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1. Introduction

Let
∑

an be a given infinite series with partial sums sn. Let uα
n denote the nth Cesaro mean of

order α > −1 of the sequence (sn). The series
∑

an is summable |C, α|k, k ≥ 1 if
∞∑

n=1

nk−1∣∣uα
n − uα

n−1
∣
∣k < ∞ (1.1)

(Flett [1]). For α = 1, |C, α|k reduces to |C, 1|k summability.
Let (pn) be a sequence of positive real constants such that Pn = p0 + · · · + pn → ∞ as

n → ∞ (P−1 = p−1 = 0). The (N,p) transform φn of (sn) generated by (pn) is defined by

φn =
1
Pn

n∑

v=0

pn−vsv. (1.2)

The sequence-to-sequence transformation

Φn =
1
Pn

n∑

v=0

pvsv (1.3)

defines the sequence (Φn) of (N,pn) transform of (sn) generated by (pn). The series
∑

an is
summable |R, pn|k, k ≥ 1 if

∞∑

n=1

nk−1∣∣Φn −Φn−1
∣
∣k < ∞. (1.4)
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In the special case when pn = 1 for all n (resp., k = 1), |R, pn|k summability reduces to |C, 1|k
(resp., |R, pn|) summability.

The series
∑

an is said to be summable |(N,p)(N, q)|, when the (N,p) transform of the
(N, q) transform of (sn) is a sequence of bounded variation (see Das [2]).

We give the following new definition.
Let (Tn) define the sequence of the (N, qn) transform of the (N,pn) transform of (sn)

generated by the sequences (qn) and (pn), respectively. The series
∑

an is said to be summable
|(R, qn)(R, pn)|k, k ≥ 1 if

∞∑

n=1

nk−1∣∣Tn − Tn−1
∣
∣k < ∞. (1.5)

Wemay assume through the paper thatQn = q0+ · · ·+qn → ∞, as n → ∞; Rn = r0+ · · ·+rn → ∞,
as n → ∞.

2. New results

We state and prove the following.

Theorem 2.1. Let k ≥ 1, (λn) be a sequence of constants. Define

fv =
n∑

r=v

qr
Pr

, Fv =
n∑

r=v
prfr. (2.1)

Let

pnQn = O
(
Pn

)
, (2.2)

∞∑

n=v+1

nk−1qkn
Qk

nQn−1
= O

((
vqv
)k−1

Qk
v

)

. (2.3)

Then, sufficient conditions for the implication

∑
an is summable

∣
∣R, rn

∣
∣
k =⇒

∑
anλn is summable

∣
∣
(
R, qn

)(
R, pn

)∣
∣
k (2.4)

are

∣
∣λv
∣
∣Fv = O

(
Qv

)
, (2.5)

∣
∣λn
∣
∣ = O

(
Qn

)
, (2.6)

pvRv

∣
∣λv
∣
∣ = O

(
Qv

)
, (2.7)

pvqvRv

∣
∣λv
∣
∣ = O

(
QvQv−1rv

)
, (2.8)

pnqnRn

∣
∣λn
∣
∣ = O

(
PnQnrn

)
, (2.9)

Rv−1
∣
∣Δλv

∣
∣Fv+1 = O

(
Qvrv

)
, (2.10)

Rv−1
∣
∣Δλv

∣
∣ = O

(
Qvrv

)
. (2.11)
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Proof. Let (Sn) be the sequence of partial sums of
∑

anλn. Let vn, Vn be the (N, rn),
(N, qn)(N,pn) transforms of the sequences (sn), (Sn), respectively. Wewrite tn = vn−vn−1, Tn =
Vn − Vn−1. Therefore,

tn =
rn

RnRn−1

n∑

v=1

Rv−1av, (2.12)

Vn =
1
Qn

n∑

r=0

qr
1
Pr

r∑

v=0

pvSv

=
1
Qn

n∑

v=0

pvSv

n∑

r=v

qr
Pr

=
1
Qn

n∑

v=0

pvSvfv.

