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We prove that if A and B∗ are subnormal operators and X is a bounded linear operator such that
AX −XB is a Hilbert-Schmidt operator, then f(A)X −Xf(B) is also a Hilbert-Schmidt operator and
‖f(A)X −Xf(B)‖2 ≤ L‖AX −XB‖2 for f belongs to a certain class of functions. Furthermore, we
investigate the similar problem in the case that S, T are hyponormal operators and X ∈ L(H) is
such that SX − XT belongs to a norm ideal (J, ‖·‖J), and we prove that f(S)X − Xf(T) ∈ J and
‖f(S)X −Xf(T)‖J ≤ C‖SX −XT‖J for f being in a certain class of functions.
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1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space, and denote by L(H) the
algebra of all bounded linear operators on H and by C2(H) the Hilbert-Schmidt class. For
T ∈ L(H), σ(T) denotes the spectrum of T, and for a compact subset Σ ⊂ C, Lip(Σ) denotes the
set of Lipschitz functions on Σ. Furthermore, Rat(Σ) denotes the algebra of rational functions
with poles of Σ, and R(Σ) denotes the closure of Rat(Σ) in the supremum norm over Σ.

For operators A,B ∈ L(H), the mapping ΔA,B(X) = AX − XB is called a (generalized)
derivation. If A,B are normal (subnormal or co-subnormal, hyponormal or co-hyponormal)
operators, thenΔA,B will be called a normal (subnormal, hyponormal) derivation, respectively.

Next, we recall some theorems that involve normal derivations, and then we extend
some of these theorems to the case in which A, B∗ are subnormal operators and to the case in
which A = S, B = T are hyponormal operators.

In [1], a generalization of Fuglede-Putnam theorem for normal operators was proved.
For further results concerning normal derivations, the reader can see [2, 3].

Theorem 1.1 (see [1]). If A,B ∈ L(H) are normal operators and X ∈ L(H) satisfies AX − XB ∈
C2(H), then A∗X −XB∗ ∈ C2(H) and
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‖AX −XB‖2 =
∥
∥A∗X −XB∗∥∥

2. (1.1)

In [4], Furuta extended the above result to subnormal operators.

Theorem 1.2 (see [4]). IfA,B∗ ∈ L(H) are subnormal operators andX ∈ L(H) satisfiesAX−XB ∈
C2(H), then A∗X −XB∗ ∈ C2(H) and

‖AX −XB‖2 ≥
∥
∥A∗X −XB∗∥∥

2. (1.2)

In his paper [5], Kittaneh proved the following theorem using a famous result of
Voiculescu [6] according to which every normal operator can be written as the sum of a
diagonal operator and a Hilbert-Schmidt operator of an arbitrarily small Hilbert-Schmidt
norm.

Theorem 1.3 (see [5]). Let A,B ∈ L(H) be normal operators and X ∈ L(H) such that AX −XB ∈
C2(H), and let f ∈ Lip(σ(A) ∪ σ(B)). Then f(A)X −Xf(B) is also a Hilbert-Schmidt operator and

∥
∥f(A)X −Xf(B)

∥
∥
2 ≤ L‖AX −XB‖2, (1.3)

where L is the Lipschitz constant of the function f .

2. Subnormal derivations

In this section, we investigate the validity of this inequality in the case thatA, B∗ are subnormal
operators, but with a drawback concerning the extent of the class of functions in which f can
run.

The following lemma is elementary and can be easily established making use of the
minimal normal extension of a subnormal operator. Its proof is left for the reader.

Lemma 2.1. If S1, S2 ∈ L(H) are subnormal operators, then there exists a Hilbert space K ⊃ H and
normal operators N1,N2 ∈ L(K) that are extensions of S1, S2, respectively, and σ(Ni) ⊆ σ(Si), i =
1, 2

For a subnormal operator S ∈ L(H) and a function f ∈ R(σ(S)), one can associate an
operator f(S) ∈ L(H) as follows. Let rn ∈ Rat(σ(S)), n ∈ N, such that

∥
∥f − rn

∥
∥
σ(S),∞ −→ 0, asn −→ ∞, (2.1)

and let NS ∈ L(K), where K ⊃ H, be the minimal normal extension of S. Since σ(NS) ⊆ σ(S),
we have

rn
(

NS

)

=

(

rn(S) S′
12

0 S′
22

)

, (2.2)

and rn(NS) → f(NS) in the operator norm ofL(K). Therefore, rn(S) converges in the operator
norm of L(H) to an operator that will be denoted by f(S). It is obvious that this operator does
not depend on the sequence {rn}. In a similar way, for f ∈ R(σ(T)), one can define f(T),when
T ∗ ∈ L(H) is a subnormal operator.
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Theorem 2.2. Let A,B∗ ∈ L(H) be subnormal operators and X ∈ L(H) such that AX − XB ∈
C2(H), and let Σ = σ(A) ∪ σ(B) and f ∈ Lip(Σ) ∩ R(Σ). Then f(A)X − Xf(B) is also a Hilbert-
Schmidt operator and

∥
∥f(A)X −Xf(B)

∥
∥
2 ≤ L‖AX −XB‖2, (2.3)

where L is the Lipschitz constant of the function f .

