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1. Introduction

Considerable attention has been given to Hilbert inequalities and Hilbert-type inequalities by
several authors including Gao and Yang [1], Yang [2—4], Jichang and Debnath [5], Pachpatte
[6], Zhao [7], Brneti¢ and Pe&ari¢ [8]. In 2007, Li et al. [9] gave a new inequality similar to
Hilbert inequality for integrals:

If f(x), g(x) 20,0 <[5 f2(x)dx < o0, 0 < [ g*(x)dx < oo, then one has

”w ey f(x)g(y)dxdy<4[wa2(x)dxfg2(x)dx]1/2, (1.1)

X+y+x-y|

where constant factor 4 is the best possible.
An equivalent inequality is

f Uw |Inx - Iny] f(x)dx]zdy<16f ). W

X+y+lx-yl

In this paper, by introducing some parameters we generalize (1.1), (1.2), and we obtain
the reverse form for each of them. The equivalent forms are also considered.
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2. Main results

Lemma 2.1. Suppose that L >0, p > 1(1/p + 1/q = 1), define weight functions w,(x, q), wi(y,p),

respectively as
®  |Inx-Iny] <x>)‘/‘7 1
7 = - _d 7
Z(J)L(x CI) J:) x)‘+y)‘+ |x)t_y/\| y yl_)L y

y 2.1)
®  |lnx-1Iny] <y> |
’ = —d
wi(y.p) J;) x4t -y \x X
One has wy(x,q) = wi(y,p) = (1/2A%)(p* + ¢%).
Proof. Letting t = y*/x*, we have
L2 Ity 1 [J‘l—lnt L1/ J‘wlnt Yy ] 1 ,,
== —— Vgt — Vgt = — .
wited =) Toanpog b el 2 ") 2 P+ a)
2.2)
By symmetry we have
1
wi(y,p) = 537 (P* +4)- (2.3)
The lemma is proved. O
Lemma22. Letp>1(or 0<p<1),1/p+1/9=1,1>0,and 0 < e < qA/2p, setting
T nx-Inyl  feerp-na-nipyeeana-nizg
— +e+ +e+ d d . 2.4
J () ”; x*+y1+|xi—yl|x y xdy (24)
Then for e—0%, one gets
2, 2 2
o [1+o(1)]—O(1)<](e)<p2;2 [1+0(1)]. (25)
Proof. Letting t = y*/x*, we have
1l |Int| 1/p-1-¢/1q
J€)=3), [J;/x.xl+t+|1—t| i di|dx
_ 1 (1 « |lnt| 1/p-1-¢/A\q ]
_)@I x1+£[L T+t+|1-t g dt| dx
VR e
/p-1-¢/Aq
1 xlre U T+t+[1-4 N dt]dx
_ L (Tt gy, ] r 1 UW‘ 1INt spreenag] 4o
T A2%); THt+]1-¢ A2) xt+e )y 1+t+|1-t¢
= 11—12.

(2.6)
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Now, observe that

oAt g, P oo (77 IIng
f i at = P2 1vo], (¢ —0),0<[ i

fV/p-1-¢/0q g4
o 1+t+|1—¢

1/x*
_ J‘ Int {/p-1-¢/1q 34
0

1/x
< J‘ ﬂ /201 g
0 2

= pAx V2 Inx + 2p°x /%,
(2.7)
then
2, 2
Il = PZAZZ []_ + O(l)],
1 w© o 8 3 (28)
0<L< 1z p)ujl x7 1742 In x dx +2;92J‘1 x’l’)‘/zpdx] = )L—r;
We get
2, 2
J(e) > ”wz [1+0(1)] -O(1). (2.9)
On the other hand,
¥ |Inx-Iny| ~[+e+(p-1)(1-N)] /p,, ,~[1+&+(g-1) (1-1)]/
J () =Jf — - [He+(p-1)(1-1)] Py [L+e+(g-1)(1-1)] 1dx dy
1 X+ yt 4 |t -y
“[(* |Inx-Iny| ~[Lte+(p-1)(1-N)]/p, ~[1+e+(g-1) (1-1)]/
<f U n n o~ [+e+(p-1)(A-1)] Py [1+e+(g-1)(1-1)] 1dy | dx (2.10)
1 Lo xt+yt [t -yt
2, 2
_pP *q
= 5 [1+0(1)].
Hence, (2.5) is valid. The lemma is proved. O

