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1. Introduction and lemmas

Let f(x), g(x) ∈ L2(0,+∞). It is well known that the inequality of the form

∫∫∞

α

f(x)g(y)
x + y − 2α

dx dy ≤ π

{∫∞

α

f2(x)dx
}1/2{∫∞

α

g2(x)dx
}1/2

(1.1)

is called Hilbert’s integral inequality, where the coefficient π is the best possible.
In [1], by introducing a parameter λ (λ > 1/2), the following extension of (1.1) of the

form
∫∫∞

0

f(x)g(y)
xλ + yλ

dx dy ≤
(

π

λsin (π/2λ)

){∫∞

0
x1−λf2(x)dx

}1/2{∫∞

0
x1−λg2(x)dx

}1/2

(1.2)

was established.
Recently, various improvements and extensions of (1.1) appear in a great deal of papers

(see [2]). The aim of this paper is to give some new improvements of (1.1) and (1.2) and then
present some important applications.
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We now introduce some notations that will be used throughout the paper.
Let x − α ≥ 0, y − α ≥ 0, λ > 1/2, and let c(x − α) be an integrable function in [α,+∞).

Define E(x, y) = 1 − c(x − α) + c(y − α) such that E(x, y) ≥ 0 for (x, y) ∈ (α,+∞) × (α,+∞). We
also define

J1 =
∫∫∞

α

f2(x)

(x − α)λ + (y − α)λ

(
x − α

y − α

)1/2

E(x, y)dx dy,

J2 =
∫∫∞

α

f2(y)

(x − α)λ + (y − α)λ

(
y − α

x − α

)1/2

E(x, y)dx dy.

(1.3)

Lemma 1.1. With the above-mentioned assumptions, one has

J1J2 =
(

π

λsin(π/2λ)

)2
{(∫∞

α

(x − α)1−λf2(x)dx
)2

−
(∫∞

α

k(x)f2(x)dx
)2
}
, (1.4)

where the weight function k(x) is defined by

k(x) = (x − α)1−λ
{(

λsin(π/2λ)
π

)∫∞

0

c
(
(x − α)t

)
t−1/2

1 + tλ
dt − c(x − α)

}
. (1.5)

Proof. By using the substitution t = (y − α)/(x − α), it is easy to deduce that

J1 =
∫∞

α

{∫∞

α

1

(x − α)λ
(
1 +
(
(y − α)/(x − α)

)λ)
(
x − α

y − α

)1/2

E(x, y)dy

}
f2(x)dx

=
∫∞

α

{∫∞

0

1
1 + tλ

(
1
t

)1/2(
1 − c(x − α) + c

(
(x − α)t

))
dt

}
(x − α)1−λf2(x)dx

=
∫∞

α

{
π

λsin(π/2λ)
+
∫∞

0

c
(
(x − α)t

)
1 + tλ

(
1
t

)1/2

dt −
(

π

λsin(π/2λ)

)
c(x − α)

}
(x − α)1−λf2(x)dx

=
(

π

λsin(π/2λ)

){∫∞

α

(x − α)1−λf2(x)dx +
∫∞

α

k(x)f2(x)dx
}
,

(1.6)

where k(x) is a function defined by (1.5).
Similarly, we have

J2 =
(

π

λsin(π/2λ)

){∫∞

α

(x − α)1−λf2(x)dx −
∫∞

α

k(x)f2(x)dx
}
. (1.7)

From the above equations involving J1 and J2, (1.4) holds true.

Lemma 1.2. Let x − α ≥ 0 and λ > 1/2. Then

∫∞

0

t−1/2(
1 + tλ

) (
1 + (x − α)λtλ

)dt =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
π

λsin(π/2λ)

)
(x − α)λ−1/2 − 1

(x − α)λ − 1
, x − α /= 1,

(
π

λsin(π/2λ)

)(
1 − 1

2λ

)
, x − α = 1.

(1.8)
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Proof. The case x − α/= 1 was studied in [3], or can be obtained by using [4]. Next, consider the
case x − α = 1. By the definition and properties of beta function, it is easy to deduce that

∫∞

0

t−1/2(
1 + tλ

)2dt = 1
λ
B

(
1
2λ

, 2 − 1
2λ

)
=

1
λ

(
1 − 1

2λ

)
B

(
1
2λ

, 1 − 1
2λ

)
=
(
1 − 1

2λ

)
π

λsin(π/2λ)
.

