Research Article

Note on Product Summability of an Infinite Series

W. T. Sulaiman
Department of Mathematic, College of Computer Science and Mathematics, Mosul University, Mosul, Iraq

Correspondence should be addressed to W. T. Sulaiman, waadsulaiman@hotmail.com
Received 14 October 2007; Accepted 21 April 2008
Recommended by Huseyin Bor
New results concerning product summability of an infinite series are given. Some special cases are also deduced.

Copyright © 2008 W. T. Sulaiman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums s_{n}. Let u_{n}^{α} denote the nth Cesaro mean of order $\alpha>-1$ of the sequence $\left(s_{n}\right)$. The series $\sum a_{n}$ is summable $|C, \alpha|_{k}, k \geq 1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

(Flett [1]). For $\alpha=1,|C, \alpha|_{k}$ reduces to $|C, 1|_{k}$ summability.
Let $\left(p_{n}\right)$ be a sequence of positive real constants such that $P_{n}=p_{0}+\cdots+p_{n} \rightarrow \infty$ as $n \rightarrow \infty\left(P_{-1}=p_{-1}=0\right)$. The (N, p) transform ϕ_{n} of $\left(s_{n}\right)$ generated by $\left(p_{n}\right)$ is defined by

$$
\begin{equation*}
\phi_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{1.2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\Phi_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.3}
\end{equation*}
$$

defines the sequence $\left(\Phi_{n}\right)$ of $\left(\bar{N}, p_{n}\right)$ transform of $\left(s_{n}\right)$ generated by $\left(p_{n}\right)$. The series $\sum a_{n}$ is summable $\left|R, p_{n}\right|_{k}, k \geq 1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\Phi_{n}-\Phi_{n-1}\right|^{k}<\infty \tag{1.4}
\end{equation*}
$$

In the special case when $p_{n}=1$ for all n (resp., $k=1$), $\left|R, p_{n}\right|_{k}$ summability reduces to $|C, 1|_{k}$ (resp., $\left|R, p_{n}\right|$) summability.

The series $\sum a_{n}$ is said to be summable $|(N, p)(N, q)|$, when the (N, p) transform of the (N, q) transform of $\left(s_{n}\right)$ is a sequence of bounded variation (see Das [2]).

We give the following new definition.
Let $\left(T_{n}\right)$ define the sequence of the $\left(\bar{N}, q_{n}\right)$ transform of the $\left(\bar{N}, p_{n}\right)$ transform of $\left(s_{n}\right)$ generated by the sequences $\left(q_{n}\right)$ and $\left(p_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be summable $\left|\left(R, q_{n}\right)\left(R, p_{n}\right)\right|_{k}, k \geq 1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

We may assume through the paper that $Q_{n}=q_{0}+\cdots+q_{n} \rightarrow \infty$, as $n \rightarrow \infty ; R_{n}=r_{0}+\cdots+r_{n} \rightarrow \infty$, as $n \rightarrow \infty$.

2. New results

We state and prove the following.
Theorem 2.1. Let $k \geq 1,\left(\lambda_{n}\right)$ be a sequence of constants. Define

$$
\begin{equation*}
f_{v}=\sum_{r=v}^{n} \frac{q_{r}}{P_{r}}, \quad F_{v}=\sum_{r=v}^{n} p_{r} f_{r} \tag{2.1}
\end{equation*}
$$

Let

$$
\begin{align*}
p_{n} Q_{n} & =O\left(P_{n}\right) \tag{2.2}\\
\sum_{n=v+1}^{\infty} \frac{n^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}} & =O\left(\frac{\left(v q_{v}\right)^{k-1}}{Q_{v}^{k}}\right) . \tag{2.3}
\end{align*}
$$

Then, sufficient conditions for the implication

$$
\begin{equation*}
\sum a_{n} \text { is summable }\left|R, r_{n}\right|_{k} \Longrightarrow \sum a_{n} \lambda_{n} \text { is summable }\left|\left(R, q_{n}\right)\left(R, p_{n}\right)\right|_{k} \tag{2.4}
\end{equation*}
$$

are

$$
\begin{align*}
\left|\lambda_{v}\right| F_{v} & =O\left(Q_{v}\right), \tag{2.5}\\
\left|\lambda_{n}\right| & =O\left(Q_{n}\right), \tag{2.6}\\
p_{v} R_{v}\left|\lambda_{v}\right| & =O\left(Q_{v}\right), \tag{2.7}\\
p_{v} q_{v} R_{v}\left|\lambda_{v}\right| & =O\left(Q_{v} Q_{v-1} r_{v}\right), \tag{2.8}\\
p_{n} q_{n} R_{n}\left|\lambda_{n}\right| & =O\left(P_{n} Q_{n} r_{n}\right), \tag{2.9}\\
R_{v-1}\left|\Delta \lambda_{v}\right| F_{v+1} & =O\left(Q_{v} r_{v}\right), \tag{2.10}\\
R_{v-1}\left|\Delta \lambda_{v}\right| & =O\left(Q_{v} r_{v}\right) \tag{2.11}
\end{align*}
$$

