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1. Introduction and preliminaries

Let Ap(n) denote the class of functions of the form

f(z) = zp +
∞∑

k=n

akz
k (

p < n;n, p ∈ N = {1, 2, . . . }
)
, (1.1)

which are analytic and p-valent in the open unit disk

U =
{
z; z ∈ C : |z| < 1

}
. (1.2)

If f ∈ Ap(n) is given by (1.1) and g ∈ Ap(n) is given by

g(z) = zp +
∞∑

k=n

bkz
k, (1.3)

mailto:rainark$_$7@hotmail.com


2 International Journal of Mathematics and Mathematical Sciences

then the Hadamard product (or convolution) f∗g of f and g is defined (as usual) by

(f∗g)(z) := zp +
∞∑

k=n

akbkz
k := (g∗f)(z). (1.4)

We denote by Tp(n) the subclass of Ap(n) consisting of functions of the form

f(z) = zp −
∞∑

k=n

akz
k (

p < n;ak ≥ 0(k ≥ n);n, p ∈ N
)
, (1.5)

which are p-valent in U.
For a fixed function g(z) ∈ Ap(n) defined by

g(z) = zp +
∞∑

k=n

bkz
k (

p < n; bk ≥ 0(k ≥ n);n, p ∈ N
)
, (1.6)

we introduce a new class Sλ
p(g;n, b,m) of functions belonging to the subclass of Tp(n), which

consists of functions f(z) of the form (1.5), satisfying the following inequality:

∣∣∣∣
1
b

(
z(f∗g)(m+1)(z) + λz2(f∗g)(m+2)(z)

λz(f∗g)(m+1)(z) + (1 − λ)(f∗g)(m)(z)
− (p −m)

)∣∣∣∣ < 1

(
z ∈ U; p ∈ N; m ∈ N0; p > m; 0 ≤ λ ≤ 1; b ∈ C \ {0}

)
.

(1.7)

We note that there exist several interesting new (or known) subclasses of our function
class Sλ

p(g;n, b,m). For example, if λ = 0 in (1.7), we obtain the class Sp(g;n, b,m) studied very
recently by Prajapat et al. [1]. On the other hand, if the coefficients bk in (1.6) are chosen as
follows:

bk =
(
k + μ

p + μ

)r

(μ ≥ 0; k ≥ n; r, p, n ∈ N), (1.8)

and n is replaced by n+p in (1.4) and (1.5), then we obtain the class Sp
n,m(μ, r, λ, b) of p-valently

analytic functions (involving the multiplier transformation operator Ip(r, μ) defined in [2])
which was studied recently by Srivastava et al. [3]. Also, if we set λ = 0 in (1.7) and if the
arbitrary sequence bk in (1.6) is selected as follows:

bk =

(
μ + k − 1

k − p

)
(μ > −p; k ≥ n; p, n ∈ N), (1.9)

also if n is replaced by n + p in (1.4) and (1.5), then we obtain the classHp
n,m(μ, b) of p-valently

analytic functions (involving the familiar Ruscheweyh derivative operator) investigated by
Raina and Srivastava [4]. Further, when

λ = 0, m = 0, b = p(1 − α)
(
p ∈ N; 0 ≤ α < 1

)
, (1.10)
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in (1.7), then Sλ
p(g;n, b,m) reduces to the class studied recently by Ali et al. [5]. Moreover,

when

g(z) = zp +
∞∑

k=n

(α1)k−p · · · (αq)k−p
(β1)k−p · · · (βs)k−p(k − p)!

zk,

(
αj ∈ C (j = 1, 2, . . . , q), βj ∈ C \ {0,−1,−2, . . . } (j = 1, 2, . . . , s)

)
(1.11)

with the parameters

α1, . . . , αq, β1, . . . , βs (1.12)

being so chosen that the coefficients bk in (1.6) satisfy the following condition:

bk =

(
α1
)
k−p · · ·

(
αq

)
k−p(

β1
)
k−p · · ·

(
βs
)
k−p(k − p)!