(1.9)

2. Theorem and its corollary

Theorem 2.1. Let f(x) and g(x) be two real functions such that 0 <
∫∞
α (x − α)1−λf2(x)dx < +∞

and 0 <
∫∞
α (x − α)1−λg2(x)dx < +∞, where λ > 1/2. Then

(∫∫∞

α

f(x)g(y)

(x − α)λ + (y − α)λ
dx dy

)4

≤
(

π

λsin(π/2λ)

)4
{(∫∞

α

(x − α)1−λf2(x)dx
)2

−
(∫∞

α

ωλ(x)f2(x)dx
)2
}

×
{(∫∞

α

(x − α)1−λg2(x)dx
)2

−
(∫∞

α

ωλ(x)g2(x)dx
)2
}
,

(2.1)

where the weight function ωλ(x) is defined by

ωλ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(x − α)1−λ

{
(x − α)λ−1/2 − 1

(x − α)λ − 1
− 1

1 + (x − α)λ

}
, x − α /= 1,

1
2
− 1
2λ

, x − α = 1.

(2.2)

Proof. First, assume f = g. Let F(x, y) = f(x)f(y)/((x − α)λ + (y − α)λ), E(x, y) = 1− c(x−α)+
c(y − α).

Then the following holds:
∫∫∞

α

F(x, y)dx dy =
∫∫∞

α

F(x, y)E(x, y)dx dy. (2.3)

In fact, it is obvious that
∫∫∞

α

F(x, y)E(x, y)dx dy

=
∫∫∞

α

F(x, y)dx dy −
∫∫∞

α

F(x, y)c(x − α)dx dy +
∫∫∞

α

F(x, y)c(y − α)dx dy.

(2.4)

We need only to show that
∫∫∞

α

F(x, y)c(x − α)dx dy =
∫∫∞

α

F(x, y)c(y − α)dx dy. (2.5)
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Let ϕ(x) =
∫∞
α f(t)/((x − α)λ + (t − α)λ)dt. Then

∫∫∞

α

F(x, y)c(x − α)dx dy

=
∫∞

α

(∫∞

α

f(y)

(x − α)λ + (y − α)λ
dy

)
f(x)c(x − α)dx

=
∫∞

α

(∫∞

α

f(t)

(x − α)λ + (t − α)λ
dt

)
f(x)c(x − α)dx =

∫∞

α

ϕ(x)f(x)c(x − α)dx

=
∫∞

α

ϕ(y)f(y)c(y − α)dy =
∫∞

α

(∫∞

α

f(t)

(y − α)λ + (t − α)λ
dt

)
f(y)c(y − α)dy

=
∫∞

α

(∫∞

α

f(x)

(y − α)λ + (x − α)λ
dx

)
f(y)c(y − α)dy =

∫∫∞

α

F(x, y)c(y − α)dx dy.

(2.6)

Noting that E(x, y) ≥ 0 and applying Schwarz’s inequality, we have

(∫∫∞

α

F(x, y)dx dy

)2

=
(∫∫∞

α

F(x, y)E(x, y)dx dy

)2

=

(∫∫∞

α

{
f(x)(

(x − α)λ + (y − α)λ
)1/2
(
x − α

y − α

)1/4(
E(x, y)

)1/2}

×
{

f(y)(
(x − α)λ + (y − α)λ

)1/2
(
y − α

x − α

)1/4(
E(x, y)

)1/2}
dx dy

)2

≤
∫∫∞

α

{
f2(x)

(x − α)λ + (y − α)λ

(
x − α

y − α

)1/2

E(x, y)

}
dx dy

×
∫∫∞

α

{
f2(y)

(x − α)λ + (y − α)λ

(
y − α

x − α

)1/2

E(x, y)

}
dx dy = J1J2.

(2.7)

It follows from (1.4) that

(∫∫∞

α

F(x, y)dx dy

)2

≤
(

π

λsin(π/2λ)

)2
{(∫∞

α

(x − α)1−λf2(x)dx
)2

−
(∫∞

α

k(x)f2(x)dx
)2
}
,

(2.8)

where the weight function k(x) is defined by (1.5).
Let c(x) = 1/(1 + xλ), where x ≥ α and λ > 1/2. It is obvious that E(x, y) ≥ 0. By

Lemma 1.2, it is easy to deduce that

k(x) = (x − α)1−λ
{(

λsin(π/2λ)
π

)∫∞

0

c
(
(x − α)t

)
t−1/2

1 + tλ
dt − c(x − α)

}

= (x − α)1−λ
{(

λsin(π/2λ)
π

)∫∞

0

t−1/2(
1 + tλ

)(
1 + (x − α)λtλ

)dt − c(x − α)
}

= ωλ(x).