Proof. Let $\left(S_{n}\right)$ be the sequence of partial sums of $\sum a_{n} \lambda_{n}$. Let v_{n}, V_{n} be the $\left(\bar{N}, r_{n}\right)$, $\left(\bar{N}, q_{n}\right)\left(\bar{N}, p_{n}\right)$ transforms of the sequences $\left(s_{n}\right),\left(S_{n}\right)$, respectively. We write $t_{n}=v_{n}-v_{n-1}, T_{n}=$ $V_{n}-V_{n-1}$. Therefore,

$$
\begin{align*}
t_{n} & =\frac{r_{n}}{R_{n} R_{n-1}} \sum_{v=1}^{n} R_{v-1} a_{v} \tag{2.12}\\
V_{n} & =\frac{1}{Q_{n}} \sum_{r=0}^{n} q_{r} \frac{1}{P_{r}} \sum_{v=0}^{r} p_{v} S_{v} \\
& =\frac{1}{Q_{n}} \sum_{v=0}^{n} p_{v} S_{v} \sum_{r=v}^{n} \frac{q_{r}}{P_{r}} \tag{2.13}\\
& =\frac{1}{Q_{n}} \sum_{v=0}^{n} p_{v} S_{v} f_{v}
\end{align*}
$$

Also,

$$
\begin{align*}
T_{n}= & V_{n}-V_{n-1} \\
= & \frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{r=0}^{n} p_{r} S_{r} f_{r}+\frac{p_{n} S_{n} f_{n}}{Q_{n-1}} \\
= & \frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{r=0}^{v} p_{r} f_{r} \sum_{v=0}^{r} a_{v} \lambda_{v}+\frac{p_{n} q_{n}}{P_{n} Q_{n-1}} \sum_{v=0}^{n} a_{v} \lambda_{v} \\
= & \frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{v=0}^{n} a_{v} \lambda_{v} \sum_{r=v}^{n} p_{r} f_{r}+\frac{p_{n} q_{n}}{P_{n} Q_{n-1}} \sum_{v=0}^{n} a_{v} \lambda_{v} \\
= & \frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{v=1}^{n} R_{v-1} a_{v} \frac{\lambda_{v}}{R_{v-1}} \sum_{r=v}^{n} p_{r} f_{r}+\frac{p_{n} q_{n}}{P_{n} Q_{n-1}} \sum_{v=1}^{n} R_{v-1} a_{v} \frac{\lambda_{v}}{R_{v-1}} \\
= & \frac{q_{n}}{Q_{n} Q_{n-1}}\left(\sum_{v=1}^{n-1}\left(\sum_{r=1}^{v} R_{r-1} a_{r}\right) \Delta_{v}\left(\frac{\lambda_{v}}{R_{v-1}} \sum_{r=v}^{n} p_{r} f_{r}\right)+\left(\sum_{v=1}^{n} R_{v-1} a_{v}\right) \frac{\lambda_{n} p_{n} f_{n}}{R_{n-1}}\right) \\
& +\frac{p_{n} q_{n}}{P_{n} Q_{n-1}}\left(\sum_{v=1}^{n-1}\left(\sum_{r=1}^{v} R_{r-1} a_{r}\right) \Delta\left(\frac{\lambda_{v}}{R_{v-1}}\right)+\left(\sum_{v=1}^{n} R_{v-1} a_{v}\right) \frac{\lambda_{n}}{R_{n-1}}\right) \\
= & \frac{q_{n}}{Q_{n} Q_{n-1}}\left(\sum_{v=1}^{n-1}\left(t_{v} \lambda_{v} F_{v}+\frac{R_{v-1}}{r_{v}} p_{v} t_{v} \lambda_{v} f_{v}+\frac{R_{v-1}}{r_{v}} t_{v} \Delta \lambda_{v} F_{v+1}\right)\right)+\frac{p_{n} q_{n} R_{n}}{Q_{n} Q_{n-1} r_{n}} t_{n} \lambda_{n} f_{n} \\
& +\frac{p_{n} q_{n}}{P_{n} Q_{n-1}}\left(\sum_{v=1}^{n-1}\left(t_{v} \lambda_{v}+\frac{R_{v-1}}{r_{v}} t_{v} \Delta \lambda_{v}\right)\right)+\frac{p_{n} q_{n} R_{n}}{P_{n} Q_{n-1} r_{n}} t_{n} \lambda_{n} \\
= & \sum_{j=1}^{7} T_{n j} . \tag{2.14}
\end{align*}
$$

