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1. Introduction

We are motivated by seismological problems that can be studied with higher-order splitting
methods scheme. Because of the decomposition, we can save memory and computational
time, which is important to study realistic elastic wave propagation. The ideas behind are
to split in the spatial directions and obtain locally one-dimensional systems to be solved.
Traditionally, using the classical operator splitting methods, we decouple the differential
equation into more basic equations. These methods are often not sufficiently stable while
also neglecting the physical correlations between the operators. Inspired by the work for the
scalar wave equation presented in [1], we devise a fourth-order split scheme for the elastic
wave equation. From there on, we are going to develop new efficient methods based on a
stable variant by coupling new operators and deriving new strong directions. We are going
to examine the stability and consistency analyses for these methods and adopt them to linear
acoustic wave equations (seismic waves). Numerical experiments can validate our theoretical
results and show the possibility to apply our methods.

The paper is organized as follows. A mathematical model based on the wave equation
is introduced in Section 2. The utilized discretization methods are described in Section 3. The
splitting method for the scalar and vectorial wave equations are discussed in Section 4 and
the stability and consistency analyses are given. We discuss the numerical experiments in
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Section 5 with respect to scalar and vectorial problems. Finally, in Section 6, we foresee our
future works in the area of splitting and decomposition methods.

2. Mathematical model

The mathematical models are studied in the following subsection. We introduce a scalar and
also a vectorial model to distinguish the splitting methods.

2.1. Scalar wave equation

The motivation for the study presented below is coming from a computational simulation of
earthquakes, see [2], and the examination of seismic waves, see [3, 4].

We concentrate on the scalar wave equation, see [1], for which the mathematical
equations are given by

∂ttu = D∇·∇u, in Ω,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω.
(2.1)

The unknown function u = u(x, t) is considered to be in Ω × (0, T) ⊂ R
d ×R, where the spatial

dimension is given by d.
For three dimensions, we define the diffusion tensor as

D =

⎛
⎜⎝
D1 0 0
0 D2 0
0 0 D3

⎞
⎟⎠ ∈ R

3,+ × R
3,+, (2.2)

which describes the wave propagation. Further, the diffusion tensor D is given anisotropic,
with D1, D2, D3 ∈ R

+ for D1, D2 ≥ D3. The functions u0(x) and u1(x) are the initial conditions
for the wave equation.

We deal with the following boundary conditions:

u(x, t) = u3, Dirichlet boundary condition,

∂u(x, t)
∂n

= 0, Neumann boundary condition,

D∇u(x, t) = uout, Outflow boundary condition,

(2.3)

where all boundary conditions are on ∂Ω × T .

2.2. Elastic wave propagation

We consider the initial-value problem for the elastic wave equation for constant coefficients,
given as
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ρ∂ttU = μ∇2U + (λ + μ)∇(∇·U) + f, (2.4a)

U(t = 0, x) = g0(x), (2.4b)

∂tU(t = 0, x) = g1(x), (2.4c)

where U ≡ U(x, t) is the displacement vector with components (u, v)T or (u, v,w)T in two
and three dimensions, f, g0, and g1 are known initial functions, and finally x = (x, y, z)T . This
equation is commonly used to simulate seismic events.

In seismology, it is common to use spatially singular forcing terms which can look like

f = Fδ(x)g(t), (2.5)

where F is a constant vector. A numeric method for (2.4a) needs to approximate the Dirac
function correctly in order to achieve full convergence.

3. Discretization methods

In this section, we discuss the discretization methods, both for time and space, to construct
higher order methods. Because of the combination of both discretization, we can further show
also higher-order methods for the splitting schemes, see also [1].

3.1. Discretization of the scalar equation

At first, we underly finite difference schemes for the time and spatial discretization.
For the classical wave equation, this discretization is the well-known discretization in

time and space.
Based on this discretization, the time is discretized as

Utt,i =
Un+1
i − 2Un

i +U
n−1
i

Δt2
,

U
(
tn
)
= u(x, t), Ut

(
tn
)
= ut(x, t),

(3.1)

where the index i refers to the space point xi and Δt = tn+1− tn is the time step. We apply finite
difference methods for the spatial discretization. The spatial terms and the initial conditions
are given as

Uxx,n =
Un
i+1 − 2Un

i +U
n
i−1

Δx2
,

U
(
tn
)
= u(x, t), Ut

(
tn
)
= ut(x, t),

(3.2)

where the index n refers to the time tn and Δx = xi+1 − xi is the grid width.
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Then the two-dimensional equation,

utt = D1uxx +D2uyy in Ω,

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y),

u(x, y, t) = u2 on ∂Ω,

(3.3)

is discretized with the unconditionally stable implicit η-method, see [5],

Un+1
i,j − 2Un

i,j +U
n−1
i,j

Δt2

=
D1

Δx2

(
η
(
Un+1
i+1,j−2Un+1

i,j +Un+1
i−1,j

)
+(1 − 2η)

(
Un
i+1,j−2Un

i,j +U
n
i−1,j

)
+ η

(
Un−1
i+1,j − 2Un−1

i,j +Un−1
i−1,j

))

+
D2

Δy2

(
η
(
Un
i,j+1−2Un

i,j +U
n
i,j−1

)
+(1 − 2η)

(
Un
i,j+1 − 2Un

i,j +U
n
i,j−1

)
+η

(
Un−1
i,j+1 − 2Un−1

i,j +Un−1
i,j−1

))
,

(3.4)

where Δx and Δy are the grid width in x and y and 0 ≤ η ≤ 1. The initial conditions are given
by U(x, y, tn) = u(x, y, tn) and U(x, y, tn−1) = u(x, y, tn) −Δtut(x, y, tn).