≥ 0, (1.13)

then the class Sλ
p(g;n, b,m) transforms into a (presumably) new class Sλ

p(n, b,m) defined by

Sλ
p(n, b,m) =

{
f ∈ Tp(n) :

∣∣∣∣
1
b

(
z
(
H

q
s

[
α1
]
f
)(m+1)(z) + λz2

(
H

q
s

[
α1
]
f
)(m+2)

λz
(
H

q
s

[
α1
]
f
)(m+1)(z) + (1 − λ)

(
H

q
s

[
α1
]
f
)(m)

− (p −m)
)∣∣∣∣< 1

}

(
z ∈ U; q ≤ s + 1; m, q, s ∈ N0; 0 ≤ λ ≤ 1, p ∈ N; b ∈ C \ {0}

)
.

(1.14)

The operator

(
H

q
s

[
α1
]
f
)
(z) := H

q
s

(
α1, . . . , αq; β1, . . . , βs

)
f(z), (1.15)

involved in (1.14), is the Dziok-Srivastava linear operator (see for details [6]; see also [7, 8])
which contains such well-known operators as the Hohlov linear operator, Saitoh generalized
linear operator, Carlson-Shaffer linear operator, Ruscheweyh derivative operator as well as
its generalized version, the Bernardi-Libera-Livingston operator, and the Srivastava-Owa frac-
tional derivative operator. Onemay refer to [7] or [6] for further details and references for these
operators. The Dziok-Srivastava linear operator defined in [6] has further been generalized by
Dziok and Raina [7] (see also [8, 9]).

Following a recent investigation by Frasin and Darus [10], let f(z) ∈ Tp(n), δ ≥ 0, then
a (q, δ)-neighborhood of the function f(z) is defined by

Nq

n,δ
(f) =

{
h : h ∈ Tp(n) : h(z) = zp −

∞∑

k=n

ckz
k,

∞∑

k=n

kq+1∣∣ak − ck
∣∣ ≤ δ

}
. (1.16)

It follows from the definition (1.16) that if

e(z) = zp (p ∈ N), (1.17)
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then

Nq

n,δ
(e) =

{
h : h ∈ Tp(n) : h(z) = zp −

∞∑

k=n

ckz
k,

∞∑

k=n

kq+1∣∣ck
∣∣ ≤ δ

}
. (1.18)

We observe that

N0
2,δ(f) = Nδ(f),

N1
2,δ(f) = Mδ(f),

(1.19)

whereNδ(f) andMδ(f) denote, respectively, the δ-neighborhoods of the function

g(z) = z +
∞∑

k=2

akz
k (

ak ≥ 0, z ∈ U
)
, (1.20)

defined by Ruscheweyh [11] and Silverman [12].
Finally, for a fixed function

g(z) = zp +
∞∑

k=n

bkz
k ∈ Ap(n)

(
p < n; bk > 0 (k ≥ n); n, p ∈ N

)
, (1.21)

let Pλ
p(g;n, b,m) denote the subclass of Tp(n) consisting of functions f(z) of the form (1.5)

which satisfy the following inequality:
∣∣∣∣
1
b

{[
1 − λ(p −m − 1)

]
(f∗g)(m+1)(z) + λz(f∗g)(m+2)(z) − (p −m)

}∣∣∣∣ < p −m

(
z ∈ U, m ∈ N0; p ∈ N; p > m; 0 ≤ λ ≤ 1, b ∈ C \ {0}

)
.

(1.22)

The object of the present paper is to investigate the various properties and characteristics
of functions belonging to the above-defined subclasses

Sλ
p(g;n, b,m), Pλ

p(g;n, b,m) (1.23)

of p-valently analytic functions in U. Apart from deriving coefficient inequalities for each
of these function classes, we establish several inclusion relationships involving the (n, δ)-
neighborhoods of functions belonging to these subclasses.