(2.13)

Also,

Tn = Vn − Vn−1

=
qn

QnQn−1

n∑

r=0

prSrfr +
pnSnfn
Qn−1

=
qn

QnQn−1

v∑

r=0

prfr
r∑

v=0

avλv +
pnqn

PnQn−1

n∑

v=0

avλv

=
qn

QnQn−1

n∑

v=0

avλv
n∑

r=v
prfr +

pnqn
PnQn−1

n∑

v=0

avλv

=
qn

QnQn−1

n∑

v=1

Rv−1av
λv
Rv−1

n∑

r=v
prfr +

pnqn
PnQn−1

n∑

v=1

Rv−1av
λv
Rv−1

=
qn

QnQn−1

(
n−1∑

v=1

(
v∑

r=1

Rr−1ar

)

Δv

(
λv
Rv−1

n∑

r=v
prfr

)

+

(
n∑

v=1

Rv−1av

)
λnpnfn
Rn−1

)

+
pnqn

PnQn−1

(
n−1∑

v=1

(
v∑

r=1

Rr−1ar

)

Δ
(

λv
Rv−1

)

+

(
n∑

v=1

Rv−1av

)
λn
Rn−1

)

=
qn

QnQn−1

(
n−1∑

v=1

(

tvλvFv +
Rv−1
rv

pvtvλvfv +
Rv−1
rv

tvΔλv Fv+1

))

+
pnqnRn

QnQn−1rn
tnλnfn

+
pnqn

PnQn−1

(
n−1∑

v=1

(

tvλv +
Rv−1
rv

tvΔλv

))

+
pnqnRn

PnQn−1rn
tnλn,

=
7∑

j=1

Tnj .

(2.14)

In order to complete the proof, it is sufficient to show that
∞∑

n=1

nk−1∣∣Tnj
∣
∣k < ∞, j = 1, 2, 3, 4, 5, 6, 7. (2.15)
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Applying Holder’s inequality,