These discretization schemes are adopted to the operator splitting schemes.
On the finite differences grid, Δt corresponds to the time step, and hx, hy are the grid

sizes in the different spatial directions. The time nΔt is denoted by tn, and i, j refer to the
spatial coordinates of the grid point (ihx, jhy). Let un denote the grid function on the time
level n, and uni,j be the specific value of un at point i, j.

In Section 3.2, we describe the traditional splitting methods for the wave equation.

3.2. Discretization of the vectorial equation

One of the first practical difference scheme with central differences used everywhere was
introduced in [3]. To save space we exemplify it and some newer schemes in two dimensions
first.

If we discretize uniformly in space and time on the unit square, we get a grid with grid
points xj = jh, yk = kh, tn = nΔt, where h > 0 is the spatial grid size and Δt the time step.
Defining the grid function Un

j,k
= U(xj , yk, tn), the basic explicit scheme is

ρ
Un+1
j,k
− 2Un

j,k
+Un−1

j,k

Δt2
=M2Un

j,k + fnj,k, (3.5)

whereM2 is a difference operator

M2 =

⎛
⎝(λ + 2μ)Dx2

+ μDy2
(λ + μ)Dx

0D
y

0

(λ + μ)Dx
0D

y

0 (λ + 2μ)Dy2
+ μDx2

⎞
⎠ , (3.6)
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and we use the standard difference operator notation:

Dx
+vj,k =

1
h

(
vj+1,k − vj,k

)
, Dx

−vj,k = Dx
+vj−1,k, Dx

0 =
1
2
(
Dx

+ +Dx
−
)
, Dx2

= Dx
+D

x
−.

(3.7)

M2 is a second-order difference approximation of the right-hand side operator of (2.4a). This
explicit scheme is stable for time steps satisfying [6]

Δt <
h√
λ + 3μ

. (3.8)

ReplacingM2 withM4, a fourth-order difference operator given by

M4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(λ + 2μ)
(

1 − h
2

12
Dx2

)
Dx2

+ μ
(

1 − h
2

12
Dy2

)
Dy2

(λ + μ)
(

1 − h
2

6
Dx2

)
Dx

0

(
1 − h

2

6
Dy2

)
D
y

0

(λ + μ)
(

1 − h
2

6
Dx2

)
Dx

0

(
1 − h

2

6
Dy2

)
D
y

0

(λ + 2μ)
(

1 − h
2

12
Dy2

)
Dy2

+ μ
(

1 − h
2

12
Dx2

)
Dx2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.9)

and using the modified equation approach to eliminate the lower-order error terms in the
time difference [6], we obtain the explicit fourth-order scheme

ρ
Un+1
j,k
− 2Un

j,k
+Un−1

j,k

Δt2
=M4Un

j,k + fnj,k +
Δt2

12
(
M2

2U
n
j,k +M2fni,j + ∂ttf

n
i,j

)
, (3.10)

whereM2
2 is a second-order approximation to the squared right-hand side operator in (2.4a).

As it only needs to be second-order accurate,M2
2 has the same extent in space asM4 and no

more grid points are used. This scheme has the same time step restriction as (3.8).
In [1] the following implicit scheme for the scalar wave equation was introduced:

ρ
Un+1
j,k − 2Un

j,k +Un−1
j,k

Δt2
=M4

(
θUn+1

j,k + (1 − 2θ)Un
j,k + θU

n−1
j,k

)
+ θfn+1

j,k + (1 − 2θ)fnj,k + θf
n−1
j,k .

(3.11)
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When θ = 1/12, the error of this scheme is fourth-order in time and space. For this θ value,
it is, however, only conditionally stable, allowing a time step approximately 45% larger than
(3.8) (for θ ∈ [0.25, 0.5], it is unconditionally stable).

In order to make it competitive with the explicit scheme (3.10), we provide an operator
split version of the implicit scheme (3.11). This is made complicated by the presence of the
mixed derivative terms that couple different coordinate directions.

4. Higher-order splitting method for the wave equations

In this section, we discuss the splitting methods for the wave equations. The higher order
results as a combination between the spatial and time discretization method and the
weighting factors in the splitting schemes.

4.1. Traditional splitting methods for the scalar wave equation

Our classical method is based on the splitting method of [5, 7].
The classical splitting methods alternating direction methods (ADIs) are based on the

idea of computing the different directions of the given operators. Each direction is computed
independently by solving more basic equations. The result combines all the solutions of the
elementary equations. So we obtain more efficiency by decoupling the operators.

The classical splitting method for the wave equation starts from

∂ttu(t) = (A + B + C)u(t) + f(t), t ∈
(
tn, tn+1),

u
(
tn
)
= u0, u′

(
tn
)
= u1,

(4.1)

where the initial functions u0 and u1 are given. We could also apply for u1 that u′(tn) = (u(tn)−
u(tn−1))/Δt+O(Δt) = u1. Consequently, we have u(tn−1) ≈ u0−Δtu1. The right-hand side f(t)
is given as a force term.

The spatial discretization terms are given by

A =
∂2

∂x2
, B =

∂2

∂y2
, C =

∂2

∂z2
, (4.2)

where the approximated discretization is given by

Au(x, y, z) ≈
u(x + Δx, y, z) − 2u(x, y, z) + u(x −Δx, y, z)

Δx2
,

Bu(x, y, z) ≈
u(x, y + Δy, z) − 2u(x, y, z) + u(x, y −Δy, z)

Δy2
,

Cu(x, y, z) ≈
u(x, y, z + Δz) − 2u(x, y, z) + u(x, y, z −Δz)

Δz2
.

