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segments, with specific attention to the “infinite staircase” and to the Koch snowflake, for both
of which we develop explicit formulas for the mapping function and explain how one can use
standard mathematical software to generate corresponding graphics. We also discuss a number of
open questions suggested by these considerations, some of which are related to differentials on
hyperelliptic surfaces of infinite genus.
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1. Introduction

Let D be a polygon in the complex plane with n vertices and interior angles παi, 0 ≤ αi ≤
2, 1 ≤ i ≤ n; the exterior angles are given by πμi, where αi + μi = 1. The Schwarz-Christoffel
mapping of the upper-half plane onto D is effected by a function of the form

f(z) = α
∫z

0

dx

(x − ai)μ1 · · · (x − an)μn
+ β, (1.1)

where a1 < · · · < an are real and α, β ∈ C.
Although there is ample literature on the subject (see, e.g., [1–3], as well as the

complete overview contained in Driscoll and Threfethen [4]), a few remarks would not be
out of place here. First of all, even though (1.1) gives the appearance of being an explicit
formula, there is actually no known relation between the values of the ai and the lengths
of the sides of D. For this reason, when considering an infinite-sided polygon, one needs to
justify passage to a corresponding infinite product, which is what we do in what follows.
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Also, formula (1.1) is necessary but not sufficient in the sense that for some values of the
ai’s, the mapping need not to be one-to-one (see [5]). To establish the necessity, one needs to
consider the behavior of f(z) at∞, a possibility also clearly excluded in the case of infinitely
many ai.

Before proceeding, we review some variations of (1.1). One of the points ai may be
located at ∞, the formula remaining the same, and one of the vertices of the polygon may
be at ∞, where we use the relation μ1 + · · · + μn = 2. The formula for mapping the unit disc
conformally onto D is essentially the same, but with |ai| = 1, 1 ≤ i ≤ n. The formula for the
mapping onto the exterior of the polygon is

g(z) = α
∫z

1
eλx(x − a1)

μ1 · · · (x − an)μn
dx

x2
+ β (1.2)

with λ =
∑n

i=1 μi / ai.
In this paper, we explore the case in which there are infinitely many points ai on the

real line (or the unit circle) and obtain results for two kinds of “polygons.”

1.1. Polygons with an infinite number of sides

This is the case, for example, of an “infinite stairway” with interior angles alternately equal
to π/2 and 3π/2. The formula in this case is

f(z) =
∫z

0

√
tan(x)dx. (1.3)

The zeros of the denominator cos(x) correspond to ai = (2i + 1)π/2, μi = 1/2 and
those of the numerator sin(x) to ai = iπ, μi = −1/2.

1.2. Fractals

This is the case, for example, of the interior of the Koch snowflake, for which the formula on
the interior of the unit disc turns out to be

g(z) =
∫z

0

+∞∏
n=0

(
1 + x6·4n)dx. (1.4)

A similar generalization of (1.2) gives the conformal mapping onto the exterior of the
Koch snowflake.

To reproduce the figures in the text, a program such as Derive, Maple, or Mathematica
is required; we explain in each case how to obtain these figures.

To our knowledge, formulas of this kind have not previously been considered in the
literature, and the initial nature of the present investigation precludes exhaustive results. It is
our hope that others will be motivated to seek general theorems along these lines, or at any
rate to find explicit mappings of the upper-half-plane onto other infinitely sided polygons.
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We mention here the open problem of a half-strip slit along infinite sequences of equal-length
line segments emanating from the infinite sides.

(1.5)

The mapping of the half-plane onto this domain is of importance in the study of differentials
on hyperelliptic surfaces of infinite genus as considered in the pioneering work by Myrberg,
see [5]. (The formula for the case of the analogously slitted full strip is obtained below.)

2. Polygons with an infinite number of sides

2.1. The infinite staircase

The first example we consider is the mapping defined on the upper half-plane by the formula

f(z) =
∫z

0

√
tan(x)dx. (2.1)

The image is given in Figure 1, where the curves shown are the images of horizontal
and vertical segments lying in the half-plane; they can be defined directly by

α(s) =
(

Re
(

Numint
(√

tan(x), x = 0 to 0.6 + si
))

,

Im
(

Numint
(√

tan(x), x = 0 to 0.6 + si
)))

, 0.1 ≤ s ≤ 1.1

(2.2)

for a vertical segment, and by

β(s) =
(

Re
(

Numint
(√

tan(x), x = 0 to 0.09i + s
))

,

Im
(

Numint
(√

tan(x), x = 0 to 0.09i + s
)))

, 0.4 ≤ s ≤ 10

(2.3)

for a horizontal segment.
The image of the real axis is the infinite staircase with steps of equal length

∫π/2

0

√
tan(x)dx =

π
√

2
2

. (2.4)

In order to prove that this formula actually defines a one-to-one mapping, we proceed
as follows.
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Figure 1: The infinite staircase. f(z) =
∫z

0

√
tan x dx.