m+1∑

n=2

nk−1∣∣Tn1
∣
∣k =

m+1∑

n=2

nk−1
∣
∣
∣
∣
∣

qn
QnQn−1

n−1∑

v=1

tvλvFv

∣
∣
∣
∣
∣

k

≤
m+1∑

n=2

nk−1qkn
Qk

nQn−1

n−1∑

v=1

1

qk−1v

∣
∣tv
∣
∣k
∣
∣λv
∣
∣kFk

v

(
n−1∑

v=1

qv
Qn−1

)k−1

= O(1)
m∑

v=1

1

qk−1v

∣
∣tv
∣
∣k
∣
∣λv
∣
∣kFk

v

m+1∑

n=v+1

nk−1qkn
Qk

nQn−1

= O(1)
m∑

v=1

vk−1∣∣tv
∣
∣k
∣
∣λv
∣
∣kFk

v

Qk
v

= O(1),

m+1∑

n=2

nk−1∣∣Tn2
∣
∣k =

m+1∑

n=2

nk−1
∣
∣
∣
∣
∣

qn
QnQn−1

n−1∑

v=1

Rv−1pv
rv

tvλvfv

∣
∣
∣
∣
∣

k

≤
m+1∑

n=2

nk−1qkn
Qk

nQn−1

n−1∑

v=1

Rk
vp

k
v

qk−1v

∣
∣tv
∣
∣k
∣
∣λv
∣
∣kfk

v

(
n−1∑

v=1

qv
Qn−1

)k−1

= O(1)
m∑

v=1

Rk
vp

k
v

qk−1v

∣
∣tv
∣
∣k
∣
∣λv
∣
∣kfk

v

m+1∑

n=v+1

nk−1qkn
Qk

nQn−1

= O(1)
m∑

v=1

vk−1∣∣tv
∣
∣k R

k
vp

k
v

Qk
v

∣
∣λv
∣
∣kfk

v

= O(1)
m∑

v=1

vk−1∣∣tv
∣
∣k

= O(1),

m+1∑

n=2

nk−1∣∣Tn3
∣
∣k =

m+1∑

n=2

nk−1
∣
∣
∣
∣
∣

qn
QnQn−1

n−1∑

v=1

Rv−1
rv

tvΔλvFv+1

∣
∣
∣
∣
∣

k

≤
m+1∑

n=1

nk−1 qkn

Qk
nQn−1

n−1∑

v=1

Rk
v−1

qk−1v rkv

∣
∣tv
∣
∣k
∣
∣Δλv

∣
∣kFk

v+1

(
n−1∑

v=1

qv
Qn−1

)k

= O(1)
m∑

v=1

Rk
v−1

qk−1v rkv

∣
∣tv
∣
∣k
∣
∣Δλv

∣
∣kFk

v+1

m+1∑

n=v+1

nk−1qkn
Qk

nQn−1

= O(1)
m∑

v=1

vk−1∣∣tv
∣
∣k

Rk
v−1

Qk
vr

k
v

∣
∣Δλv

∣
∣kFk

v+1

= O(1),
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m∑

n=1

nk−1∣∣Tn4
∣
∣k =

m∑

n=1

nk−1
∣
∣
∣
∣

pnqnRn

QnQn−1rn
tnλnfn

∣
∣
∣
∣

k

= O(1)
m∑

n=1

nk−1∣∣tn
∣
∣k
∣
∣λn
∣
∣k pknq

k
nR

k
n

Qk
nQ

k
n−1r

k
n

= O(1),

m+1∑

n=2

nk−1∣∣Tn5
∣
∣k =

m+1∑

n=2

nk−1
∣
∣
∣
∣
∣

pnqn
PnQn−1

n−1∑

v=1

tvλv

∣
∣
∣
∣
∣

k

≤
m+1∑

n=1

nk−1 pknq
k
n

Pk
nQn−1

n−1∑

v=1

∣
∣tv
∣
∣k
∣
∣λv
∣
∣k 1

qk−1v

(
n−1∑

v=1

qv
Qn−1

)k−1

= O(1)
m∑

v=1

∣
∣tv
∣
∣k
∣
∣λv
∣
∣k 1

qk−1v

m+1∑

n=v+1

nk−1pknq
k
n

Pk
nQn−1

= O(1)
m∑

v=1

∣
∣tv
∣
∣k
∣
∣λv
∣
∣k 1

qk−1v

m+1∑

n=v+1

nk−1qkn
Qk

nQn−1

= O(1)
m∑

v=1

vk−1∣∣tv
∣
∣k
∣
∣λv
∣
∣k 1

Qk
v

= O(1),

m+1∑

n=2

nk−1∣∣Tn6
∣
∣k =

m+1∑

n=2

nk−1
∣
∣
∣
∣
∣

pnqn
PnQn−1

n−1∑

v=1

Rv−1
rv

tvΔλv

∣
∣
∣
∣
∣

k

≤
m+1∑

n=2

nk−1 pknq
k
n

Pk
nQn−1

n−1∑

v=1

Rk
v−1

qk−1rkv

∣
∣tv
∣
∣k
∣
∣Δλv

∣
∣k
(

n−1∑

v=1

qv
Qn−1

)k−1

= O(1)
m∑

v=1

Rk
v−1

qk−1v rkv

∣
∣tv
∣
∣k
∣
∣Δλv

∣
∣k

m+1∑

n=v+1

nk−1 pknq
k
n

Pk
nQn−1

= O(1)
m∑

v=1

vk−1∣∣tv
∣
∣k
∣
∣Δλv

∣
∣k

Rk
v−1

Qk
vr

k
v

= O(1).