Proof. For subnormal operators A,B∗ ∈ L(H), according to Lemma 2.1, there exists a Hilbert
space K ⊃ H and there are some normal operators NA,NB∗ ∈ L(K) such that relative to the
decomposition ofK = H⊕H⊥,we have

NA =

(

A A12

0 A22

)

, NB∗ =

(

B∗ B12

0 B22

)

, (2.4)

and σ(NA) ⊆ σ(A), σ(NB∗) ⊆ σ(B∗).
If we put X̃ = X ⊕ 0 on H ⊕ H⊥, then we have NAX̃ − X̃N∗

B∗ = (AX − XB) ⊕ 0, and
therefore NAX̃ − X̃N∗

B∗ ∈ C2(K).
For r ∈ Rat(Σ), where Σ = σ(A) ∪ σ(B), a simple calculation shows that

r
(

NA

)

=

(

r(A) A′
12

0 A′
22

)

, r
(

N∗
B∗
)

=

(

r(B) 0

B′
21 B′

22

)

. (2.5)

Thus, if f ∈ Lip(Σ)∩R(Σ), using a limiting argument, one can see that f(NA) and f(N∗
B∗) have

similar matrix representation as in (2.5), but with f replacing r. According to Theorem 1.3,

f
(

NA

)

X̃ − X̃f
(

N∗
B∗
) ∈ C2(K),

∥
∥f

(

NA

)

X̃ − X̃f
(

N∗
B∗
)∥
∥
2 ≤ L

∥
∥NAX̃ − X̃N∗

B∗
∥
∥
2.

(2.6)

Since f(NA)X̃ − X̃f(N∗
B∗) = (f(A)X −Xf(B)) ⊕ 0, the proof is finished.

Corollary 2.3. Let A,B∗ ∈ L(H) be subnormal operators and X ∈ L(H) such that AX − XB ∈
C2(H), and let Σ = σ(A) ∪ σ(B) and f ∈ Lip(Σ) ∩ R(Σ). Then

∥
∥f(A)∗X −Xf(B)∗

∥
∥
2 ≤

∥
∥f(A)X −Xf(B)

∥
∥
2, (2.7)

and thus

||f(A)∗X −Xf(B)∗||2 ≤ L||AX −XB||2, (2.8)

where L is the Lipschitz constant of the function f.

Proof. The first inequality is a consequence of Theorem 1.2 after observing that f(A) and f(B)∗

are subnormal operators. The second inequality follows from Theorem 2.2.
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3. Hyponormal derivations

In this section, we approach the same problem, but in the case in which A = S, B = T are
hyponormal operators and the Hilbert-Schmidt class is replaced with an arbitrary norm ideal.

For a hyponormal operator T ∈ L(H), the analytic functional calculus can be extended to
a classAα(σ(T)) of “pseudo-analytic” functions on σ(T) that satisfy a certain growth condition
at the boundary.

The extension of the analytic functional calculus for a hyponormal operator was
introduced by Dyn’kin (cf. [7, 8]) and it also can be found in [9].

We briefly review the definition and the main tools that are necessary. Let Σ be a perfect
compact set of the complex plane and let α be a positive noninteger with k its integer part, [α].
The classAα(Σ) is defined as the set of (k + 1) tuples of continuous functions on Σ, (f0, . . . , fk) :
Σ → C

k+1 that are related by

fj(z) = fj
(

z0
)

+
fj+1

(

z0
)

1!
(

z − z0
)

+ · · · + fk
(

z0
)

(k − j)!
(

z − z0
)k−j + Rj

(

z0, z
)

,

∣
∣Rj

(

z0, z
)∣
∣ ≤ Cj

∣
∣z − z0

∣
∣
α−j

(3.1)

for j = 0, . . . , k and z, z0 ∈ Σ. Since Σ is a perfect set,

fj
(

z0
)

= lim
z→z0

fj−1(z) − fj−1
(

z0
)

z − z0
, j = 0, . . . , k − 1, (3.2)

and thus the (k+1) tuple depends only on f0. The spaceAα(Σ), endowedwith the maximum of
the smallest constants that satisfy (3.1) plus the supremum norm on Σ of f0, becomes a unital
Banach algebra and is a closed subalgebra of Lip(α,Σ), the algebra of Lipschitz functions of
order α.