π/2

(3)

(2)
(0)

(1)

Figure 2

Consider the triangle (i.e., half-strip) of Figure 2.
The image of the positive imaginary axis (labeled (1) in the figure) is given by

∫ is

0

√
tan(x)dx = i

∫s

0

√
tan(it)dt =

−1 + i√
2

∫s

0

√
et − e−t
et + e−t

dt (2.5)

for 0 ≤ s ≤ +∞, so that it is the half-line making an angle of 3π/4 with the positively oriented
real axis. The image of (2) is the real segment [0, π

√
2/2], and that image of (3) is a half-line

parallel to the first one and beginning at π
√

2/2 as in Figure 3.
Consider the triangle of Figure 3.
The general theory of conformal mappings applies to these two triangles, so that

from the bijectivity on the boundaries we can conclude bijectivity in the interior. With the
Schwarz reflection principle as applied to the vertical segments (1), (3), and their reflections,
the mapping can now be extended to the entire upper half-plane.

The function

f(z) =
∫z

0

sinν(x)
cosμ(x)

dx, (2.6)

with 0 < ν, μ < 1, generalizes this to zigzag patterns.
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Figure 4: The hairy half-plane, f(z) =
∫z

0(cos(x/2)/
√

cos(x))dx.

2.2. The hairy half-plane

We next consider interior angles π/2 at ai = (2i + 1)π/2 (i ∈ Z) and 2π at bi = (2i + 1)π.
The mapping function is therefore

f(z) =
∫z

0

cos(x/2)√
cos(x)

dx, (2.7)

and the image is shown in Figure 4.
To establish that the given mapping is indeed one-to-one, it is first necessary to see

that the length of the segment from an angle π/2 to the tip of the hair is the same on both
sides, that is, that

∫π

π/2

cos(x/2)√
−cos(x)

dx =
∫3π/2

π

−cos(x/2)√
−cos(x)

, (2.8)

an equality easily obtained by the change of variable x→2π − x.
The proof can now be completed in the same way as for the infinite staircase by first

considering the image of a triangle with vertical sides at π and 3π , and then extending the
mapping by the reflection principle.



6 International Journal of Mathematics and Mathematical Sciences

0.2−0.2−0.4

−3

−2

−1

1

2

3

Figure 5: The hairy plane, f(z) =
∫z

0 tanπxdx.
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Figure 6: Half a stair or the stairway to the abyss, f(z) =
∫z

0

√
(Γ(1/2 − x)/Γ(−x))dx.

In a similar fashion, we obtain a formula for the hairy plane, which can be regarded as
a polygon with infinitely many sides and interior angles alternately equal to 2π and 0.

This means taking

f(z) =
∫z

0

sin(x)
cos(x)

dx (2.9)

as in Figure 5.

2.3. The infinite half-staircase

In order to consider only one half of the stair, we have to take analytic functions in (1.1)
having half as many zeros as before, which leads to the Γ function. Indeed, the formula

f(z) =
∫z

0

√
Γ(1/2 − x)

Γ(−x) dx (2.10)

defines such a mapping (see Figure 6).
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However, to prove that the mapping given in (2.10) is one-to-one, we cannot use the
arguments of examples 1 and 2 since there is no symmetry with respect to a line. We proceed
as follows. Since

1
Γ(x)

= eγxx
+∞∏
n=1

(
1 +

x

n

)
e−x/n, (2.11)

it follows that
√

Γ(1/2 − x)
Γ(−x) = e−γ/4

√
x

x − 1/2
lim

N→+∞

N∏
n=1

(
1 − x/n

1 + (1/2 − x)/n

)1/2

en/4. (2.12)

The classical Schwarz-Christoffel formula can be applied to each finite product on
the right-hand side, which gives a staircase with a finite number of steps. These conformal
mappings converge uniformly to the required mapping since for each positive integer, the
integral

∫m+1/2

m

√
Γ(1/2 − x)

Γ(−x) dx (2.13)

is finite.
To obtain a half-stair with the steps moving to the left one would naturally use

∫z

0

√
Γ(−x)

Γ(1/2 − x)dx. (2.14)

Finally, to obtain half a hairy plane, we take

f(z) =
∫z

−1

Γ(1/2 − x)
Γ(−x) dx (2.15)

as in Figure 7, or half a hairy half-plane via

√
Γ(1/2 − x)
Γ(−x/2)

(2.16)

and so on.