(2.16)

Finally,
m∑

n=1

nk−1∣∣Tn7
∣
∣k =

m∑

n=1

nk−1
∣
∣
∣
∣
pnqnRn

PnQn−1rn
tnλn

∣
∣
∣
∣

k

= O(1)
m∑

n=1

nk−1∣∣tn
∣
∣k
∣
∣λn
∣
∣k
(
pnqnRn

PnQnrn

)k

= O(1).

(2.17)

This completes the proof of the theorem.
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Theorem 2.2. Let (2.3) be satisfied and

Pv = O
(
pvQv

)
, (2.18)

Qn = O
(
nqn
)
. (2.19)

Then, necessary conditions for the implication (2.4) to be satisfied are
∣
∣λv
∣
∣ = O

(
QvQv−1rv
(
1 + Fv

)
qvRv

)

,
∣
∣λv
∣
∣ = O

(
v1−1/krvQv

pvfvRv

)

,
∣
∣Δλv

∣
∣ = O

(
v1−1/krvQv
(
1 + Fv+1

)
Rv

)

.

(2.20)

Proof. For k ≥ 1 define

A∗ =
{
(
aj

)
:
∑

aj is summable
∣
∣R, rn

∣
∣
k

}

,

B∗ =
{
(
bj
)
:
∑

bjλj is summable
∣
∣
(
R, qn

)(
R, pn

)∣
∣
k

}

.

(2.21)

From (2.14), we have

Tn =
n∑

v=1

(
qnFv

QnQn−1
+

pnqn
PnQn−1

)

avλv. (2.22)

With tn and Tn as defined by (2.12) and (2.22), the spaces A∗ and B∗ are BK-spaces with norms
defined by

‖c‖1 =
{
∣
∣t0
∣
∣k +

∞∑

n=1

nk−1∣∣tn
∣
∣k
}1/k

,

‖c‖2 =
{
∣
∣T0
∣
∣k +

∞∑

n=1

nk−1∣∣Tn
∣
∣k
}1/k

,

(2.23)

respectively. By the hypothesis of the theorem,

‖c‖1 < ∞ =⇒ ‖c‖2 < ∞. (2.24)

The inclusion map i : A∗ → B∗ defined by i(a) = a is continuous sinceA∗ and B∗ are BK-spaces.
By the closed graph theorem, there exists a constant K > 0 such that

‖c‖2 ≤ K‖c‖1. (2.25)

Let en denote the nth coordinate vector. From (2.12) and (2.22) with (an) defined by an =
en − en+1, n = v, an = 0, otherwise, we have

tn =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, n < v,

rv
Rv

, n = v,

− rnrv
RnRn−1

, n > v,

Tn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, n < v,
(

qvFv

QvQv−1
+

pvqv
PvQv−1

)

λv, n = v,

Δv

((
qnFv

QnQn−1
+

pnqn
PnQn−1

)

λv

)

, n > v.

(2.26)
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From (2.23), we have

‖c‖1 =
{

vk−1
(

qv
Qv

)k

+
∞∑

n=v+1

nk−1
(

qnqv
QnQn−1

)k
}1/k

,

‖c‖2 =
{

vk−1
∣
∣
∣
∣

(
qvFv

QvQv−1
+

pvqv
PvQv−1

)

λv

∣
∣
∣
∣

k

+
∞∑

n=v+1

nk−1
∣
∣
∣
∣Δv

((
qnFv

QnQn−1
+

pnqn
PnQn−1

)

λv

)∣
∣
∣
∣

k
}1/k

.

(2.27)

Applying (2.25), we obtain

vk−1
∣
∣
∣
∣

(
qvFv

QvQv−1
+

pvqv
PvQv−1

)

λv

∣
∣
∣
∣

k

+
∞∑

n=v+1

nk−1
∣
∣
∣
∣Δv

((
qnFv

QnQn−1
+

pnqn
PnQn−1

)

λv

)∣
∣
∣
∣

k

= O(1)

(

vk−1
(

rv
Rv

)k

+
∞∑

n=v+1

nk−1
(

rnrv
RnRn−1

)k
)

.