(4.3)
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We could decouple the equation into 3 simpler equations obtaining a method of second
order:

˜̃u − 2u
(
tn
)
+ u

(
tn−1) = Δt2A

(
η ˜̃u + (1 − 2η)u

(
tn
)
+ ηu

(
tn−1))

+ Δt2Bu
(
tn
)
+ Δt2Cu

(
tn
)

+ Δt2
(
ηf

(
tn+1) + (1 − 2η)f

(
tn
)
+ ηf

(
tn−1)),

(4.4a)

ũ − 2u
(
tn
)
+ u

(
tn−1) = Δt2A

(
η ˜̃u + (1 − 2η)u

(
tn
)
+ ηu

(
tn−1))

+ Δt2B
(
ηũ + (1 − 2η)u

(
tn
)
+ ηu

(
tn−1))

+ Δt2Cu
(
tn
)
+ Δt2

(
ηf

(
tn+1) + (1 − 2η)f

(
tn
)
+ ηf

(
tn−1)),

(4.4b)

u
(
tn+1) − 2u

(
tn
)
+ u

(
tn−1) = Δt2A

(
η ˜̃u + (1 − 2η)u

(
tn
)
+ ηu

(
tn−1))

+ Δt2B
(
ηũ + (1 − 2η)u

(
tn
)
+ ηu

(
tn−1))

+ Δt2C
(
ηu

(
tn+1) + (1 − 2η)u

(
tn
)
+ ηu

(
tn−1))

+ Δt2
(
ηf

(
tn+1) + (1 − 2η)f

(
tn
)
+ ηf

(
tn−1)),

(4.4c)

where the result is given as u(tn+1) with the initial conditions u(tn) = u0, u(tn−1) = u0 −Δtu1,
and η ∈ (0, 0.5). A fully coupled method is given for η = 0 and for 0 < η ≤ 1 the decoupled
method consists of a composition of explicit and implicit Euler methods.

We have to compute the first equation (4.4a) and get the result ˜̃u that is a further initial
condition for the second equation (4.4b); after whose computation we obtain ũ. In the third
equation (4.4c), we have to put ũ as a further initial condition and get the result u(tn+1).

The underlying idea consists of the approximation of the pairwise operators:

Δt2Aη
(˜̃u − 2u

(
tn
)
+ u

(
tn−1)) ≈ 0,

Δt2Bη
(
ũ − 2u

(
tn
)
+ u

(
tn−1)) ≈ 0,

(4.5)

which we can raise to second order.

4.2. Boundary splitting method for the scalar wave equation

The time-dependent boundary conditions also have to be taken into account for the splitting
method. Let us consider the three-operator example with the equations

∂ttu(t) = (A + B + C)u(t) + h(t), t ∈
(
tn, tn+1),

u
(
tn
)
= g(t), u′

(
tn
)
= f(t),

(4.6)
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where A = D1(x, y, z)(∂2/∂x2), B = D2(x, y, z)(∂2/∂y2), and C = D3(x, y, z)(∂2/∂z2) are the
spatial operators. The wave-propagation functions are as follows:

D1(x, y, z), D2(x, y, z), D3(x, y, z) : R
3 −→ R

+. (4.7)

Hence, for 3 operators, we have the following second-order splitting method:

˜̃u − 2˜̃u(tn) + ˜̃u(tn−1) = Δt2A
(
η ˜̃u + (1 − 2η)˜̃u(tn) + η ˜̃u(tn−1))

+ Δt2B ˜̃u(tn) + Δt2C ˜̃u(tn)

+ Δt2
(
ηh

(
tn+1) + (1 − 2η)h

(
tn
)
+ ηh

(
tn−1)),

ũ − 2ũ
(
tn
)
+ ũ

(
tn−1) = Δt2A

(
η ˜̃u + (1 − 2η)ũ

(
tn
)
+ ηũ

(
tn−1))

+ Δt2B
(
ηũ + (1 − 2η)ũ

(
tn
)
+ ηũ

(
tn−1))

+ Δt2Cũ
(
tn
)
+ Δt2

(
ηh

(
tn+1) + (1 − 2η)h

(
tn
)
+ ηh

(
tn−1)),

u
(
tn+1) − 2û

(
tn
)
+ û

(
tn−1) = Δt2A

(
η ˜̃u + (1 − 2η)û

(
tn
)
+ ηû

(
tn−1))

+ Δt2B
(
ηũ + (1 − 2η)û

(
tn
)
+ ηû

(
tn−1))

+ Δt2C
(
ηu

(
tn+1) + (1 − 2η)û

(
tn
)
+ ηû

(
tn−1))

+ Δt2
(
ηh

(
tn+1) + (1 − 2η)h

(
tn
)
+ ηh

(
tn−1)),

(4.8)

where the result is given as u(tn+1).
The boundary values are given by the following.
(1) Dirichlet values. We have to use the same boundary values for all 3 equations.
(2) Neumann values. We have to decouple the values into the different directions:

∂˜̃u
∂n

= 0 (4.9)

is split in

∂˜̃u
∂x

nx +
∂˜̃u
∂y

ny +
∂˜̃u
∂z
nz = 0;

∂ũ

∂n
= 0

(4.10)
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is split in

∂˜̃u
∂x

nx +
∂ũ

∂y
ny +

∂ũ

∂z
nz = 0;