3. Fractals

3.1. The Koch snowflake

Driscoll and Trefethen ([4, Chapter 4.5]) remark that the conformal mapping into the interior
or exterior of complicated fractals, such as the Koch snowflake, ought to be treatable in a
manner related to the multiple method. In the next theorem, we give an explicit geometric
formula which does this.

Numerical schemes have been studied before using iteration procedures, see [6].
The Koch snowflake is obtained as the limit of a sequence of polygons defined as in

Steps 1, 2, and 3, and so on.
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Figure 7: Half a hairy half-plane, f(z) =
∫z
−1(Γ(1/2 − x)/Γ(−x))dx.

Step 1.

(3.1)

Step 2.

(3.2)
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Figure 8: Interior of the Koch snowflake, Step 1.

Step 3.

(3.3)

At each step, we consider the Schwarz-Christoffel mapping of the unit disc into the
interior of the polygon; we use the notation of the introduction throughout.

Step 1. αk = 1/3, μk = 2/3, ak = exp(2πik/3) (k = 1, 2, 3);

F(z) =
∫z

1

dx

(x − 1)2/3(x − exp(2πi/3))2/3(x − exp(4πi/3))2/3
=
∫z

1

dx

(x3 − 1)2/3
. (3.4)

This conformal mapping is portrayed in Figure 8.

Step 2. ak = exp(2πik/12) (0 ≤ k ≤ 11);

αk =
1
3
, μk =

2
3
, k = 0, 2, 4, 68, 10

αk =
4
3
, μk =

−1
3
, k = 1, 3, 57, 911.

(3.5)
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Figure 9: Interior the Koch snowflake, Step 2.

The formula for the conformal mapping is

F(z) =
∫z

1

(
x6 + 1

)1/3

(
x6 − 1

)2/3
dx (3.6)

and the image of the unit disc appears in Figure 9.

Step 3. ak = exp(2πik/48) (0 ≤ k < 47)

αk =
1
3
, μk =

2
3
, k = 0, 2, 6, 8, 10, 14, 16, 18, 22, 24, 26, 30, 32, 34, 38, 40, 42, 46,

αk =
3
4
, μk =

−1
3

all other k.
(3.7)

Although the combinatorics is not automatic, the formula for the conformal mapping
is

F(z) =
∫z

1

[(
x6 + 1

)(
x24 + 1

)]1/3

[(
x3 − 1

)(
x3 + 1

)(
x12 + 1

)]2/3
dx, (3.8)

the image of the unit disc is given in Figure 10.
We may generalize the following.

Step n. ak = exp(2πik/(3 × 4n)), 0 ≤ k < 3 × 4n with an integrand of the form

[(
x6 + 1

)(
x24 + 1

)
· · ·

(
x6·4n−1

+ 1
)]1/3

[(
x3 − 1

)(
x3 + 1

)(
x12 + 1

)
· · ·

(
x3·4n−1 + 1

)]2/3
. (3.9)
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Figure 10: Interior of Koch’s snowflake, Step 3.

Theorem 3.1. The formula for the conformal map from the interior of the unit disc to the interior of a
Koch snowflake is

F(z) =
∫z

0

+∞∏
n=0

(
1 + x6·4n)dx, |z| < 1. (3.10)

Proof. The wording “a Koch snowflake” means that it is the limit of polygons with the same
angles as the polygons in the Koch pattern, but with unequal sides.

First, we rewrite the integrand for Step n as

(
1 + x6)(1 + x24) · · ·

(
1 + x6·4n−1)

(
1 − x3·4n)2/3

(3.11)

(modulo a cube root of 1), so that for |x| < 1 the integrand converges to the one indicated in
the statement of the theorem.

