 − xt. Since xt = Cτ,τ∗(xt, r, s),

τ
(
1 − xt

)
= τ
(
1 − Cτ,τ∗

(
xt, r, s

)) ≥ r, τ∗
(
1 − Cτ,τ∗

(
xt, r, s

)) ≤ s. (3.4)

Hence, ρ ≤ 1 − xt. It is a contradiction.
(3)⇒(1): For each xt, ym ∈ Pt(X) such that xt /≤ym, 1 − xt /≥ 1 − ym. From (3), since

1 − ym =
∧{μ | 1 − ym ≤ μ, τ(μ) ≥ r, τ∗(μ) ≤ s}, there exists μ = 1 − ym ∈ IX such that

τ
(
1 − ym

) ≥ r, τ∗
(
1 − ym

) ≤ s. (3.5)

Moreover, since 1 − xt /≥ 1 − ym, we have xtq[1 − ym]. Thus 1 − ym ∈ Q(xt, r, s) such that
ymq[1 − ym]. Hence, (X, τ, τ∗) is (r, s)-T1 space.

Theorem 3.7. Let (X, τ, τ∗) be a stratified IFTS. Then (X, τ, τ∗) is (r, s)-quasi-T0 space for all r ∈
I0, s ∈ I1.

Proof. Let xt, xm ∈ Pt(X) such that t < m. Then there exists α ∈ I0 such that

t ≤ 1 − α < m. (3.6)

Since (X, τ, τ∗) is stratified IFTS, we have τ(α) = 1 and τ∗(α) = 0. Hence, α ∈ Q(xm, r, s) such
that xtqα.

Theorem 3.8. (1) Every (r, s)-T0 space is both (r, s)-quasi-T0 and (r, s)-sub-T0.
(2) Every (r, s)-T1 space is (r, s)-T0.

Proof. (1) For each xt, xm ∈ Pt(X) such that t < m. By (r, s)-T0 space, there exists λ ∈ Q(xt, r, s)
such that xmqλ. Since t < m, we have xtqλ. So, X is (r, s)-quasi-T0.

(2) For each xt, ym ∈ Pt(X), if xt /≤ym, by (r, s)-T1 space, there exists λ ∈ Q(xt, r, s) such
that ymqλ. Also, if ym /≤xt, by (r, s)-T1 space, there exists μ ∈ Q(ym, r, s) such that xtqμ. Hence,
X is (r, s)-T0.

The converse of Theorem 3.8 is not true from the following examples.

Example 3.9. Let X = {x, y} be a set. We define an IGO (τ, τ∗) on X as follows:

τ(λ) =

⎧⎪⎪⎨
⎪⎪⎩
1 if λ = α for α ∈ I,
1
3

if λ = μpq,

0 otherwise,

τ∗(λ) =

⎧⎪⎪⎨
⎪⎪⎩
0 if λ = α for α ∈ I,
2
3

if λ = μpq,

1 otherwise,

(3.7)

where for each 0 < p ≤ 0.4, μpq(x) = p and μpq(y) = q, 0 ≤ q < p. Since (X, τ, τ∗) is a stratified
IFTS, by Theorem 3.7, (X, τ, τ∗) is (r, s)-quasi-T0 space for each r ∈ I0 and s ∈ I1.

If r > 1/3, s < 2/3, and t ∈ I0, then for each xt, yt ∈ Pt(X), we have

Q(xt, r, s
)
= Q(yt, r, s

)
=
{
α | 1 − t < α ≤ 1

}
. (3.8)



S. E. Abbas and B. Krsteska 15

By Theorem 3.2(2) and Corollary 3.4(2), (X, τ, τ∗) is neither (r, s)-sub-T0 nor (r, s)-T0 for r >
1/3 and s < 2/3.

If 0 < r ≤ 1/3, 2/3 ≤ s < 1, and x /= y ∈ X, there exists 0.7 ∈ I0 such that there exists
μ(2/5)0 ∈ Q(x0.7, r, s) with y0.7qμ(2/5)0. Hence, (X, τ, τ∗) is (r, s)-sub-T0 for 0 < r ≤ 1/3 and
2/3 ≤ s < 1.