∂u
(
tn+1)

∂n
= 0

(4.11)

is split in

∂˜̃u
∂x

nx +
∂ũ

∂y
ny +

∂un+1

∂z
nz = 0. (4.12)

(3) Outflowing values, we have to decouple the values into the different directions:

nD∇˜̃u = uout (4.13)

is split in

D1∂x ˜̃unx +D2∂y ˜̃uny +D3∂z ˜̃unz = uout;

nD∇ũ = uout

(4.14)

is split in

D1∂x ˜̃unx +D2∂yũny +D3∂zũnz = uout;

nD∇un+1 = uout

(4.15)

is split in

D1∂x ˜̃unx +D2∂yũny +D3∂zu
n+1nz = uout, (4.16)

where n is the outer normal vector and the anisotropic diffusion D, see (2.2), is the parameter
matrix to the wave-propagations.

We have the following initial conditions for the three equations:

u
(
tn
)
= u0,

u
(
tn−1) = u0 −Δtu1 +

Δt2

2
(
(A + B + C)u0 + f

(
tn
))

+O
(
Δt3

)
,

u
(
tn−1) = u0 −Δtu1 +

Δt2

2

(
(A + B + C)

(
u0 −

Δt
3
u1 +

Δt2

12
(A + B + C)u0

))

+
Δt2

2
f
(
tn
)
− Δt3

6
∂f

(
tn
)

∂t
+
Δt4

24
∂2f

(
tn
)

∂t2
+O

(
Δt5

)
.

(4.17)
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Remark 4.1. By solving the two or three splitting steps, it is important to mention that each
solution ˜̃u, ũ, and u is corrected only once by using the boundary conditions.

Otherwise, an “overdoing” of the boundary conditions takes place.

4.3. LOD method: locally one-dimensional method for the scalar wave equation

In the following, we introduce the LOD method as an improved splitting method while using
prestepping techniques.

The method was discussed in [1] and is given by

un+1,0 − 2un + un − 1 = Δt2(A + B)un,

un+1,1 − un+1,0 = Δt2ηA
(
un+1 − 2un + un−1),

un+1 − un+1,1 = Δt2ηB
(
un+1 − 2un + un−1),

(4.18)

where η ∈ (0.0, 0.5) and A,B are the spatial discretized operators.
If we eliminate the intermediate values in (4.18), we obtain

un+1 − 2un + un−1 = Δt2(A + B)
(
ηun+1 + (1 − 2η)un + ηun−1) + Bη

(
un+1 − 2un + un−1), (4.19)

where Bη = η2Δt4(AB) and thus Bη(un+1 − 2un + un−1) = O(Δt6).
So, we obtain a higher-order method.

Remark 4.2. For η ∈ (0.25, 0.5), we have unconditionally stable methods and for higher order
we use η = 1/12. Then, for sufficiently small time steps, we get a conditionally stable splitting
method.

4.4. Stability and consistency analysis for the LOD method of
the scalar wave equation

The consistency of the fourth-order splitting method is given in the next theorem.
Hence, we assume discretization orders of O(hp), p = 2, 4, for the discretization in

space, where h = hx = hy is the spatial grid width.
Then we obtain the following consistency result for our method (4.18).

Theorem 4.3. The consistency of the LOD method is given by

utt −Au −
(
∂ttu − Ãu

)
= O

(
Δt2

)
, (4.20)

where ∂tt is a second-order discretization in time and Ã is the discretized fourth-order spatial operator.
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Proof. We add (4.18) and obtain the following, see also [1]:

∂ttu
n − Ã

(
θun+1 + (1 − 2θ)un + θun−1) − B̃(un+1 − 2un + un−1) = 0, (4.21)

where B̃ = θ2Δt2Ã1Ã2.
Therefore, we obtain a splitting error of B̃(un+1 − 2un + un−1).
Sufficient smoothness assumed that we have (un+1 − 2un + un−1) = O(Δt2), and we

obtain B̃(un+1 − 2un + un−1) = O(Δt4).
Thus, we obtain a fourth-order method if the spatial operators are also discretized as

fourth-order terms.

The stability of the fourth-order splitting method is given in the following theorem.

Theorem 4.4. The stability of the method is given by

∥∥(1 −Δt2B̃
)1/2

∂+t u
n
∥∥2 + P+(un, θ) ≤ ∥∥(1 −Δt2B̃

)1/2
∂+t u

0∥∥2 + P+(u0, θ
)
, (4.22)

where θ ∈ [0.25, 0.5] and P±(uj, θ) := θ(Ãuj , uj) + θ(Ãuj±1, uj±1) + (1 − 2θ)(Ãuj , uj±1).

Proof. We have to proof the theorem for a test function ∂tu
n, where ∂t denotes the central

difference.
For j ≥ 1, we have

((
1 −Δt2B̃

)
∂ttu

j , ∂tu
j) + (

Ã
(
θuj+1 − (1 − 2θ)uj + θuj−1), ∂tuj

)
= 0. (4.23)

Multiplying with Δt and summarizing over j yield

n∑
j=1

((
1 −Δt2B̃

)
∂ttu

j , ∂tu
j)Δt + (

Ã
((
θuj+1 − (1 − 2θ)uj + θuj−1), ∂tuj

)
, ∂tu

j)Δt = 0. (4.24)

We can derive the identities

((
1 −Δt2B̃

)
∂ttu

j , ∂tu
j
)
Δt =

1
2
∥∥(1 −Δt2B̃

)1/2
∂+t u

j
∥∥2 − 1

2
∥∥(1 −Δt2B̃

)1/2
∂−t u

h
∥∥2
,

(
Ã
(
θuj+1 − (1 − 2θ)uj + θuj−1), ∂tuj

)
Δt =

1
2
(
P+(uj, θ) − P−(uj, θ)),

(4.25)

and obtain the result

∥∥(1 −Δt2B̃
)1/2

∂+t u
n
∥∥2 + P+(un, θ) ≤ ∥∥(1 −Δt2B̃

)1/2
∂+t u

0∥∥2 + P+(u0, θ
)
, (4.26)

see also the idea of [1].