That the lengths are not equal to the lengths in true Koch snowflake can already be
seen at Step 3:

Define

a =
∫1

0

(
1 + x24)1/3

(
1 − x24

)2/3
dx = 1.13856,

b =
∫1

0

x6 (1 + x24)1/3

(
1 − x24

)2/3
dx = 0.270237,

(3.12)

so that

F(1) = a + b (3.13)

is one vertex of the polygon. But then

F
(
eπi/6) = eπi/6 (a − b). (3.14)
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π/6π/6
F(1)a + b0

exp (π/6i) (a − b)

F (exp (π/6i))

Figure 11

The image of a circular sector from 0 to 1 to exp(πi/6) is therefore a polygon of the
form of Figure 11.

If the lengths were equal to those of the regular snowflake then the vertex
F(exp(πi/6)) would be the vertex of the isosceles triangle with base a + b and base angle
π/6.

The side would equal (a + b)/
√

3. But

(a + b)√
3

< a − b, (3.15)

showing that the second length in the small triangle is necessarily shorter than the first one,
leading to a location of F(exp(πi/6)) slightly “higher” than it should be.

Observe also that the location of this last vertex implies (the angles being as required)
that the map is one-to-one on the boundary and therefore one-to-one throughout.

In general, the image in Step n differs somewhat, but not by too much, from a regular
snowflake with all sides equal.

If we analyze a sufficiently general case as in Step 3, say that we have the mapping

f(z) =
∫z

0

(
1 + x6)(1 + x24)(1 + x96)1/3

(
1 − x96

)2/3
dx. (3.16)

It is easy to obtain the points

P ∗ = f(1) = 1.35, Q∗ = f
(
eπi/24),

R∗ = f
(
eπy/8), S∗ = f

(
eπi/6). (3.17)

If we compare them to a regular snowflake with vertices P, Q, R, S, we obtain points
at a distance smaller than 0.1.

What is to be noticed is that for the image not be one-to-one on the boundary, the
point Q∗ should differ sufficiently from Q, to be below PO, for example; the position of
P ∗, Q∗, R∗, S∗ thus forces the actual polygon to be free of self-intersections, the angles being
π/3 or 2π/3. We draw one such possible polygon in Figure 12.

The sequence of conformal mappings therefore converges to a nonconstant conformal
mapping (since F ′(0) = 1).
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Figure 12

We check that the image is not all of C.
We claim that

F(1) =
∫1

0

+∞∏
n=0

(
1 + x6·4n)dx ≤ 3

4
. (3.18)

Indeed, with y = x6, we have 0 ≤ y ≤ 1 and

(1 + y)
(
1 + y4)(1 + y16) · · · = 1 + y +

(
y4 + y5) + (

y16 + y17 + y20 + y21) + · · ·
≤ 1 + y + 2y4 + 4y16 + · · ·

= 1 +
∞∑
n=0

2n y4n .

(3.19)

Thus the integral is bounded from above by

∫1

0
1 +

+∞∑
n=0

2n x4n·6 dx = 1 +
+∞∑
n=0

2n

6·4n ≤ 1 +
1
6

+∞∑
n=0

1
2n

=
4
3
. (3.20)

We also check that the image is not a disc.
Set

a =
∫1

0

+∞∏
n=1

(
1 + x6·4n)dx, b =

∫1

0
x6

+∞∏
n=1

(
1 + x6·4n)dx. (3.21)

Then F(1) = a + b and 0 < b < a.
But

F
(
eπi/6) = eπi/6(a − b) (3.22)

has modulus smaller than F(1).
Finally, we have to explain a subtle point that arises in producing a drawing such as

the one in Figure 10.
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One cannot write, for example,

(
1 + x6)1/3(

1 + x24)1/3
=
[(

1 + x6)(1 + x24)]1/3 (3.23)

since the branch we implicitly use by analytic continuation may not coincide with the fixed
branches of the mathematical software.

With

u(k, x) = log
(

exp
(
πik

24

)
− x

)
,

v(k, x) = log
(
x − exp

(
πik

24

))
,

(3.24)

the numerator of the integrand is

Num(x) = exp
(
1/3(u(1, x) + u(3, x) + u(3, x) + u(4, x) + u(5, x)

+ u(7, x) + u(9, x) + u(11, x) + v(12, x) + v(13, x)

+ v(15, x) + v(17, x) + v(19, x) + v(20, x)

+ v(21, x) + v(23, x) + v(25, x) + v(27, x)

+ v(28, x) + v(29, x) + v(31, x) + v(33, x) + v(35, x)

+ v(36, x) + u(37, x) + u(39, x) + u(41, x) + u(43, x)

+ u(44, x) + u(45, x) + u(47, x))
)
;

(3.25)

and the denominator is

Den(x) = exp
(
2/3(u(0, x) + u(2, x) + u(6, x)

+ u(8, x) + u(10, x) + v(14x) + v(16, x)

+ v(18, x) + v(22, x) + v(24, x) + v(26, x)

+ v(30, x) + v(32, x) + v(34, x) + u(38, x)

+ u(40, x) + u(42, x) + u(46, x))
)
.