For x0.3, y0.3 ∈ Pt(X), 0 < r ≤ 1/3, and 2/3 ≤ s < 1, we have Q(x0.3, r, s) = Q(y0.3, r, s) =
{α | 0.7 < α}. Hence, it is not (r, s)-T0 for 0 < r ≤ 1/3 and 2/3 ≤ s < 1. For 0 < r ≤ 1/3 and
2/3 ≤ s < 1, (X, τ, τ∗) is both (r, s)-quasi-T0 and (r, s)-sub-T0, but not (r, s)-T0.

Example 3.10. Let X = {x, y} be a set. We define an IGO (τ, τ∗) on X as follows:

τ(λ) =

⎧⎪⎪⎨
⎪⎪⎩
1 if λ = α for α ∈ I,
1
2

if λ = μpq,

0 otherwise,

τ∗(λ) =

⎧⎪⎪⎨
⎪⎪⎩
0 if λ = α for α ∈ I,
1
2

if λ = μpq,

1 otherwise,

(3.9)

where for each 0 < p < 1, μpq(x) = p and μpq(y) = q, 0 ≤ q < p. Let zt, zm ∈ Pt(X) with t /= m
for z = x or y. We have

Q
(
zt,

1
2
,
1
2

)
/= Q
(
zm,

1
2
,
1
2

)
. (3.10)

For xt, ym ∈ Pt(X), for p > 1 − t, we have μp0 ∈ Q(xt, 1/2, 1/2) with ymqμp0. Hence, (X, τ, τ∗)
is (1/2, 1/2)-T0 space. On the other hand, let y0.5 /≤x0.5. For each μpq ∈ Q(y0.5, 1/2, 1/2), since
q + 0.5 > 1 and p > q, we have x0.5qμpq, that is, Q(y0.5, 1/2, 1/2) ⊂ Q(x0.5, 1/2, 1/2). Thus
(X, τ, τ∗) is not (r, s)-T1 space.

Theorem 3.11. Every subspace of (r, s)-quasi-T0 (resp., (r, s)-sub-T0, (r, s)-T0, and (r, s)-T1) space
is (r, s)-quasi-T0 (resp., (r, s)-sub-T0, (r, s)-T0, and (r, s)-T1) space.

Proof. Let (X, τ, τ∗) be (r, s)-T1 space. Let at, bm ∈ Pt(A) such that at /≤ bm. Then, at, bm ∈ Pt(X)
such that at /≤ bm. Since (X, τ, τ∗) is (r, s)-T1, there exists λ ∈ Q(at, r, s) such that bmqλ. Since
τA(i−1(λ)) ≥ τ(λ) ≥ r and τ∗A(i

−1(λ)) ≤ τ∗(λ) ≤ s, we have i−1(λ) ∈ Qτ |A,τ∗|A(at, r, s) such that
bmqi

−1(λ). The others are similarly proved.

We can prove the following theorem as a similar method as Theorem 3.11.

Theorem 3.12. Every IF homeomorphic space of (r, s)-quasi-T0 (resp., (r, s)-sub-T0, (r, s)-T0, and
(r, s)-T1) space is (r, s)-quasi-T0 (resp., (r, s)-sub-T0, (r, s)-T0, and (r, s)-T1) space.

Theorem 3.13. Let {(Xi, τi, τ
∗
i ) | i ∈ Γ} be a family of (r, s)-quasi T0 (resp., (r, s)-sub-T0, (r, s)-T0,

and (r, s)-T1) space. Let (τ, τ∗) be the product IGO on X =
∏

i∈ΓXi. Then (X, τ, τ∗) is (r, s)-quasi-T0
(resp., (r, s)-sub-T0, (r, s)-T0, and (r, s)-T1) space.