Remark 4.5. For θ = 1/12, we obtain a fourth-order method.
To compute the error of the local splitting, we have to use the multiplier Ã1Ã2, thus

for large constants, we have an unconditional small time step.
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Remark 4.6. (1) The unconditional stable version of LOD method is given for θ ∈ [0.25, 0.5].
(2) The truncation error is O(Δt2 + hp), p ≥ 2, for θ ∈ [0, 0.5].
(3) θ = 1/12, we have a fourth-order method in time O(Δt2 + hp), p ≥ 2.
(4) θ = 0 we have a second-order explicit scheme.
(5) For the stable version of the LOD method, the CFL condition should be taken into

account for all θ ∈ [0, 0.25] with CFL = Δt2/Δx2
maxDmax, where xmax are the maximal spatial

step and Dmax are the maximal wave-propagation parameter in space.

In the next subsections, we discuss the higher-order splitting methods for the vectorial
wave equations.

4.5. Higher-order splitting method for the vectorial wave equation

In the following, we present a fourth-order splitting method based on the basic scheme (3.11).
We split the operatorM4 into three parts:Mxx,Myy, andMxy, where we have

Mxx =

⎛
⎜⎜⎜⎝

(λ + 2μ)
(

1 − h
2

12
Dx2

)
Dx2

0

0 μ

(
1 − h

2

12
Dx2

)
Dx2

⎞
⎟⎟⎟⎠ ,

Myy =

⎛
⎜⎜⎝
μ

(
1 − h

2

12
Dy2

)
Dy2

0

0 (λ + 2μ)
(

1 − h
2

12
Dy2

)
Dy2

⎞
⎟⎟⎠ ,

Mxy =M4 −Mxx −Myy.

(4.27)

Our proposed split method has the following steps:

(1) ρ
U∗
j,k
− 2Un

j,k
+Un−1

j,k

Δt2
=M4Un

j,k + θf
n+1
j,k + (1 − 2θ)fnj,k + θf

n−1
j,k ,

(2) ρ
U∗∗
j,k
−U∗

j,k

Δt2
= θMxx

(
U∗∗j,k − 2Un

j,k +Un−1
j,k

)
+
θ

2
Mxy

(
U∗j,k − 2Un

j,k +Un−1
j,k

)
,

(3) ρ
Un+1
j,k −U

∗∗
j,k

Δt2
= θMyy

(
Un+1
j,k − 2Un

j,k +Un−1
j,k

)
+
θ

2
Mxy

(
U∗∗j,k − 2Un

j,k +Un−1
j,k

)
.

(4.28)

Here, the first step is explicit, while the second and third steps treat the derivatives
along the coordinate axes implicitly and the mixed derivatives explicitly. This is similar to
how the mixed case is handled for parabolic problems [8].

Note that each of the equation systems that needs to be solved in steps (2) and (3) is
actually two decoupled tri-diagonal systems that can be solved independently.
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4.6. Stability and consistency of the higher-order splitting method of
the vectorial wave equations

The consistency of the fourth-order splitting method is given in the following theorem.
We have for all sufficiently smooth functions U(x, t) the following discretization order:

M4U = μ∇2U + (λ + μ)∇(∇·U) +O
(
h4). (4.29)

Furthermore, the split operators are also discretized with the same order of accuracy.
Then, we obtain the following consistency result for the split method (4.28).

Theorem 4.7. The split method has a splitting error which for smooth solutions U is O(Δt4), where
it is assumed that Δt = O(h).

Proof. We assume in the following that f = (0, 0)T . We add (4.28) and obtain, like in the scalar
case [1], the following result for the discretized equations

Dt
+D

t
−U

n
j,k −M4

(
θUn+1

j,k + (1 − 2θ)Un
j,k + θU

n−1
j,k

)
−N4,θ

(
Un+1
j,k − 2Un

j,k +Un−1
j,k

)
= 0, (4.30)

whereN4,θ = θ2Δt2(MxxMyy +MxxMxy +MxyMyy) + θ3Δt4MxxMyyMxy.
We, therefore, obtain a splitting error ofN4,θ(Un+1

j,k
− 2Un

j,k
+Un−1

j,k
).

For sufficient smoothness, we have (Un+1
j,k
− 2Un

j,k
+ Un−1

j,k
) = O(Δt2) and we obtain

N4,θ(Un+1 − 2Un +Un−1) = O(Δt4).
It is important that the influence of the mixed terms can be also be discretized as

fourth-order method and, therefore, the terms are canceled in the proof.

For the stability, we have to denote an appropriate norm, which is in our case the
L2(Ω).

In the following, we introduce the notation of the norms.

Remark 4.8. For our system, we extend the L2-norm as

‖U‖2
L2

= (U,U)L2
=
∫

Ω
U2 dx, (4.31)

where U2 = u2 + v2 or U2 = u2 + v2 +w2 in two and three dimensions.