(2.9)
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Substitute k(x) = ωλ(x) into (2.8) to obtain

(∫∫∞

α

F(x, y)dx dy

)2

≤
(

π

λsin (π/2λ)

)2
{(∫∞

α

(x − α)1−λf2(x)dx
)2

−
(∫∞

α

ωλ(x)f2(x)dx
)2
}
.

(2.10)

Next, consider the case f /= g. By Schwarz’s inequality, we have

(∫∫∞

α

f(x) g(y)

(x − α)λ + (y − α)λ
dx dy

)4

=

{(∫1

0

(∫∞

α

t(x−α)
λ−1/2f(x)dx

∫∞

α

t(y−α)
λ−1/2g(y)dy

)
dt

)2}2

≤
{∫1

0

(∫∞

α

t(x−α)
λ−1/2f(x)dx

)2

dt

}2{∫1

0

(∫∞

α

t(y−α)
λ−1/2g(y)dy

)2

dt

}2

=
{∫∫∞

α

f(x) f(y)

(x − α)λ + (y − α)λ
dx dy

}2{∫∫∞

α

g(x) g(y)

(x − α)λ + (y − α)λ
dx dy

}2

.

(2.11)

Based on (2.10), it follows from (2.11) that the inequality (2.1) is valid at once. Theorem is
proved.

The special case λ = 1 in Theorem 2.1 yields the following Hilbert’s integral inequality.

Corollary 2.2. If 0 <
∫∞
α f2(x)dx < +∞ and 0 <

∫∞
α g2(x)dx < +∞, then

(∫∫∞

α

f(x)g(y)
x + y − 2α

dx dy

)4

≤ π4

{(∫∞

α

f2(x)dx
)2

−
(∫∞

α

ω1(x)f2(x)dx
)2
}

×
{(∫∞

α

g2(x)dx
)2

−
(∫∞

α

ω1(x)g2(x)dx
)2
}
,

(2.12)

where the weight function ω1(x) is defined by

ω1(x) =
1√

x − α + 1
− 1
x − α + 1

. (2.13)

Proof. It follows directly from the proof of Theorem 2.1 and so the details are omitted.

Remark 2.3. By setting f = g in Corollary 2.2, (2.12) yields

(∫∫∞

α

f(x)f(y)
x + y − 2α

dx dy

)2

≤ π2

{(∫∞

α

f2(x)dx
)2

−
(∫∞

α

ω1(x)f2(x)dx
)2
}
, (2.14)

where the weight function ω1(x) is defined by (2.13).
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Remark 2.4. For the case λ = 2 in Theorem 2.1, (2.1) becomes
(∫∫∞

α

f(x)g(y)

(x − α)2 + (y − α)2
dx dy

)4

≤ π

4

4
{(∫∞

α

(x − α)−1f2(x)dx
)2

−
(∫∞

α

ω2(x)f2(x)dx
)2
}

×
{(∫∞

α

(x − α)−1g2(x)dx
)2

−
(∫∞

α

ω2(x)g2(x)dx
)2
}
,

(2.15)

where the weight function ω2(x) is defined by

ω2(x) =

⎧⎪⎪⎨
⎪⎪⎩
(x − α)−1

{
(x − α)3/2 − 1

(x − α)2 − 1
− 1

1 + (x − α)2

}
, x − α/= 1,

1
4
, x − α = 1.

(2.16)

3. Some applications

As applications, we will give some extensions and refinements of Widder’s inequality and
Hardy-Littlewood’s inequality.

Let an ≥ 0 (n = 0, 1, 2, . . . ), A(x) =
∑∞

n=0anx
n, A∗(x) =

∑∞
n=0anx

n/n!. Then
∫1

0
A2(x)dx ≤ π

∫∞

0

(
e−xA∗(x)

)2
dx. (3.1)

Inequality (3.1) is called Widder’s inequality (see [5]).
We will give an extension of (3.1) below.

Theorem 3.1. Under the above assumptions, if f(x) = e−(x−α)A∗(x − α), then
(∫1

0
A2(x)dx

)2

≤ π2

{(∫∞

α

f2(x)dx
)2

−
(∫∞

α

ω1(x)f2(x)dx
)2
}
, (3.2)

where ω1(x) is defined by (2.13).

Proof. First, observe that the following holds:∫∞

0
e−tA∗(tx)dt =

∫∞

0
e−t

∞∑
n=0

an(xt)
n

n!
dt =

∞∑
n=0

anx
n

n!