Proof. Let xt, ym ∈ Pt(X) such that xt /≤ym. Then there exists i ∈ Γ such that (πi(x))t /≤ (πi(y))m.
Since (Xi, τi, τ

∗
i ) is (r, s)-T1 space, there exists λ ∈ IXi such that

λ ∈ Qτi,τ
∗
i

((
πi(x)

)
t, r, s

)
,
(
πi(y)

)
mqλ. (3.11)
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Since πi(xt) = (πi(x))tqλ if and only if xtqπ
−1
i (λ), we have

π−1
i (λ) ∈ Q(xt, r, s

)
, ymqπ

−1
i (λ). (3.12)

Therefore, (X, τ, τ∗) is (r, s)-T1 space. The others are similarly proved.

Theorem 3.14. Let {(Xi, τi, τ
∗
i ) | i ∈ Γ} be a family of IFTSs. Let (τ, τ∗) be the product IGO on

X =
∏

i∈ΓXi. If (X, τ, τ∗) is (r, s)-sub-T0 space, then (Xi, τi, τ
∗
i ) is (r − ε, s+ ε)-sub-T0 space for each

ε > 0 and for each i ∈ Γ.

Proof. Let xj , yj ∈ Xj such that xj /= yj . Then there exists xi ∈ Xi for all i ∈ Γ − {j} such that
x /= y ∈ X and

πi(x) =

{
xi if i ∈ Γ − {j},
xj if i = j,

πi(y) =

{
xi if i ∈ Γ − {j},
yj if i = j.

(3.13)

Since (X, τ, τ∗) is (r, s)-sub-T0 space, there exists t ∈ (0, 1) such that

ρ ∈ Q(xt, r, s
)
, ytqρ. (3.14)

Let (β, β∗) be a base for (τ, τ∗). Since τ(ρ) ≥ r and τ∗(ρ) ≤ s, by Theorem 1.5, for ε > 0, there
exists a family {ρk | ρ =

∨
k∈Δρk} such that

τ(ρ) ≥
∧
k∈Δ

β
(
ρk
)
> r − ε, τ∗(ρ) ≤

∨
k∈Δ

β∗
(
ρk
)
< s + ε. (3.15)

Since xtq[ρ =
∨

k∈Δρk], there exists k ∈ Γ such that xtqρk, β(ρk) > r − ε and β∗(ρk) < s + ε.
Then, there exists a family {λi | ρk =

∧
i∈Fπ

−1
i (λi)}which F is a finite subset of Γ such that

β
(
ρk
) ≥∧

i∈F
τi
(
λi
)
> r − ε, β∗

(
ρk
) ≤∨

i∈F
τ∗i
(
λi
)
< s + ε. (E)

Without loss of generality, we may assume j ∈ F because we can take F1 = F ∪ {j} such that
λj = 1, τj(1) = 1, and τ∗j (1) = 0, if necessary.

Since xtqρk and ytqρk,

t >

[ ∨
i∈F−{j}

(
1 − λi

)(
πi(x)

)] ∨ (1 − λj
)(
xj), (F)

t ≤
[ ∨
i∈F−{j}

(
1 − λi

)(
πi(x)

)] ∨ (1 − λj
)(
yj). (G)

If (
∨

i∈F−{j}(1 − λi)(πi(x)) ≥ t, it is a contradiction for (F) and (G). Thus

∨
i∈F−{j}

(
1 − λi

)(
πi(x)

)
< t. (3.16)
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It implies

t >
(
1 − λj

)(
xj), t ≤ (1 − λj

)(
yj). (3.17)

Furthermore, by (E), we have τj(λj) > r − ε and τ∗j (λj) < s + ε. Hence,

λj ∈ Qτj ,τ
∗
j

((
xj)

t, r − ε, s + ε
)
,
(
yj)

tqλj . (3.18)

Thus, (Xj, τj , τ
∗
j ) is (r − ε, s + ε)-sub-T0 space.

In the above theorem, if (X, τ, τ∗) is (r, s)-T1 (resp., (r, s)-quasi-T0 and (r, s)-T0), it is
not true from the following example.