In order to complete the proof, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|T_{n j}\right|^{k}<\infty, \quad j=1,2,3,4,5,6,7 \tag{2.15}
\end{equation*}
$$

Applying Holder's inequality,

$$
\begin{aligned}
& \sum_{n=2}^{m+1} n^{k-1}\left|T_{n 1}\right|^{k}=\sum_{n=2}^{m+1} n^{k-1}\left|\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{v=1}^{n-1} t_{v} \lambda_{v} F_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{n^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}} \sum_{v=1}^{n-1} \frac{1}{q_{v}^{k-1}}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} F_{v}^{k}\left(\sum_{v=1}^{n-1} \frac{q_{v}}{Q_{n-1}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{1}{q_{v}^{k-1}}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} F_{v}^{k} \sum_{n=v+1}^{m+1} \frac{n^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}} \\
& =O(1) \sum_{v=1}^{m} v^{k-1}\left|t_{v}\right|^{k} \frac{\left|{\Lambda_{v}}^{k}\right|^{k} F_{v}^{k}}{Q_{v}^{k}} \\
& =O(1) \text {, } \\
& \sum_{n=2}^{m+1} n^{k-1}\left|T_{n 2}\right|^{k}=\sum_{n=2}^{m+1} n^{k-1}\left|\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{v=1}^{n-1} \frac{R_{v-1} p_{v}}{r_{v}} t_{v} \lambda_{v} f_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{n^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}} \sum_{v=1}^{n-1} \frac{R_{v}^{k} p_{v}^{k}}{q_{v}^{k-1}}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} f_{v}^{k}\left(\sum_{v=1}^{n-1} \frac{q_{v}}{Q_{n-1}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{R_{v}^{k} p_{v}^{k}}{q_{v}^{k-1}}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} f_{v}^{k} \sum_{n=v+1}^{m+1} \frac{n^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}} \\
& =O(1) \sum_{v=1}^{m} v^{k-1}\left|t_{v}\right|^{k} \frac{R_{v}^{k} p_{v}^{k}}{Q_{v}^{k}}\left|\lambda_{v}\right|^{k} f_{v}^{k} \\
& =O(1) \sum_{v=1}^{m} v^{k-1}\left|t_{v}\right|^{k} \\
& =O(1) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{k-1}\left|T_{n 3}\right|^{k} & =\sum_{n=2}^{m+1} n^{k-1}\left|\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{v=1}^{n-1} \frac{R_{v-1}}{r_{v}} t_{v} \Delta \lambda_{v} F_{v+1}\right|^{k} \\
& \leq \sum_{n=1}^{m+1} n^{k-1} \frac{q_{n}^{k}}{Q_{n}^{k} Q_{n-1}} \sum_{v=1}^{n-1} \frac{R_{v-1}^{k}}{q_{v}^{k-1} r_{v}^{k}}\left|t_{v}\right|^{k}\left|\Delta \lambda_{v}\right|^{k} F_{v+1}^{k}\left(\sum_{v=1}^{n-1} \frac{q_{v}}{Q_{n-1}}\right)^{k} \\
& =O(1) \sum_{v=1}^{m} \frac{R_{v-1}^{k}}{q_{v}^{k-1} r_{v}^{k}}\left|t_{v}\right|^{k}\left|\Delta \lambda_{v}\right|^{k} F_{v+1}^{k} \sum_{n=v+1}^{m+1} \frac{n^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}} \\
& =O(1) \sum_{v=1}^{m} v^{k-1}\left|t_{v}\right|^{k} \frac{R_{v-1}^{k}}{Q_{v}^{k} r_{v}^{k}}\left|\Delta \lambda_{v}\right|^{k} F_{v+1}^{k} \\
& =O(1),
\end{aligned}
$$