Remark 4.9. For a discrete grid function Un
j,k, the L2-norm is given as

∫

Ω

(
Un
jk

)2
dx = Δx2

M∑
j,k

Un
j,k, (4.32)

where Δx is the uniform grid length in x and y, M is the number of grid points in x and y.
Further, Un

j,k
is the solution at grid point (j, k) and at time tn.
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Remark 4.10. The matrix

N4,θ = θ2Δt2
(
MxxMyy +MxxMxy +MxyMyy

)
+ θ3Δt4MxxMyyMxy , (4.33)

where Mxx, Myy, and Mxy are symmetrical and positive-definite matrices, therefore, the
matrixN4,θ is also symmetrical and positive-definite.

Furthermore, we can estimate the norms and define a weighted norm, see [9, 10].

Remark 4.11. The energy norm is given as

(
N4,θU,U

)
L2

=
∫

Ω

(
N4,θUU

)
dx. (4.34)

Consequently, we can denote

∥∥N4,θU
∥∥ ≤ ω‖U‖ ∀U ∈ Hd, (4.35)

where ω ∈ R
+ is the weight andN4,θ is bounded. d is the dimension, and H is Sobolev-space,

see [11].

The stability of the fourth-order splitting method is given in the following theorem.

Theorem 4.12. Let θ ∈ [0.25, 0.5], then the implicit time-stepping algorithm, see (3.5), and the split
procedure, see (4.28), are unconditionally stable. One can estimate the split procedure iteratively as

∥∥(1 −Δt2ω̃
)1/2

Dt
+U

n
j,k

∥∥2 + P+(Un
j,k, θ

)
≤
∥∥(1 −Δt2ω̃

)1/2
Dt

+U
0
j,k

∥∥2 + P+(U0
j,k, θ

)
, (4.36)

where one hasP±(Un
j,k
, θ) := θ(M4Un

j,k
,Un

j,k
)+θ(M4Un±1

j,k
,Un±1

j,k
)+(1−2θ)(M4Un

j,k
,Un±1

j,k
) andP± ≥

0 for θ ∈ [0.25, 0.5]. Further, 1−Δt2ω̃ ∈ R
+ is the factor for the weighted norm (I−Δt2N4,θ)U ≤ ω̃U

for all U ∈ Hd.

We have to prove the iterative estimate for the split procedure and the proof is given
as follows.

Proof. To obtain an energy estimate for the scheme, we multiply with a test-function Dt
0U

n
j,k.

The following result is given for the discretized equations, see also (4.30):

(
I −Δt2N4,θ

)
Dt

+D
t
−U

n
j,k −M4

(
θUn+1

j,k + (1 − 2θ)Un
j,k + θU

n−1
j,k

)
= 0. (4.37)

So for n ≥ 1, we can rewrite (4.37) for the stability proof as follows:

((
I −Δt2N4,θ

)
Dt

+D
t
−U

n
j,k, D

t
0U

n
j,k

)
−
(
M4

(
θUn+1

j,k + (1 − 2θ)Un
j,k + θU

n−1
j,k

)
, Dt

0U
n
j,k

)
= 0. (4.38)
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Multiplying with Δt and summarizing over the time levels, we obtain

∑
n

((
I−Δt2N4,θ

)
Dt

+D
t
−U

n
j,k, D

t
0U

n
j,k

)
Δt−

∑
n

(
M4

(
θUn+1

j,k +(1−2θ)Un
j,k+θU

n−1
j,k

)
, Dt

0U
n
j,k

)
Δt=0,

(4.39)

for each term of the sum, one can derive the following identities. So for I −Δt2N4,θ, we have

((
I −Δt2N4,θ

)
Dt

+D
t
−U

n
j,k, D

t
0U

n
j,k

)
Δt =

1
2
((
I −Δt2N4,θ

)(
Dt

+ −Dt
−
)
Un
j,k,

(
Dt

+ +D
t
−
)
Un
j,k

)

=
∫

Ω

((
I −Δt2N4,θ

)(
Dt

+ −Dt
−
))T(

Dt
+ +D

t
−
)
Un
j,k dx

≤
(
1 −Δt2ω̃

) ∫

Ω

(
Dt

+U
n
j,k

)2(
Dt
−U

n
j,k

)2
dx,

(4.40)

where the operator I − Δt2N4,θ is symmetric and positive-definite and we can apply the
weighted norm, see Remark 4.11 and [11].

We obtain the following result:

(
1 −Δt2ω̃

)∫

Ω

(
Dt

+U
n
j,k

)2(
Dt
−U

n
j,k

)2
dx =

1
2
∥∥(1 −Δt2ω̃

)1/2
Dt

+U
n
j,k

∥∥2 − 1
2
∥∥(1 −Δt2ω̃

)1/2
Dt
−U

n
j,k

∥∥2
.

(4.41)

Further, for −M4, we have

(
−M4

(
θUn+1

j,k + (1 − 2θ)Un
j,k + θU

n−1
j,k

)
, Dt

0U
n
j,k

)
Δt =

1
2
(
P+(Un

j,k, θ
)
− P−

(
Un
j,k, θ

))
. (4.42)

Due to the result of the operators:

P−
(
Un
j,k, θ

)
= P+(Un−1

j,k , θ
)
, Dt

−U
n
j,k = Dt

+U
n−1
j,k , (4.43)

we can recursively derive the following result:

∥∥(1 −Δt2ω̃
)1/2

Dt
+U

n
j,k

∥∥2 + P+(Un
j,k, θ

)
≤
∥∥(1 −Δt2ω̃

)1/2
Dt

+U
0
j,k

∥∥2 + P+(U0
j,k, θ

)
, (4.44)

where for θ ∈ [0.25, 0.5], we have P+(Un
j,k, θ) ≥ 0 for all n ∈ N

+, and, therefore, we have the
unconditional stability. The scalar proof is also presented in the work of [1].
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Remark 4.13. For θ = 1/12, the split method is fourth-order accurate in time and space.