(3.26)

At any rate, the formula of the theorem with terms of up to 6·46 is sufficiently precise
(and simpler to use) and gives Figure 13.

3.2. The exterior of the snowflake

At Step 1, we use the formula of the introduction with ak = exp(2πi/3 × k), μk = 2/3, 1 ≤
k ≤ 3.
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Figure 13: Exterior of the Koch snowflake, Step 1.

642−2−4
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4

Figure 14: Exterior of the Koch snowflake, Step 2.

In this case, λ = 2/3
∑3

k=1 dk = 0 so that the formula is

F(z) =
∫z

1
(x3 − 1)

2/3(dx/x2)
(3.27)

whose image is in Figure 14.
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42−2
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4

Figure 15: Exterior of the Koch snowflake, Step 3.

In the same way, the formulas for Steps 2 and 3 are

∫z

1

[(
x3 − 1

)(
x3 + 1

)]2/3

[(
x6 + 1

)]1/3

dx

x2
,

∫z

1

[(
x3 − 1

)(
x3 + 1

)(
x12 + 1

)]2/3

[(
x6 + 1

)(
x24 + 1

)]1/3

dx

x2
,

(3.28)

corresponding to Figures 15 and 16.
The mapping from the unit disc to the exterior of the Koch snowflake is given by

F(z) =
∫z

1

( +∞∏
n=0

(
1 + x6·4n))−1

dx

x2
. (3.29)

3.3. Periodic Koch fractals

In a paper on diffusive transport by Brady and Pozrikidis (cf. [6]) the authors consider
conformal mappings of a rectangle onto regions Rm, m = 1, 2, . . . as in Figure 16.

The mappings can then be extended by reflections on the vertical sides to mappings
from an infinite strip to regions bounded below by the given contours. In the limit, a fractal
region is obtained.

The mapping is given by an iteration procedure which we summarize as follows.

Define G(ξ) =
N∏
n=0

( +∞∏
k=−∞

sin h

(∏
2h

(ξ − an − kaN)
))αn

. (3.30)

(i) Guess initial values ai, i = 1, . . . ,N.
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R1

m = 1

R2

m = 2

Figure 16

(ii) Locate the vertices on the triangular contours by

ZG
n = ZG

n−1 + R
∫an

an−1

G(ξ)dξ (3.31)

and compare them to the known exact values of the vertices an. If they are equal
the calculation stops; otherwise compute improved values for an using the corrector
formula:

∣∣anew
n anew

n−1

∣∣ = ∣∣aold
n − aold

n−1

∣∣
∣∣∣∣Zn − Zn−1

ZG
n − ZG

n−1

∣∣∣∣. (3.32)

This procedure works well in the first few iterations but, as the authors explain, is
computationally prohibitive already for m = 5 (cf. [6] for details).

Using the Schwarz-Christoffel formula in a similar way as in number 2 above, we may
define a conformal mapping to a region bounded below by a periodic fractal of Koch’s type
obtained from Figure 16. For m = 1 consider the function

F(z) =
∫z

0

(
1 − e2πix/3)
(
1 − e2πi

)1/3
dx. (3.33)

It maps the upper half plane to a region bounded by the periodic contour as in R1

(extended by reflection on the vertical sides).
The actual lengths of the sides in the image are {1, 2, 1} so that they do not coincide

with preassigned value 1 for all sides, but the image has the same geometrical shape.
For m = 2, the function is defined by

∫z

0

(
1 − e2πix/3)

(
1 − e2πix

)1/3

(
1 + e2πix)2/3

(
1 + e4πix

)1/3
dx (3.34)

and in the limit, for Im z > 0,
∫z

0

(
1 − e2πix/3)

(
1 − e2πix

)1/3

∏+∞
n=0

(
1 + e2πi4nx)2/3

∏+∞
n=0

(
1 + e4πi4nx

)1/3
dx. (3.35)

The infinite products converge uniformly in compact sets on the upper half plane and
the integral defines a conformal map onto a region bounded below by an infinite periodic
fractal of Koch type. As usual with these maps, we cannot so far control precisely the lengths
of the sides except numerically for the first few steps.
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3.4. A tree

We define a sequence of “trees” as follows.