$$
\begin{align*}
\sum_{n=1}^{m} n^{k-1}\left|T_{n 4}\right|^{k} & =\sum_{n=1}^{m} n^{k-1}\left|\frac{p_{n} q_{n} R_{n}}{Q_{n} Q_{n-1} r_{n}} t_{n} \lambda_{n} f_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{k-1}\left|t_{n}\right|^{k}\left|\lambda_{n}\right|^{k} \frac{p_{n}^{k} \eta_{n}^{k} R_{n}^{k}}{Q_{n}^{k} Q_{n-1}^{k} r_{n}^{k}} \\
& =O(1), \\
\sum_{n=2}^{m+1} n^{k-1}\left|T_{n 5}\right|^{k} & =\sum_{n=2}^{m+1} n^{k-1}\left|\frac{p_{n} q_{n}}{P_{n} Q_{n-1}} \sum_{v=1}^{n-1} t_{v} \lambda_{v}\right|^{k} \\
& \leq \sum_{n=1}^{m+1} n^{k-1} \frac{p_{n}^{k} q_{n}^{k}}{P_{n}^{k} Q_{n-1}} \sum_{v=1}^{n-1}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{q_{v}^{k-1}}\left(\sum_{v=1}^{n-1} \frac{q_{v}}{Q_{n-1}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{q_{v}^{k-1}} \sum_{n=v+1}^{m+1} \frac{n^{k-1} p_{n}^{k} q_{n}^{k}}{P_{n}^{k} Q_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{q_{v}^{k-1}} \sum_{n=v+1}^{m+1} \frac{n^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}} \\
& =O(1) \sum_{v=1}^{m} v^{k-1}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{Q_{v}^{k}} \\
& =O(1), \\
\sum_{n=2}^{m+1} n^{k-1}\left|T_{n 6}\right|^{k} & =\sum_{n=2}^{m+1} n^{k-1}\left|\frac{p_{n} q_{n}}{P_{n} Q_{n-1}} \sum_{v=1}^{n-1} \frac{R_{v-1}}{r_{v}} t_{v} \Delta \lambda_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} n^{k-1} \frac{p_{n}^{k} q_{n}^{k}}{P_{n}^{k} Q_{n-1}} \sum_{v=1}^{n-1} \frac{R_{v-1}^{k}}{q^{k-1} r_{v}^{k}}\left|t_{v}\right|^{k}\left|\Delta \lambda_{v}\right|^{k}\left(\sum_{v=1}^{n-1} \frac{q_{v}}{Q_{n-1}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{R_{v-1}^{k}}{q_{v}^{k-1} r_{v}^{k}}\left|t_{v}\right|^{k}\left|\Delta \lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1} n^{k-1} \frac{p_{n}^{k} q_{n}^{k}}{P_{n}^{k} Q_{n-1}} \\
& =O(1) \sum_{v=1}^{m} v^{k-1}\left|t_{v}\right|^{k}\left|\Delta \lambda_{v}\right|^{R_{v-1}} \frac{Q_{v}^{k} r_{v}^{k}}{k} \\
& = \tag{2.16}
\end{align*}
$$

Finally,

$$
\begin{align*}
\sum_{n=1}^{m} n^{k-1}\left|T_{n 7}\right|^{k} & =\sum_{n=1}^{m} n^{k-1}\left|\frac{p_{n} q_{n} R_{n}}{P_{n} Q_{n-1} r_{n}} t_{n} \lambda_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{k-1}\left|t_{n}\right|^{k}\left|\lambda_{n}\right|^{k}\left(\frac{p_{n} q_{n} R_{n}}{P_{n} Q_{n} r_{n}}\right)^{k} \tag{2.17}\\
& =O(1) .
\end{align*}
$$

This completes the proof of the theorem.

Theorem 2.2. Let (2.3) be satisfied and

$$
\begin{align*}
P_{v} & =O\left(p_{v} Q_{v}\right) \tag{2.18}\\
Q_{n} & =O\left(n q_{n}\right) \tag{2.19}
\end{align*}
$$

Then, necessary conditions for the implication (2.4) to be satisfied are

$$
\begin{equation*}
\left|\lambda_{v}\right|=O\left(\frac{Q_{v} Q_{v-1} r_{v}}{\left(1+F_{v}\right) q_{v} R_{v}}\right), \quad\left|\lambda_{v}\right|=O\left(\frac{v^{1-1 / k} r_{v} Q_{v}}{p_{v} f_{v} R_{v}}\right), \quad\left|\Delta \Lambda_{v}\right|=O\left(\frac{v^{1-1 / k} r_{v} Q_{v}}{\left(1+F_{v+1}\right) R_{v}}\right) . \tag{2.20}
\end{equation*}
$$