See the following theorem.

Theorem 4.14. One obtains a fourth-order accurate scheme in time and space for the split method,
see (4.28), when θ = 1/12. That reads

Dt
+D

t
−U

n
j,k −

1
12
M4

(
Un+1
j,k − 2Un

j,k +Un−1
j,k

)
+M4Un

j,k +N4,θ
(
Un+1
j,k − 2Un

j,k +Un−1
j,k

)
= 0, (4.45)

whereM4 is a fourth-order discretization scheme in space.

The proof is given as follows.

Proof. We consider the following Taylor-expansion:

∂ttUn
j,k = Dt

+D
t
−U

n
j,k −

Δt2

12
∂ttttUn

j,k +O
(
Δt4

)
. (4.46)

Furthermore, we have

∂ttttUn
j,k ≈ M4∂ttUn

j,k, (4.47)

and we can rewrite (4.46) as

∂ttUn
j,k ≈ D

t
+D

t
−U

n
j,k −

Δt2

12
M4∂ttUn

j,k +O
(
Δt4

)

≈ Dt
+D

t
−U

n
j,k −

Δt2

12
M4

(
Un+1
j,k − 2Un

j,k +Un−1
j,k

)
+O

(
Δt4

)
.

(4.48)

So the fourth-order time-stepping algorithm can be formulated as

Dt
+D

t
−U

n
j,k −

1
12
M4

(
Un+1
j,k − 2Un

j,k +Un−1
j,k

)
−M4Un

j,k = 0. (4.49)

The split method (4.28) becomes

Dt
+D

t
−U

n
j,k −

1
12
M4

(
Un+1
j,k − 2Un

j,k +Un−1
j,k

)
−M4Un

j,k −N4,1/12
(
Un+1
j,k − 2Un

j,k +Un−1
j,k

)
= 0, (4.50)

and we obtain a fourth-order split scheme (cf. the scalar case [1]).

Remark 4.15. As follows form Theorem 4.14, we obtain a fourth-order in time for θ = 1/12.
For the stability analysis, the method is conditional stable for θ ∈ (0, 0.25). So the splitting
method will not restrict our stability condition for the fourth-order method with θ = 1/12.

Our theoretical results are verified by the following numerical examples.
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5. Numerical experiments

In this section, we present the numerical experiments for scalar and vectorial wave equations.
The benefit of the splitting methods is discussed.

5.1. Numerical examples of the scalar wave equation

To test examples for the scalar wave equations, we discussed numerical experiments,
which are based on analytical solutions. We present various boundary conditions and also
spatial-dependent propagation functions. The benefit of the splitting method to reduce the
computational amount is discussed with respect to the approximation errors.

5.1.1. Test example 1: problem with analytical solution and Dirichlet boundary condition

We deal with a two-dimensional example with constant coefficients where we can derive an
analytical solution:

∂ttu = D2
1∂xxu +D2

2∂yyu, in Ω × (0, T),

u(x, y, 0) = u0(x, y) = sin
(

1
D1

πx

)
sin

(
1
D2

πy

)
, on Ω,

∂tu(x, y, 0) = u1(x, y) = 0, on Ω,

u(x, y, t) = sin
(

1
D1

πx

)
sin

(
1
D2

πy

)
cos

(√
2πt

)
, on ∂Ω × (0, T),

(5.1)

where the initial conditions can be written as u(x, y, tn) = u0(x, y) and u(x, y, tn−1) =
u(x, y, tn+1) = u(x, y,Δt).

The analytical solution is given by

uana(x, y, t) = sin
(

1
D1

πx

)
sin

(
1
D2

πy

)
cos

(√
2πt

)
. (5.2)

For the approximation error, we choose the L1-norm.
The L1-norm is given by

errL1 :=
∑

i,j=1,...,m

Vi,j
∣∣u(xi, yj , tn

)
− uana

(
xi, yj , t

n)∣∣, (5.3)

where u(xi, yj , tn) is the numerical and uana(xi, yj , tn) is the analytical solution and Vi,j =
ΔxΔy.

Our test examples are organized as follows.

(1) The non-stiff case. We choose D1 = D2 = 1 with a rectangle as our model domain
Ω = [0, 1] × [0, 1]. We discretize with Δx = 1/16 and Δy = 1/16 and Δt = 1/32 and
choose our parameter η between 0 ≤ η ≤ 1. The exemplary function values unum

and uana are taken from the center of our domain.
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Figure 1: Numerical error for standard and modified methods, with respect to the η parameter and
Dirichlet boundary conditions.
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Figure 2: Numerical resolution of the wave equation: numerical approximation (a) and error functions (b)
for the Dirichlet boundary conditions (Δx = Δy = 1/32, Δt = 1/64, D1 = 1, D2 = 1) (classical method).

(2) The stiff case. We choose D1 = D2 = 0.01 with a rectangle as our model domain
Ω = [0, 1] × [0, 1]. We discretize with Δx = 1/32 and Δy = 1/32 and Δt = 1/64 and
choose our parameter η between 0 ≤ η ≤ 1. The exemplary function values unum

and uana are taken from the point (0.5, 0.5625).

The experiments are done with the uncoupled standard discretization method (i.e., the
finite differences methods for time and space, and with the operator splitting methods, i.e.,
the classical operator splitting method and the LOD method).