(2.28)

As the right-hand side of (2.28), by (2.3), is

= O(1)

(

vk−1
(

rv
Rv

)k

+
rkv

Rk−1
v

∞∑

n=v+1

nk−1rkn
Rk

nRn−1

)

= O(1)
(

vk−1
(

rv
Rv

)k

+
(

rv
Rv

)k−1
vk−1

(
rv
Rv

)k)

= O

(

vk−1
(

rv
Rv

)k)

,

(2.29)

and the fact that each term of the left-hand side of (2.28) is O(vk−1(rv/Rv)
k), we obtain

vk−1
(

qvFv

QvQv−1
+

pvqv
PvQv−1

)k∣
∣λv
∣
∣k = O

(

vk−1
(

rv
Rv

)k)

, (2.30)

which implies by (2.18)

(
qv

QvQv−1

)k(
1 + Fv

)k∣∣λv
∣
∣k = O

(
rv
Rv

)k

, (2.31)

that is,

∣
∣λv
∣
∣ = O

(
QvQv−1rv
(
1 + Fv

)
qvRv

)

. (2.32)

Also, we have, by (2.28),

∞∑

n=v+1

nk−1
∣
∣
∣
∣

(
qnpvfv
QnQn−1

)

λv +
(

qnFv+1

QnQn−1
+

pnqn
PnQn−1

)

Δλv

∣
∣
∣
∣

k

= O

(

vk−1
(

rv
Rv

)k)

. (2.33)
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The above, via the linear independence of λv and Δλv, implies

∞∑

n=v+1

nk−1
(

qnFv+1

QnQn−1
+

pnqn
PnQn−1

)k∣
∣Δλv

∣
∣k = O

(

vk−1
(

qv
Qv

)k)

∣
∣Δλv

∣
∣k
(

1 + Fv+1

)k ∞∑

n=v+1

nk−1
(

qn
QnQn−1

)k

= O

(

vk−1
(

qv
Qv

)k)
(2.34)

by (2.18). As by (2.19), via the mean value theorem,

1

Qk
v

=
∞∑

n=v+1

Δ
(

1

Qk
n−1

)

= O(1)
∞∑

n=v+1

∣
∣ΔQk

n−1
∣
∣

Qk
nQ

k
n−1

= O(1)
∞∑

n=v+1

Qk−1
n−1qn

Qk
nQ

k
n−1

= O(1)
∞∑

n=v+1

nk−1
(

qn
QnQn−1

)k

.

(2.35)

Then,

∣
∣Δλv

∣
∣k
(
1 + Fv+1

)k 1

Qk
v

= O

(

vk−1
(

rv
Rv

)k)

, (2.36)

which implies

Δλv = O

(
v1−1/krvQv

(1 + Fv+1)Rv

)

. (2.37)

Also, by (2.28),

∞∑

n=v+1

nk−1
∣
∣
∣
∣
qnpvfv
QnQn−1

λv

∣
∣
∣
∣

k

= O

(

vk−1
(

rv
Rv

)k)

,

pkvf
k
v

∣
∣λv
∣
∣k

∞∑

n=v+1

nk−1
(

qn
QnQn−1

)k

= O

(

vk−1
(

rv
Rv

)k)

,

pkvf
k
v

∣
∣λv
∣
∣k 1

Qk
v

= O

(

vk−1
(

rv
Rv

)k)

,

(2.38)

which implies

λv = O

(
v1−1/krvQv

pvfvRv

)

. (2.39)

3. Applications

Corollary 3.1. Let k ≥ 1. Define

fv =
n∑

r=v

qr
r
, Fv =

n∑

r=v
fr. (3.1)
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Let

n = O
(
Qn

)
. (3.2)

Then, sufficient conditions for the implication

∑
an is summable |C, 1|k =⇒

∑
anλn is summable

∣
∣
(
R, qn

)
(C, 1)

∣
∣
k (3.3)

are (2.5), (2.6), and the following:

v
∣
∣λv
∣
∣ = O

(
Qv

)
,

vqv
∣
∣λv
∣
∣ = O

(
QvQv−1

)
,

nqn
∣
∣λn
∣
∣ = O

(
nQn

)
,

v
∣
∣Δλv

∣
∣Fv+1 = O

(
Qv

)
,

∣
∣Δλv

∣
∣ = O

(
qv
)
,

v
∣
∣Δλv

∣
∣ = O

(
Qv

)
.