Theorem 2.3. Letp > 1,1/p+1/q=1,1>0, f(x) >0, g(y) > 0.If0 < [x®P DI fP(x)dx < oo,
0< Lmy(q—l)(l—i)gq(y)dy < oo, then one has

*® |lnx-Iny]
dxd
IJ:) x)‘+yf\+|x/\_y)l|f(x)g(y) xay

pZ +q2 ®© 1/p w© 1/q
<X (f x(p—l)(l—wfp(x)dx> (j y<q—1><1—mgq(y)dy> ,
0 0

(2.11)
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where constant factor (p* + q*)/2A* is the best possible. In particular, for A = 1, inequality (2.11)
reduces to

J‘J‘w |Inx - Iny]| nx=Inyl oo (yydrdy < p2;q2 <J:ofp(x)dx>l/p <J:ogq(y)dy>l/q- (2.12)

X+y+x-y|

Proof. Applying Holder’s inequality and Lemma 2.1, we have

® Inx -1
[[7 i gwdray

o Xyt |t -yl
- IInx-Iny| \Y7/x\"P9x0-D/4
_J‘L [<x1+yl+|xl—yl|> <y> Wf(x)]

[Inx —Iny| 1/q y )‘/qu(lk
X[(x*+y*+|x*—y*|) <;> R

*® 1 -1 A q 5 (p/q)(1-1) 1/p
A et (3) ey

o Xyt [ -y Y

®  |Inx-Iny] y\MPya/pi-b 1/q

X{j.[) x)‘+y)‘+|x)‘—y)t|<;> qu(y)dxdy}
—pz (7 (p-1)(1-1) VP (g-1)(1-1) 1
< 12 <J; xP fP(x)dx) <J;) Y g"(y)dy) )

If (2.13) takes the form of equality, then there exist constants A and B, such that they are
not all zero, and

(2.13)

|Inx - Iny]| (f)”qx(P/Q)(ll) b - B [Inx - Iny| (z)x/pywxl—m 2,
Xyt 4 [ -y yl-t oyt 4 [ -y 11
(2.14)
a.e. (x,y) in (0,00) x (0, 0). It follows that there exists a constant C, such that

Ax - xP DO P (x) = By - y@ DI Ngl(y) = C, ae. (x,y) in (0,00) x (0, 0). (2.15)
Without lose of generality, suppose A #0, then we have
(p-1(-D) fp () = L

x fP(x) = Ax’ (2.16)

which contradicts the fact that 0 < [["x®D0 fP(x)dx < oo, hence (2.13) takes the form of
strict inequality, so we obtain (2.11).
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Assume that the constant factor (p* +¢*) /2A% in (2.11) is not the best possible, then there
exists a positive number k (with k < (p* + %) /21%) such that (2.11) is still valid if one replaces
(p* + g%) /2% by k. In particular, for 0 < £ < gA/2p, setting f and § as f(x) = §(x) = 0 for
x € (0,1), f(x) = x e p-DA-DI/p G(x) = x~[+e+(-DA-N1/4 for x € [1, 00), then we have

© - 1/p © 1/q k
k(J‘O x""”“‘”f"’(x)dx) <J;) y<q—1)(1—)~>§q(y)dy> = (2.17)

By using Lemma 2.2, we find

© 1 -1 ~ )
J.J;) xt o ny_|yxlf(x)g(y)dxdy

+yt+ [x

- ”w |Inx —Iny| x e (p-DA-D1/py ~[le+ @DV a gy 4y (2.18)
N PRy

2 2

p-t+q

>
2A%¢

[1+0(1)] - O(1).

Therefore, we get

2 2 k
pz;g [1+o(M] -0 <= (2.19)
or
P+q
- [1+0()] —£0(1) <k. (2.20)

For e—07, it follows that (p? + g?)/2\* < k. This contradicts the fact that k < (p* + %) /2A%.
Hence, the constant factor in (2.11) is the best possible. Theorem 2.3 is proved. O

Theorem 2.4. Let0<p <1,1/p+1/qg=1,1>0, f(x) 20, g(y) > 0.1f0 < [[Px®PDAD £ (x)dx <
o, 0 < [Py DIV ed(y)dy < oo, then one has

®  |lnx-Iny|
dxd
IJ; x*+yl+|xx_y1|f(x)g(y) xdy

P> +q° 1)(1-4) Ve (g-1)(1-1) 1
212 (I rRS p(x)dx> (J v §'y)dy ) '
0 0

where the constant factor (p* + g*) /2> is the best possible. In particular, for A = 1, the inequality
reduces to

J‘J‘°° [Inx - Iny| nx=Inyl oo e@dxdy > P’ 42- g <Loofp(x)dx>l/p <L°°gq(y)dy>1/q' (2.22)

X+y+[x-y|

(2.21)
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Proof. Applying reverse Holder’s inequality and the same arguments as before, we have (2.21).