Example 3.15. Let X = {x} and Y = {y} be sets. Define IGO (τ1, τ∗1 ) on X as follows:

τ1(λ) =

{
1 if λ = α for α ∈ I,

0 otherwise,
τ∗1 (λ) =

{
0 if λ = α for α ∈ I,

1 otherwise,
(3.19)

and IGO (τ2, τ∗2 ) on Y as follows:

τ2(λ) =

⎧⎪⎪⎨
⎪⎪⎩
1 if λ = 0 or 1,
1
2

if λ = y0.2,

0 otherwise,

τ∗2 (λ) =

⎧⎪⎪⎨
⎪⎪⎩
0 if λ = 0 or 1,
1
2

if λ = y0.2,

1 otherwise.

(3.20)

Let X × Y = {(x, y)} be a productset and (τ1
⊗

τ2, τ
∗
1

⊗
τ∗2 ) the product IGO on X × Y . Since

(x, y)0.2 = π−1
1 (0.2) = π−1

2 (y0.2), by Theorem 1.5, we have

(
τ1
⊗

τ2
)(
0.2
)
= τ1
(
0.2
) ∨ τ2

(
y0.2
)
= 1,

(
τ∗1
⊗

τ∗2
)(
0.2
)
= τ2
(
0.2
) ∧ τ∗2

(
y0.2
)
= 0. (3.21)

We can obtain the product IGO, (τ1
⊗

τ2, τ
∗
1

⊗
τ∗2 ) as follows:

τ1
⊗

τ2(λ) =

{
1 if λ = α for α ∈ I,

0 otherwise,

τ∗1
⊗

τ∗2 (λ) =

{
0 if λ = α for α ∈ I,

1 otherwise.

(3.22)

Then, (X × Y, τ1
⊗

τ2, τ
∗
1

⊗
τ∗2 ) are (r, s)-T1, (r, s)-T0, and (r, s)-quasi-T0 for all r ∈ I0, s ∈ I1.

But (Y, τ2, τ∗2 ) is not (r, s)-quasi-T0 for all r ∈ I0, s ∈ I1. Hence, it is neither (r, s)-T0 nor (r, s)-T1
for all r ∈ I0, s ∈ I1.

Theorem 3.16. Let {(Xi, τi, τ
∗
i ) | i ∈ Γ} be a family of IFTSs and (τ, τ∗) be the product IGO on X =∏

i∈ΓXi. If (X, τ, τ∗) is (r, s)-quasi-T0 (resp., (r, s)-sub-T0, (r, s)-T0, and (r, s)-T1) and (Xj, τj , τ
∗
j ) is

stratified for j ∈ Γ, then (Xj, τj , τ
∗
j ) is (r, s)-quasi-T0 (resp., (r, s)-sub-T0, (r, s)-T0, and (r, s)-T1).
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Proof. Let (X, τ, τ∗) and X̃j = Xj ×
∏{yi | i /= j} of X parallel to Xj . Since (X̃j , τ |X̃j

, τ∗|X̃j
)

is a subspace of (X, τ, τ∗), by Theorem 3.11, (X̃j , τ |X̃j
, τ∗|X̃j

) is (r, s)-quasi-T0 (resp., (r, s)-
sub-T0, (r, s)-T0, and (r, s)-T1). Since (Xj, τj , τ

∗
j ) is stratified, by Theorem 2.7, πj |X̃j

:

(X̃j , τ |X̃j
, τ∗|X̃j

)→ (Xj, τj , τ
∗
j ) is IF homeomorphism. From Theorem 3.12, (Xj, τj , τ

∗
j ) is (r, s)-

quasi-T0 (resp., (r, s)-sub-T0, (r, s)-T0, and (r, s)-T1).
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[12] D. Çoker, “An introduction to intuitionistic fuzzy topological spaces,” Fuzzy Sets and Systems, vol. 88,

no. 1, pp. 81–89, 1997.
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