Proof. For $k \geq 1$ define

$$
\begin{align*}
& A^{*}=\left\{\left(a_{j}\right): \sum a_{j} \text { is summable }\left|R, r_{n}\right|_{k}\right\}, \tag{2.21}\\
& B^{*}=\left\{\left(b_{j}\right): \sum b_{j} \lambda_{j} \text { is summable }\left|\left(R, q_{n}\right)\left(R, p_{n}\right)\right|_{k}\right\} .
\end{align*}
$$

From (2.14), we have

$$
\begin{equation*}
T_{n}=\sum_{v=1}^{n}\left(\frac{q_{n} F_{v}}{Q_{n} Q_{n-1}}+\frac{p_{n} q_{n}}{P_{n} Q_{n-1}}\right) a_{v} \lambda_{v} \tag{2.22}
\end{equation*}
$$

With t_{n} and T_{n} as defined by (2.12) and (2.22), the spaces A^{*} and B^{*} are $B K$-spaces with norms defined by

$$
\begin{align*}
& \|c\|_{1}=\left\{\left|t_{0}\right|^{k}+\sum_{n=1}^{\infty} n^{k-1}\left|t_{n}\right|^{k}\right\}^{1 / k}, \\
& \|c\|_{2}=\left\{\left|T_{0}\right|^{k}+\sum_{n=1}^{\infty} n^{k-1}\left|T_{n}\right|^{k}\right\}^{1 / k}, \tag{2.23}
\end{align*}
$$

respectively. By the hypothesis of the theorem,

$$
\begin{equation*}
\|c\|_{1}<\infty \Longrightarrow\|c\|_{2}<\infty \tag{2.24}
\end{equation*}
$$

The inclusion map $i: A^{*} \rightarrow B^{*}$ defined by $i(a)=a$ is continuous since A^{*} and B^{*} are $B K$-spaces. By the closed graph theorem, there exists a constant $K>0$ such that

$$
\begin{equation*}
\|c\|_{2} \leq K\|c\|_{1} . \tag{2.25}
\end{equation*}
$$

Let e_{n} denote the nth coordinate vector. From (2.12) and (2.22) with $\left(a_{n}\right)$ defined by $a_{n}=$ $e_{n}-e_{n+1}, n=v, a_{n}=0$, otherwise, we have

$$
\begin{align*}
& t_{n}=\left\{\begin{array}{ll}
0, & n<v, \\
\frac{r_{v}}{R_{v}}, & n=v, \\
-\frac{r_{n} r_{v}}{R_{n} R_{n-1}}, & n>v, \\
T_{n} & = \begin{cases}0, & n<v, \\
\left(\frac{q_{v} F_{v}}{Q_{v} Q_{v-1}}+\frac{p_{v} q_{v}}{P_{v} Q_{v-1}}\right) \lambda_{v}, & n=v, \\
\Delta_{v}\left(\left(\frac{q_{n} F_{v}}{Q_{n} Q_{n-1}}+\frac{p_{n} q_{n}}{P_{n} Q_{n-1}}\right) \lambda_{v}\right), & n>v\end{cases}
\end{array} . \begin{array}{l}
\end{array}\right.
\end{align*}
$$

From (2.23), we have

$$
\begin{align*}
& \|c\|_{1}=\left\{v^{k-1}\left(\frac{q_{v}}{Q_{v}}\right)^{k}+\sum_{n=v+1}^{\infty} n^{k-1}\left(\frac{q_{n} q_{v}}{Q_{n} Q_{n-1}}\right)^{k}\right\}^{1 / k} \\
& \|c\|_{2}=\left\{v^{k-1}\left|\left(\frac{q_{v} F_{v}}{Q_{v} Q_{v-1}}+\frac{p_{v} q_{v}}{P_{v} Q_{v-1}}\right) \lambda_{v}\right|^{k}+\sum_{n=v+1}^{\infty} n^{k-1}\left|\Delta_{v}\left(\left(\frac{q_{n} F_{v}}{Q_{n} Q_{n-1}}+\frac{p_{n} q_{n}}{P_{n} Q_{n-1}}\right) \lambda_{v}\right)\right|^{k}\right\}^{1 / k} . \tag{2.27}
\end{align*}
$$