∫∞

0
tne−tdt =

∞∑
n=0

anx
n = A(x). (3.3)

Let tx = s − α. Then we have
∫1

0
A2(x)dx =

∫1

0

{∫∞

0
e−tA∗(tx)dt

}2

dx =
∫1

0

(∫∞

α

e−(s−α)/xA∗(s − α)ds
)2 1

x2
dx

=
∫∞

1

(∫∞

α

e−(s−α)yA∗(s − α)ds
)2

dy =
∫∞

0

(∫∞

α

e−(s−α)u−(s−α)A∗(s − α)ds
)2

du

=
∫∞

0

(∫∞

α

e−(s−α)uf(s)ds
)2

du =
∫∫∞

α

f(s)f(t)
s + t − 2α

dsdt,

(3.4)
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where f(x) = e−(x−α)A∗(x − α). Using Remark 2.3, the inequality (3.2) follows from (3.4) at
once.

In particular, when α = 0, we obtain a refinement of (3.1).

Corollary 3.2. With the assumptions as Theorem 3.1, if f(x) = e−xA∗(x), then

(∫1

0
A2(x)dx

)2

≤ π2

{(∫∞

0
f2(x)dx

)2

−
(∫∞

0
ω1(x)f2(x)dx

)2
}
, (3.5)

where ω1(x) is defined by (2.13).

Let f(x) ∈ L2(0, 1). If an =
∫1
0 x

nf(x)dx, n = 0, 1, 2, . . . , then we have Hardy-Littlewood’s
inequality (see [6]) of the form

∞∑
n=0

a2
n ≤ π

∫1

0
f2(x)dx, (3.6)

where π is the best constant that keeps (3.6) valid. In [7], the inequality (3.6) was extended to
the following inequality:

∫∞

0
f2(x)dx ≤ π

∫1

0
h2(x)dx, (3.7)

where f(x) =
∫1
0 t

xh(x)dx, x ∈ [0,+∞).
The inequality (3.7) is called Hardy-Littlewood’s integral inequality. Afterwards, the in-

equality (3.7) was refined into the following form (see [8]):

∫∞

0
f2(x)dx ≤ π

∫1

0
t h2(t)dt. (3.8)

We will give a new extension of (3.8) here.

Theorem 3.3. Let λ > 1/2, h(t) ∈ L2(0, 1), and h(t) /= 0. Define a function by f(x) =∫1
0 t

(x−α)λ |h(t)|dt. If 0 <
∫+∞
α (x − α)1−λf2(x)dx < +∞, then

(∫∞

α

f2(x)dx
)4

≤
(

π

λsin(π/2λ)

)2
{(∫∞

α

(x − α)1−λf2(x)dx
)2

−
(∫∞

α

ωλ(x)f2(x)dx
)2
}(∫1

0
t h2(t)dt

)2

,

(3.9)

where the weight function ωλ(x) is defined by (2.2).

Proof. By writing f2(x) in the form

f2(x) =
∫1

0
f(x)t(x−α)

λ∣∣h(t)∣∣dt (3.10)
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and applying Schwarz’s inequality, we obtain

(∫+∞

α

f2(x)dx
)4

=

{∫∞

α

(∫1

0
f(x)t(x−α)

λ∣∣h(t)∣∣dt
)
dx

}4

=

{∫1

0

(∫+∞

α

f(x)t(x−α)
λ−1/2dx

)
t1/2
∣∣h(t)∣∣dt

}4

≤
{∫1

0

(∫+∞

α

f(x)t(x−α)
λ−1/2dx

)2

dt

∫1

0
t h2(t)dt

}2

=

{∫1

0

(∫∫+∞

α

f(x)f(y)t(x−α)
λ+ (y−α)λ−1dx dy

)
dt

∫1

0
t h2(t)dt

}2

=
(∫∫+∞

α

f(x)f(y)

(x − α)λ + (y − α)λ
dx dy

)2(∫1

0
t h2(t)dt

)2

.

(3.11)

By (2.10), the inequality (3.9) follows from (3.11) at once.

Remark 3.4. By setting λ = 1 and α = 0, we obtain the following refinement of (3.8):

(∫∞

0
f2(x)dx

)4

≤ π2

{(∫∞

0
f2(x)dx

)2

−
(∫∞

0
ω1(x)f2(x)dx

)2
}(∫1

0
t h2(t)dt

)2

, (3.12)

where the weight function ω1(x) is defined by (2.13).
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