If the constant factor (p® + ¢%)/21? in (2.21) is not the best possible, then there exists
a positive number h (with h > (p* + g*)/2A?), such that (2.21) is still valid if one replaces
(p* + g%) /2A% by h. In particular, for 0 < £ < gA/2p, setting f and § as in Theorem 2.3, we have

o - 1/p o 1/q h
h<J; x(p—l)(l—nfp(x)dx) <L y<q—1><1—A>§q(y)dy> =< (2.23)

By using Lemma 2.2, we find

* |Inx —Iny| -
dxd
IJ; x*+yi+|xA_yA|f(x)g(y) xdy

* |Inx —Iny| rer (p-1)(1- _ o
- p-1)(1-0)]/py-[4e+ @D A-D1/d 4o 4 2.4
J‘L x)‘+y)‘+|x)‘—y)‘|x 4 xay (2.24)
2., 2
P tq
I 1.
<S5 [I+0(1)]
Therefore, we get
2., 2 2., 2
P +q h P +q
1%, [1+0(1)] > - or = [1+o(1)]>h (2.25)
for e—07, and it follows that (p? + g*)/2A* > h. This contradicts the fact that h > (p* + %) /21>
Hence, the constant factor in (2.21) is the best possible. Theorem 2.4 is proved. O

Theorem 2.5. If p>1,1/p+1/g=1,1>0, f(x) 20,0 < ["xPVIV £ (x)dx < oo, then one has

« -1 et |lnx—lny| P p2+q2 p oo e
J;) y [J; x’\+y’\+|x*—y*|f(x)dx] dy < IE i 2 (P=1)( )fp(x)dx, (2.26)

where the constant factor((p? + q*) /2A?)P is the best possible. Inequality (2.26) is equivalent to (2.11).

Proof. Setting

_ a7 [Inx-Iny Pt
gsy) =y Uo x"+y"+|x}~—y)‘|f(x)dx] , (2.27)

then by (2.11), we find
J Y00 g3\ dy

0
“ L[ IInx-Iny| ]7’ J‘J‘w |Inx —Iny|
= -1 dx| dy = dxd
foy I Fr P A IO | i ey e A

2 2 ® 1/p ) o _ p 1/q
< — P P(x)d dx| d .
T Uo * frd o P L x*+y*+lx*—y*|f(x) e

(2.28)
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Hence, we obtain

2 2

o0 + P
I y(””lm’}‘)gq(y)dy < <p2)@q > J x(pfl)(lfl)fp(x)dx, (2.29)
0 0

Thus, by (2.11), both (2.28) and (2.29) keep the form of strict inequalities, then we have (2.26).
Applying Holder’s inequality, we have

®  |lnx-Iny|
dxd
JI) x*+yl+|x)l_y1|f(x)g(y) xdy

* *® Inx - Iny|
- (-1/p | y d ] A-V/po()]d
L [y J; xi+yh+|xﬂ-yk|f(x) x| [yt Pg(y)]dy

* « Inx -1In po\1Up oo 1/q
([ | Y 'yllﬂx)dx] v} {L Y gy

0 0 X')L + ]/)L + |.’)C)L -
(2.30)

Therefore, by (2.26) we have (2.11). It follows that inequality (2.26) is equivalent to (2.11), and
the constant factors in (2.26) are the best possible. The theorem is proved. O

Theorem 2.6. If 0<p<1,1/p+1/q=1,1>0, f(x) >0,0 < [xP DIV £ (x)dx < oo, then one
has

© © _ 14 2 2\P [
J‘ y)rl [J’ |[Inx —In y| _f(x)dx] dy > (P +q ) I x(p—l)(l—/\)fp (x)dx, (2.31)
0 0 0

oy + [t -y 2\
where the constant factor ((p? +q*) /2A2)P is the best possible. Inequality (2.31) is equivalent to (2.21).

The proof of Theorem 2.6 is similar to that of Theorem 2.5, so we omit it.
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