Applying (2.25), we obtain

$$
\begin{align*}
& v^{k-1}\left|\left(\frac{q_{v} F_{v}}{Q_{v} Q_{v-1}}+\frac{p_{v} q_{v}}{P_{v} Q_{v-1}}\right) \lambda_{v}\right|^{k}+\sum_{n=v+1}^{\infty} n^{k-1}\left|\Delta_{v}\left(\left(\frac{q_{n} F_{v}}{Q_{n} Q_{n-1}}+\frac{p_{n} q_{n}}{P_{n} Q_{n-1}}\right) \Lambda_{v}\right)\right|^{k} \\
& \quad=O(1)\left(v^{k-1}\left(\frac{r_{v}}{R_{v}}\right)^{k}+\sum_{n=v+1}^{\infty} n^{k-1}\left(\frac{r_{n} r_{v}}{R_{n} R_{n-1}}\right)^{k}\right) \tag{2.28}
\end{align*}
$$

As the right-hand side of (2.28), by (2.3), is

$$
\begin{align*}
& =O(1)\left(v^{k-1}\left(\frac{r_{v}}{R_{v}}\right)^{k}+\frac{r_{v}^{k}}{R_{v}^{k-1}} \sum_{n=v+1}^{\infty} \frac{n^{k-1} r_{n}^{k}}{R_{n}^{k} R_{n-1}}\right) \\
& =O(1)\left(v^{k-1}\left(\frac{r_{v}}{R_{v}}\right)^{k}+\left(\frac{r_{v}}{R_{v}}\right)^{k-1} v^{k-1}\left(\frac{r_{v}}{R_{v}}\right)^{k}\right) \tag{2.29}\\
& =O\left(v^{k-1}\left(\frac{r_{v}}{R_{v}}\right)^{k}\right)
\end{align*}
$$

and the fact that each term of the left-hand side of (2.28) is $O\left(v^{k-1}\left(r_{v} / R_{v}\right)^{k}\right)$, we obtain

$$
\begin{equation*}
v^{k-1}\left(\frac{q_{v} F_{v}}{Q_{v} Q_{v-1}}+\frac{p_{v} q_{v}}{P_{v} Q_{v-1}}\right)^{k}\left|\lambda_{v}\right|^{k}=O\left(v^{k-1}\left(\frac{r_{v}}{R_{v}}\right)^{k}\right) \tag{2.30}
\end{equation*}
$$

which implies by (2.18)

$$
\begin{equation*}
\left(\frac{q_{v}}{Q_{v} Q_{v-1}}\right)^{k}\left(1+F_{v}\right)^{k}\left|\lambda_{v}\right|^{k}=O\left(\frac{r_{v}}{R_{v}}\right)^{k} \tag{2.31}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left|\lambda_{v}\right|=O\left(\frac{Q_{v} Q_{v-1} r_{v}}{\left(1+F_{v}\right) q_{v} R_{v}}\right) \tag{2.32}
\end{equation*}
$$

Also, we have, by (2.28),

$$
\begin{equation*}
\sum_{n=v+1}^{\infty} n^{k-1}\left|\left(\frac{q_{n} p_{v} f_{v}}{Q_{n} Q_{n-1}}\right) \lambda_{v}+\left(\frac{q_{n} F_{v+1}}{Q_{n} Q_{n-1}}+\frac{p_{n} q_{n}}{P_{n} Q_{n-1}}\right) \Delta \lambda_{v}\right|^{k}=O\left(v^{k-1}\left(\frac{r_{v}}{R_{v}}\right)^{k}\right) \tag{2.33}
\end{equation*}
$$

The above, via the linear independence of λ_{v} and $\Delta \lambda_{v}$, implies

$$
\begin{align*}
& \sum_{n=v+1}^{\infty} n^{k-1}\left(\frac{q_{n} F_{v+1}}{Q_{n} Q_{n-1}}+\frac{p_{n} q_{n}}{P_{n} Q_{n-1}}\right)^{k}\left|\Delta \lambda_{v}\right|^{k}=O\left(v^{k-1}\left(\frac{q_{v}}{Q_{v}}\right)^{k}\right) \tag{2.34}\\
&\left|\Delta \Lambda_{v}\right|^{k}\left(1+F_{v+1}\right)^{k} \sum_{n=v+1}^{\infty} n^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k}=O\left(v^{k-1}\left(\frac{q_{v}}{Q_{v}}\right)^{k}\right)
\end{align*}
$$