2. Coefficient bound inequalities

We begin by proving a necessary and sufficient condition for the function f(z) ∈ Tp(n) to be
in each of the classes

Sλ
p(g;n, b,m), Pλ

p(g;n, b,m). (2.1)

Theorem 2.1. Let f(z) ∈ Tp(n) be given by (1.5). Then f(z) is in the class Sλ
p(g;n, b,m) if and only

if

∞∑

k=n

akbk
[
λ(k −m − 1) + 1

](
k − p + |b|

)
(

k

m

)
≤ |b|

[
λ(p −m − 1) + 1

]
(

p

m

)
. (2.2)
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Proof. Assume that f(z) ∈ Sλ
p(g;n, b,m). Then, in view of (1.5)–(1.7), we get

R

(
λz2(f∗g)(m+2)(z) + z

[
1 − λ(p −m)

]
(f∗g)(m+1)(z) − (1 − λ)(p −m)(f∗g)(m)(z)

λz(f∗g)(m+1)(z) + (1 − λ)(f∗g)(m)(z)

)
> −|b|

(2.3)

which yields

R

( ∑∞
k=nakbk( k

m )(k − p)
[
λ(k −m − 1) + 1

]
zk−p

( p
m )

[
λ(p −m − 1) + 1

]
zp−m −

∑∞
k=nakbk( k

m )[λ(k −m − 1) + 1]zk−p

)
< |b| (z ∈ U).

(2.4)

Putting z = r (0 ≤ r < 1) in (2.4), the denominator expression on the left-hand side of (2.4)
remains positive for r = 0, and also for all r ∈ (0, 1). Hence, by letting r→1−, through real
values, inequality (2.4) leads to the desired assertion (2.2) of Theorem 2.1.

Conversely, by applying the hypothesis (2.2) of Theorem 2.1, and letting |z| = 1, we find
that

∣∣∣∣
z(f∗g)(m+1)(z) + λz2(f∗g)(m+2)(z)

λz(f∗g)(m+1)(z) + (1 − λ)(f∗g)(m)(z)
− (p −m)

∣∣∣∣

≤
|b|

{
( p
m )

[
λ(p −m − 1) + 1

]
−
∑∞

k=nakbk
[
λ(k −m − 1) + 1

]
( k
m )

}

( p
m )

[
λ(p −m − 1) + 1

]
−
∑∞

k=nakbk
[
λ(k −m − 1) + 1

]
( k
m )

= |b|.

(2.5)

Hence, by the maximum modulus principle, we infer that f(z) ∈ Sλ
p(g;n, b,m), which completes

the proof of Theorem 2.1.

Remark 2.2. In the special case when

(i) bk =
(
k + μ

p + μ

)r

(μ ≥ 0; k ≥ n; r, p, n ∈ N; n �→ n + p). (2.6)

Theorem 2.1 corresponds to a result given recently by Srivastava et al. [3, Theorem 1, page 3]:

(ii) λ = 0; bk =

(
μ + k − 1

k − p

)
(
μ > −p; k ≥ n; n, p ∈ N; n �→ n + p

)
. (2.7)

Theorem 2.1 yields the result given recently by Raina and Srivastava [4, Theorem 1, page 3]:

(iii) m = 0; p = 1, bk = kΩ (Ω ∈ N0; k ≥ n; n ∈ N; n �→ n + p). (2.8)
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Theorem 2.1 reduces to the result of Orhan and Kamali [13, Lemma 1, page 57]:

(iv) λ = 0, m = 0, b = p(1 − α) (p ∈ N; 0 ≤ α < 1). (2.9)

Theorem 2.1 gives a recently established result due to Ali et al. [5, Theorem 1, page 181].

The following results concerning the class of functions Pλ
p(g;n, b,m) can be proved on

similar lines as given above for Theorem 2.1.