Theorem 3.1 (see [8]). Let Σ be a perfect compact set, f ∈ C(Σ), and α a positive noninteger. The
following are equivalent:

(a) f ∈ Aα(Σ);

(b) f has an extension F ∈ C1(C \ Σ) with |∂F(z)| ≤ C · dist(z,Σ)α−1, z /∈ Σ;

(c) there exists φ ∈ C0(C) such that

f(z) =
∫

φ(w)
w − z

dμ(w), z ∈ Σ, (3.3)

and |φ(w)| ≤ C0 · ‖f‖Aα(Σ) · dist(w,Σ)α−1, w ∈ C, where μ is planar Lebesgue measure and
C0 is a constant that does not depend on f .

If T ∈ L(H) is a hyponormal operator, then ||T || = ||T ||σ, where ||T ||σ denotes the
spectral radius of T, that is supz∈σ(T)|z|. It is well known that if z /∈ σ(T), then (z − T)−1 is also
hyponormal and thus

∥
∥(z − T)−1

∥
∥ =

1
dist

(

z, σ(T)
) . (3.4)
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Thus, for a hyponormal operator T whose spectrum σ(T) is a perfect set and for a function
f ∈ Aα(σ(T))with α > 2, one can associate an operator defined by

∫

φ(w)(w − T)−1dμ(w) (3.5)

that will be denoted by f(T). The above integral does not depend on φ, that is, the definition
of f(T) is not ambiguous, and the mapping φ �→ f(T) acting from Aα(σ(T)) into L(H) is
a continuous, unital morphism of Banach algebras, and which extends the Riesz-Dunford
calculus.

Let (J, || · ||J) be a norm ideal, that is, a proper two-sided ideal J of L(H) with a norm
|| · ||J that satisfies th following: (J, || · ||J) is a Banach space and ‖AXB‖J ≤ ‖A‖‖B‖‖X‖J , for
all X ∈ J and any A,B ∈ L(H). In particular, the Shatten-von Neumann p-classes, Cp(H), for
p ≥ 1, are instances of norm ideals.

Theorem 3.2. Let (J, || · ||J) be a norm ideal, let S, T ∈ L(H) be hyponormal operators for which both
σ(S) and σ(T) are perfect sets, let f belong to Aα(Σ) with α > 3 and Σ = σ(S) ∪ σ(T), and let
X ∈ L(H) such that SX −XT ∈ J. Then f(S)X −Xf(T) ∈ J and

||f(S)X −Xf(T)||J ≤ C1 · ||f ||Aα(Σ) · ||SX −XT ||J , (3.6)

where C1 is a constant that depends on Σ but it does not depend on f .

Proof. For f ∈ Aα(Σ), according to Theorem 3.1, there exists φ ∈ C0(C) such that

f(z) =
∫

φ(w)
w − z

dμ(w), z ∈ Σ,

∣
∣φ(w)

∣
∣ ≤ C0 · ‖f‖Aα(Σ) · dist(w,Σ)α−1, w ∈ C.

(3.7)

Therefore,

f(S)X −Xf(T) =
∫

φ(w)
[

(w − S)−1X −X(w − T)−1
]

dμ(w). (3.8)

The domain of integration is supp(φ), which is a compact set that has in common with Σ only
possibly boundary points of Σ. For w ∈ supp(φ) ∩ (C \ Σ),

(w − S)−1X −X(w − T)−1 = (w − S)−1
[

X(w − T) − (w − S)X
]

(w − T)−1

= (w − S)−1[SX −XT](w − T)−1 ∈ J,
(3.9)

and, according to (3.4),
∥
∥(w − S)−1X −X(w − T)−1

∥
∥
J ≤ dist

(

w,σ(S)
)−1 · dist(w,σ(T)

)−1 · ‖SX −XT‖J
≤ C′ · dist(w,Σ)−2 · ‖SX −XT‖J ,

(3.10)

where C′ is a constant that depends on Σ. Therefore, the integrant in (3.8) belongs to the norm
ideal J and

∥
∥φ(w)(w − S)−1X −X(w − T)−1

∥
∥
J ≤ C0 · C′ · ‖f‖Aα(Σ) · dist(w,Σ)α−3‖SX −XT‖J , (3.11)
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for w ∈ supp(φ) ∩ (C \ Σ). After integration one obtains the desired conclusion of the theo-
rem.
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