by (2.18). As by (2.19), via the mean value theorem,

$$
\begin{equation*}
\frac{1}{Q_{v}^{k}}=\sum_{n=v+1}^{\infty} \Delta\left(\frac{1}{Q_{n-1}^{k}}\right)=O(1) \sum_{n=v+1}^{\infty} \frac{\left|\Delta Q_{n-1}^{k}\right|}{Q_{n}^{k} Q_{n-1}^{k}}=O(1) \sum_{n=v+1}^{\infty} \frac{Q_{n-1}^{k-1} q_{n}}{Q_{n}^{k} Q_{n-1}^{k}}=O(1) \sum_{n=v+1}^{\infty} n^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k} . \tag{2.35}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\left|\Delta \lambda_{v}\right|^{k}\left(1+F_{v+1}\right)^{k} \frac{1}{Q_{v}^{k}}=O\left(v^{k-1}\left(\frac{r_{v}}{R_{v}}\right)^{k}\right) \tag{2.36}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\Delta \lambda_{v}=O\left(\frac{v^{1-1 / k} r_{v} Q_{v}}{\left(1+F_{v+1}\right) R_{v}}\right) \tag{2.37}
\end{equation*}
$$

Also, by (2.28),

$$
\begin{gather*}
\sum_{n=v+1}^{\infty} n^{k-1}\left|\frac{q_{n} p_{v} f_{v}}{Q_{n} Q_{n-1}} \lambda_{v}\right|^{k}=O\left(v^{k-1}\left(\frac{r_{v}}{R_{v}}\right)^{k}\right) \\
p_{v}^{k} f_{v}^{k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{\infty} n^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k}=O\left(v^{k-1}\left(\frac{r_{v}}{R_{v}}\right)^{k}\right), \tag{2.38}\\
p_{v}^{k} f_{v}^{k}\left|\lambda_{v}\right|^{k} \frac{1}{Q_{v}^{k}}=O\left(v^{k-1}\left(\frac{r_{v}}{R_{v}}\right)^{k}\right)
\end{gather*}
$$

which implies

$$
\begin{equation*}
\lambda_{v}=O\left(\frac{v^{1-1 / k} r_{v} Q_{v}}{p_{v} f_{v} R_{v}}\right) \tag{2.39}
\end{equation*}
$$

3. Applications

Corollary 3.1. Let $k \geq 1$. Define

$$
\begin{equation*}
f_{v}=\sum_{r=v}^{n} \frac{q_{r}}{r}, \quad F_{v}=\sum_{r=v}^{n} f_{r} . \tag{3.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
n=O\left(Q_{n}\right) . \tag{3.2}
\end{equation*}
$$

Then, sufficient conditions for the implication

$$
\begin{equation*}
\sum a_{n} \text { is summable }|C, 1|_{k} \Rightarrow \sum a_{n} \lambda_{n} \text { is summable }\left|\left(R, q_{n}\right)(C, 1)\right|_{k} \tag{3.3}
\end{equation*}
$$

are (2.5), (2.6), and the following:

$$
\begin{align*}
v\left|\lambda_{v}\right| & =O\left(Q_{v}\right) \\
v q_{v}\left|\lambda_{v}\right| & =O\left(Q_{v} Q_{v-1}\right), \\
n q_{n}\left|\lambda_{n}\right| & =O\left(n Q_{n}\right) \\
v\left|\Delta \lambda_{v}\right| F_{v+1} & =O\left(Q_{v}\right) \tag{3.4}\\
\left|\Delta \lambda_{v}\right| & =O\left(q_{v}\right) \\
v\left|\Delta \lambda_{v}\right| & =O\left(Q_{v}\right)
\end{align*}
$$

Proof. The proof follows from Theorem 2.1 by putting $p_{n}=r_{n}=1$ for all n.
Corollary 3.2. Let $k \geq 1$. Define

$$
\begin{equation*}
f_{v}=\sum_{r=v}^{n} \frac{1}{P_{r}}, \quad F_{v}=\sum_{r=v}^{n} p_{r} f_{r} \tag{3.5}
\end{equation*}
$$

Let (2.2) be satisfied. Then, sufficient conditions for the implication

$$
\begin{equation*}
\sum a_{n} \text { is summable }|C, 1|_{k} \Longrightarrow \sum a_{n} \lambda_{n} \text { is summable }\left|(C, 1)\left(R, p_{n}\right)\right|_{k} \tag{3.6}
\end{equation*}
$$

are

$$
\begin{align*}
\left|\lambda_{v}\right| F_{v} & =O(v) \\
\left|\lambda_{n}\right| & =O(n) \\
p_{v}\left|\lambda_{v}\right| & =O(1) \tag{3.7}\\
\left|\Delta \lambda_{v}\right| F_{v+1} & =O(1) \\
\left|\Delta \lambda_{v}\right| & =O(1)
\end{align*}
$$