Theorem 2.3. Let f(z) ∈ Tp(n) be given by (1.5). Then f(z) is in the class Pλ
p(g;n, b,m) if and only

if

∞∑

k=n

[
λ(k − p) + 1

]
(k −m)

(
k

m

)
akbk ≤ (p −m)

[ |b| − 1
m!

+

(
p
m

)]
. (2.10)

Remark 2.4. Making use of the same substitutions as mentioned above in (2.6), Theorem 2.3
yields another known result due to Srivastava et al. [3, Theorem 2, page 4]. Also, using the
same substitutions as mentioned above in (2.8), we get the result of Orhan and Kamali [13,
Lemma 2, page 58].

3. Inclusion properties

We now obtain some inclusion relationships for the function classes

Sλ
p(g;n, b,m), Pλ

p(g;n, b,m), (3.1)

involving the (n, δ)-neighborhood defined by (1.18).

Theorem 3.1. If bk ≥ bn (k ≥ n) and

δ :=
n
[
λ(p −m − 1) + 1

]
|b|( p

m )
(
n − p + |b|

)[
λ(n −m − 1) + 1

]
( n
m )bn

(
p > |b|

)
, (3.2)

then

Sλ
p(g;n, b,m) ⊂ N0

n,δ(e). (3.3)

Proof. Let f(z) ∈ Sλ
p(g;n, b,m). Then, in view of assertion (2.2) of Theorem 2.1, and the given

condition bk ≥ bn (k ≥ n), we get

[
λ(n −m − 1) + 1

](
n − p + |b|

)
(

n
m

)
bn

∞∑

k=n

ak

≤
∞∑

k=n

akbk
[
λ(k −m − 1) + 1

](
k − p + |b|

)
(

k
m

)
≤ |b|

[
λ(p −m − 1) + 1

]
(

p
m

)
,

(3.4)
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which implies that

∞∑

k=n

ak ≤
|b|[λ(p −m − 1) + 1]( p

m )
(n − p + |b|)[λ(n −m − 1) + 1]( n

m )bn
. (3.5)

Applying the assertion (2.2) of Theorem 2.1 again (in conjunction with (3.5)), we obtain

(
n
m

)
[
λ(n −m − 1) + 1

]
bn

∞∑

k=n

kak

≤ |b|
[
λ(p −m − 1) + 1

]
(

p
m

)
+
(
p − |b|

)[
λ(n −m − 1) + 1

]
(

n
m

)
bn

∞∑

k=n

ak

≤ |b|
[
λ(p −m − 1) + 1

]
(

p
m

)
+
(
p − |b|

)[
λ(n −m − 1) + 1

]
(

n
m

)
bn

·
|b|

[
λ(p −m − 1) + 1

]
( p
m )

(
n − p + |b|

)[
λ(n −m − 1) + 1

]
( n
m )bn

=
n|b|

[
λ(p −m − 1) + 1

]
( p
m )

(
n − p + |b|

) .

(3.6)

Hence,

∞∑

k=n

kak ≤
n[λ(p −m − 1) + 1]|b|( p

m )
(
n − p + |b|

)[
λ(n −m − 1) + 1

]
( n
m )bn

:= δ (p > |b|), (3.7)

which by virtue of (1.18) establishes the inclusion relation (3.3) of Theorem 3.1.

In the analogous manner, by applying the assertion (2.10) of Theorem 2.3 instead of the
assertion (2.2) of Theorem 2.1 to the functions in the class Pλ

p(g;n, b,m), we can prove the
following inclusion relationship.