Step 1.

(3.36)

Step 2.

(3.37)

Step 3.

(3.38)
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Figure 17: Exterior of a tree, Step 3.

We want to define a sequence of Schwarz-Christoffel mappings from the unit disc to
the complements of these trees.

The interior angles at Step 1 give α1 = α3 = α5 = α7 = 0 with μ1 = μ3 = μ5 = μ7 = 1 at
the points and α2 = α4 = α6 = α8 = 3/2, μ2 = μ4 = μ6 = μ8 = −1/2 at the corners.

Therefore

F(z) =
∫z

1

1 + x4

(
1 − x4

)1/2

dx

x2
(3.39)

is the required formula at Step 1.
At Step 2, we obtain

F(z) =
∫z

1

1 + x4

(
1 − x4

)1/2

1 + x8

(
1 + x16

)1/2

dx

x2
(3.40)

with branches at the 32 roots of unity.
Similarly, at Step 3

F(z) =
∫z

1

1 + x4

(
1 − x4

)1/2

(
1 + x8)(1 + x32)

[(
1 + x16

)(
1 + x64

)]1/2

dx

x2
. (3.41)

The image is shown in Figure 17.
In the limit, we obtain the formula

F(z) =
∫z

1

1 + x4

(
1 − x4

)1/2

∏+∞
n=1

(
1 + x2·4n)

[∏+∞
n=1

(
1 + x4n+1)]1/2

dx

x2
(3.42)

for the conformal mapping of the unit disc onto the exterior of this fractal.
There are of course many more trees to be considered but the combinatorics arising

from angles and points is not straightforward, so that it may be hard to obtain a general
expression for the conformal mapping. We leave these as questions for further study.



20 International Journal of Mathematics and Mathematical Sciences

4. Conclusion

The classical Schwarz-Christoffel formula maps the upper half plane to a polygon with
prescribed angles, but with sides of unknown lengths. Notwithstanding this, we have shown
that the formula can be extended to a variety of shapes with an infinite number of vertices,
namely, stairs, slitted planes, fractals of Koch’s type and trees. It would be very interesting in
the future to find exactly the branch points necessary in Koch snowflake as well as in specific
slitted regions.

Acknowledgment

This research was partially suported by Fondecyt 1050904.

References

[1] D. Bonciani and F. Vlacci, “Some remarks on Schwarz-Christoffel transformations from the unit disk
to a regular polygon and their numerical computation,” Complex Variables and Elliptic Equations, vol.
49, no. 4, pp. 271–284, 2004.

[2] P. Henrici, Applied and Computational Complex Analysis. Vol. 1: Power Series, Integration, Conformal
Mapping, Location of Zeros, Pure and Applied Mathematics, John Wiley &amp; Sons, New York, NY,
USA, 1974.

[3] E. Johnston, “A “counter example” for the Schwarz-Christoffel transform,” The American Mathematical
Monthly, vol. 90, no. 10, pp. 701–703, 1983.

[4] T. A. Driscoll and L. N. Trefethen, Schwarz-ChristoffelMapping, vol. 8 of CambridgeMonographs on Applied
and Computational Mathematics, Cambridge University Press, Cambridge, UK, 2002.

[5] P. J. Myrberg, “&quot;Uber analytische Funktionen auf transzendenten zweibl&quot;attrigen Rie-
mannschen Fl&quot;achen mit reellen Verzweigungspunkten,” Acta Mathematica, vol. 76, no. 3-4, pp.
185–224, 1945.

[6] M. Brady and C. Pozrikidis, “Diffusive transport across irregular and fractal walls,” Proceedings of the
Royal Society of London. Series A, vol. 442, no. 1916, pp. 571–583, 1993.


	Introduction
	Polygons with an infinite number of sides
	Fractals

	Polygons with an infinite number of sides
	The infinite staircase
	The hairy half-plane
	The infinite half-staircase

	Fractals
	The Koch snowflake
	The exterior of the snowflake
	Periodic Koch fractals
	A tree

	Conclusion
	Acknowledgment
	References