Proof. The proof follows from Theorem 2.1, by putting $q_{n}=r_{n}=1$, for all n, noticing that (2.3) is satisfied as

$$
\begin{equation*}
\sum_{n=v+1}^{\infty} \frac{1}{n(n-1)}=\sum_{n=v+1}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{v} \tag{3.8}
\end{equation*}
$$

Corollary 3.3. Let f_{v}, F_{v} be as defined in (3.1). Let (2.3) and (3.2) be satisfied. Then, sufficient conditions for the implication

$$
\begin{equation*}
\sum a_{n} \text { is summable }\left|R, r_{n}\right|_{k} \Longrightarrow \sum a_{n} \lambda_{n} \text { is summable }\left|\left(R, q_{n}\right)(C, 1)\right|_{k} \tag{3.9}
\end{equation*}
$$

are (2.5), (2.6), (2.10), (2.11), and the following:

$$
\begin{align*}
R_{v}\left|\lambda_{v}\right| & =O\left(Q_{v}\right) \\
q_{v} R_{v}\left|\lambda_{v}\right| & =O\left(Q_{v} Q_{v-1} r_{v}\right) \tag{3.10}\\
q_{n} R_{n}\left|\lambda_{n}\right| & =O\left(n Q_{n} r_{n}\right)
\end{align*}
$$

Proof. The proof follows from Theorem 2.1, by outing $p_{n}=1$ for all n.
Corollary 3.4. Let f_{v}, F_{v} be as defined in (3.1). Let (2.3), (2.19) be satisfied and

$$
\begin{equation*}
v=O\left(Q_{v}\right) \tag{3.11}
\end{equation*}
$$

Then, necessary conditions for the implication (3.3) are

$$
\begin{equation*}
\lambda_{v}=O\left(\frac{Q_{v} Q_{v-1}}{\left(1+F_{v}\right) v q_{v}}\right), \quad \lambda_{v}=O\left(\frac{Q_{v}}{v^{1 / k} f_{v}}\right), \quad \Delta \lambda_{v}=O\left(\frac{Q_{v}}{v^{1 / k}\left(1+F_{v+1}\right)}\right) \tag{3.12}
\end{equation*}
$$

Proof. The proof follows from Theorem 2.2 by putting $p_{n}=r_{n}=1$ for all n.
Corollary 3.5. Let f_{v}, F_{v} be as defined in (3.5). Let

$$
\begin{equation*}
P_{v}=O\left(v p_{v}\right) . \tag{3.13}
\end{equation*}
$$

Then, necessary conditions for the implication (3.5) to be satisfied are

$$
\begin{equation*}
\lambda_{v}=O\left(\frac{v}{1+F_{v}}\right), \quad \lambda_{v}=O\left(\frac{v^{1-1 / k}}{p_{v} f_{v}}\right), \quad \Delta \lambda_{v}=O\left(\frac{v^{1-1 / k}}{1+F_{v+1}}\right) \tag{3.14}
\end{equation*}
$$

Proof. The proof follows from Theorem 2.2, by putting $q_{n}=r_{n}=1$, keeping in mind that (2.3) is satisfied as in the case of (3.8).

Corollary 3.6. Let f_{v}, F_{v} be as defined in (3.1). Let (2.3), (2.19), and (3.2) be all satisfied. Then, necessary conditions for the implication (3.9) to be satisfied are

$$
\begin{equation*}
\lambda_{v}=O\left(\frac{Q_{v} Q_{v-1} r_{v}}{\left(1+F_{v}\right) q_{v} R_{v}}\right), \quad \lambda_{v}=O\left(\frac{v^{1-1 / k} r_{v} Q_{v}}{f_{v} R_{v}}\right), \quad \Delta \lambda_{v}=O\left(\frac{v^{1-1 / k} r_{v} Q_{v}}{\left(1+F_{v+1}\right) R_{v}}\right) \tag{3.15}
\end{equation*}
$$

Proof. The proof follows from Theorem 2.2, by putting $p_{n}=1$ for all n.

References

[1] T. M. Flett, "On an extension of absolute summability and some theorems of Littlewood and Paley," Proceedings of the London Mathematical Society, vol. 7, no. 1, pp. 113-141, 1957.
[2] G. Das, "Tauberian theorems for absolute Nörlund summability," Proceedings of the London Mathematical Society, vol. 19, no. 2, pp. 357-384, 1969.