Theorem 3.2. If bk ≥ bn (k ≥ n) and

δ :=
(p −m)

[(
|b| − 1

)
/m! + ( p

m )
]

[
λ(n − p) + 1

]
( n−1

m )bn
, (3.8)

then

Pλ
p(g;n, b,m) ⊂ N0

n,δ(e). (3.9)

Remark 3.3. Applying the parametric substitutions listed in (2.6), Theorems 3.1 and 3.2 would
yield the known results due to Srivastava et al. [3, Theorem 3, page 4; Theorem 4, page 5]. Also,
using substitutions (as mentioned above in (2.8)) in Theorems 3.1 and 3.2, we get the results
due to Orhan and Kamali [13, Theorem 1, page 58; Theorem 2, page 59].
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4. Neighborhood properties

This concluding section determines the neighborhood properties for each of the classes

S(λ,α)
p (g;n, b,m), P(λ,α)

p (g;n, b,m) (4.1)

which are defined as follows.
A function f(z) ∈ Tp(n) is said to be in the class S(λ,α)

p (g;n, b,m) if there exists a function
h(z) ∈ Sλ

p(g;n, b,m) such that
∣∣∣∣
f(z)
h(z)

− 1
∣∣∣∣ < p − α (z ∈ U; 0 ≤ α < p). (4.2)

Analogously, a function f(z) ∈ Tp(n) is said to be in the class P(λ,α)
p (g;n, b,m) if there exists a

function h(z) ∈ Pλ
p(g;n, b,m) such that inequality (4.2) holds true.

Theorem 4.1. If h(z) ∈ Sλ
p(g;n, b,m) and

α = p − δ

nq+1
.

(
n − p + |b|

)[
λ(n −m − 1) + 1

]
( n
m )bn[(

n − p + |b|
)[
λ(n −m − 1) + 1

]
( n
m )bn − |b|

[
λ(p −m − 1) + 1

]
( p
m )]

, (4.3)

then

Nq

n,δ
(h) ⊂ S(λ,α)

p (g;n, b,m). (4.4)

Proof. Suppose that f(z) ∈ Nq

n,δ
(h). We then find from (1.16) that

∞∑

k=n

kq+1∣∣ak − ck
∣∣ ≤ δ, (4.5)

which readily implies that
∞∑

k=n

|ak − ck| ≤
δ

nq+1
(n ∈ N). (4.6)

Next, since h(z) ∈ Sλ
p(g;n, b,m), we have in view of (3.5) that

∞∑

k=n

ck ≤
|b|[λ(p −m − 1) + 1]( p

m )
(n − p + |b|)[λ(n −m − 1) + 1]( n

m )bn
, (4.7)

so that
∣∣∣∣
f(z)
h(z)

− 1
∣∣∣∣ ≤

∑∞
k=n|ak − ck|

1 −
∑∞

k=nck

≤ δ

nq+1

1
1 − |b|[λ(p −m − 1) + 1]( p

m )/(n − p + |b|)[λ(n −m − 1) + 1]( n
m )bn

≤ δ

nq+1

(n − p + |b|)[λ(n −m − 1) + 1]( n
m )bn

[(n − p + |b|)[λ(n −m − 1) + 1]( n
m )bn − |b|[λ(p −m − 1) + 1]( p

m )]

= p − α,

(4.8)

provided that α is given by (4.3). Thus, by the above definition, f ∈ S(λ,α)
p (g;n, b,m)where α is

given by (4.3), which proves Theorem 4.1.
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The proof of Theorem 4.2 below is similar to that of Theorem 4.1 above, and its proof
details are, therefore, omitted here.

Theorem 4.2. If h(z) ∈ Pλ
p(g;n, b,m) and

α = p − δ

nq+1

[
λ(n − p) + 1)

]
(n −m)( n

m )bn[[
λ(n − p) + 1

]
(n −m)( n

m )bn − (p −m)
{(

|b| − 1
)
/m! + ( p

m )
}] , (4.9)

then

Nq

n,δ
(h) ⊂ P(λ,α)

p (g;n, b,m). (4.10)

Remark 4.3. Applying the parametric substitutions listed in (2.6), Theorems 4.1 and 4.2 would
yield the corresponding results of Srivastava et al. [3, Theorems 5 and 6, page 6]. Also using
substitutions as mentioned above in (2.8), we get the results due to Orhan and Kamali [13,
Theorem 3, page 60; Theorem 4, page 61].
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