(3.4)

Proof. The proof follows from Theorem 2.1 by putting pn = rn = 1 for all n.

Corollary 3.2. Let k ≥ 1. Define

fv =
n∑

r=v

1
Pr

, Fv =
n∑

r=v
prfr. (3.5)

Let (2.2) be satisfied. Then, sufficient conditions for the implication

∑
an is summable |C, 1|k =⇒

∑
anλn is summable

∣
∣(C, 1)

(
R, pn

)∣
∣
k (3.6)

are

∣
∣λv
∣
∣Fv = O(v),
∣
∣λn
∣
∣ = O(n),

pv
∣
∣λv
∣
∣ = O(1),

∣
∣Δλv

∣
∣Fv+1 = O(1),
∣
∣Δλv

∣
∣ = O(1).

(3.7)

Proof. The proof follows from Theorem 2.1, by putting qn = rn = 1, for all n, noticing that (2.3)
is satisfied as

∞∑

n=v+1

1
n(n − 1)

=
∞∑

n=v+1

(
1

n − 1
− 1
n

)

=
1
v
. (3.8)
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Corollary 3.3. Let fv, Fv be as defined in (3.1). Let (2.3) and (3.2) be satisfied. Then, sufficient
conditions for the implication

∑
an is summable

∣
∣R, rn

∣
∣
k =⇒

∑
anλn is summable

∣
∣
(
R, qn

)
(C, 1)

∣
∣
k (3.9)

are (2.5), (2.6), (2.10), (2.11), and the following:

Rv

∣
∣λv
∣
∣ = O

(
Qv

)
,

qvRv

∣
∣λv
∣
∣ = O

(
QvQv−1rv

)
,

qnRn

∣
∣λn
∣
∣ = O

(
nQnrn

)
.

(3.10)

Proof. The proof follows from Theorem 2.1, by outing pn = 1 for all n.

Corollary 3.4. Let fv, Fv be as defined in (3.1). Let (2.3), (2.19) be satisfied and

v = O
(
Qv

)
. (3.11)

Then, necessary conditions for the implication (3.3) are

λv = O

(
QvQv−1

(
1 + Fv

)
vqv

)

, λv = O

(
Qv

v1/kfv

)

, Δλv = O

(
Qv

v1/k
(
1 + Fv+1

)

)

. (3.12)

Proof. The proof follows from Theorem 2.2 by putting pn = rn = 1 for all n.

Corollary 3.5. Let fv, Fv be as defined in (3.5). Let

Pv = O
(
vpv
)
. (3.13)

Then, necessary conditions for the implication (3.5) to be satisfied are

λv = O

(
v

1 + Fv

)

, λv = O

(
v1−1/k

pvfv

)

, Δλv = O

(
v1−1/k

1 + Fv+1

)

. (3.14)

Proof. The proof follows from Theorem 2.2, by putting qn = rn = 1, keeping in mind that (2.3)
is satisfied as in the case of (3.8).

Corollary 3.6. Let fv, Fv be as defined in (3.1). Let (2.3), (2.19), and (3.2) be all satisfied. Then,
necessary conditions for the implication (3.9) to be satisfied are

λv = O

(
QvQv−1rv
(
1 + Fv

)
qvRv

)

, λv = O

(
v1−1/krvQv

fvRv

)

, Δλv = O

(
v1−1/krvQv
(
1 + Fv+1

)
Rv

)

. (3.15)

Proof. The proof follows from Theorem 2.2, by putting pn = 1 for all n.
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