The numerical errors for the non-stiff case with Dirichlet boundary conditions are
presented in Figure 1 and their results in Figure 2.
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Figure 3: Numerical error for standard and modified methods, with respect to the η parameter, Dirichlet
boundary conditions and stiff case (Δx = Δy = 1/32, Δt = 1/64, D1 = 1, D2 = 0.01).
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Figure 4: Numerical approximation and error function for the Dirichlet boundary in the stiff case (Δx =
Δy = 1/32, Δt = 1/64, D1 = 1, D2 = 0.01).

The numerical errors for the stiff case with Dirichlet boundary conditions are
presented in Figure 3 and their results in Figure 4.

Remark 5.1. In the experiments, we compare the non-splitting with the splitting methods. We
obtain nearly the same results and could see improved results for the LOD method, which is
for η = 1/12 a fourth-order method.

In the next test example, we study the Neumann boundary conditions.
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Figure 5: Numerical error for standard and modified methods, with respect to the η parameter and
Neumann boundary conditions.

5.1.2. Test example 2: problem with analytical solution and Neumann boundary condition

In this example, we modify our boundary conditions with respect to the Neumann boundary.
We deal with our 2D example where we can derive an analytical solution:

∂ttu = D2
1∂xxu +D2

2∂yyu, in Ω × (0, T),

u(x, y, 0) = u0(x, y) = sin
(

1
D1

πx

)
sin

(
1
D2

πy

)
, on Ω,

∂tu(x, y, 0) = u1(x, y) = 0, on Ω,

∂u(x, y, t)
∂n

=
∂uanaly(x, y, t)

∂n
= 0, on ∂Ω × (0, T),

(5.4)

where Ω = [0, 1] × [0, 1]. D1 = 1, D2 = 0.5 and the initial conditions can be written as
u(x, y, tn) = u0(x, y) and u(x, y, tn−1) = u(x, y, tn+1) = u(x, y,Δt).

The analytical solution is given as

canaly(x, y, t) = sin
(

1
D1

πx

)
sin

(
1
D2

πy

)
cos

(√
2πt

)
. (5.5)

We have the same discretization methods as in test example 1.
The numerical errors for the non-stiff case with Neumann boundary conditions are

presented in Figure 5 and their results in Figure 6.
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Figure 6: Numerical resolution of the wave equation: numerical approximation (a) and error functions (b)
for the Neumann boundary condition (Δx = Δy = 1/32, Δt = 1/64, D1 = 1, D2 = 1) (classical method).

Remark 5.2. In the experiments, we can obtain the same accuracy as for the Dirichlet boundary
conditions. More accurate results are gained by the LOD method with small η. We obtain also
stable results in our computations.

5.1.3. Test example 3: spatial-dependent wave equation

In this experiment, we apply our method to the spatial-dependent problem, given by

∂ttu = D1(x, y)∂xxu +D2(x, y)∂yyu, in Ω × (0, T),

u
(
x, y, tn

)
= u0, ∂tu

(
x, y, tn

)
= u1, on ∂Ω × (0, T),

u(x, y, t) = u2, on ∂Ω × (0, T),

(5.6)

where D1(x, y) = 0.1x + 0.01y + 0.01, D2(x, y) = 0.01x + 0.1y + 0.1.
To compare the numerical results, we cannot use an analytical solution, that is why in

a first prestep we are computing a reference solution. The reference solution is done with the
finite difference scheme with fine time and space steps.

Concerning the choice of the time steps, it is important to consider the CFL condition,
that is now based on the spatial coefficients.

Remark 5.3. We have assumed the following CFL condition:

Δt <
0.5 min(Δx,Δy)

maxx,y∈Ω
(
D1(x, y), D2(x, y)

) . (5.7)

For the test example, we define our model domain as a rectangle Ω = [0, 1] × [0, 1].
The reference solution is obtained by executing the finite differences method and

setting Δx = 1/256, Δy = 1/256, and the time step Δt = 1/256 < 0.390625.
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Figure 7: Numerical error for standard and modified methods, with respect to the η parameter, spatial-
dependent parameters, and Dirichlet boundary conditions.
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Figure 8: Dirichlet boundary condition: numerical solution and error function for the spatial-dependent
test example.

The model domain is given by a rectangle with Δx = 1/16 and Δy = 1/32. The time
steps are given by Δt = 1/16 and 0 ≤ η ≤ 1.

The numerical errors for the spatial-dependent parameters with Dirichlet boundary
conditions are presented in Figure 7 and their results in Figure 8.

The numerical errors for the spatial-dependent parameters with Neumann boundary
conditions are presented in Figure 9 and their results in Figure 10.

Remark 5.4. In the experiments, we analyze the classical operator splitting and the LOD
method and show that the LOD method yields yet more accurate values.
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Figure 9: Numerical error for standard and modified methods with respect to the η parameter, spatial-
dependent parameters, and Neumann boundary conditions.
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Figure 10: Neumann boundary condition: numerical solution and error function for the spatial-dependent
test example.

5.2. Numerical experiments of the elastic wave propagation

To test a fourth-order split method, we have done grid convergence studies on two types of
problems. For the first, we impose a smooth solution of (2.4a) using a specific form of the
forcing function f and check the error of the numerical solution against the known solution
as the grid is refined.

For the second problem, we use a singular forcing function (2.5), and compare
the numerical solution to a solution computed using the Green’s function for the free
space elastodynamic problem. The convergence for this case is dependent not only on
the approximations of time and space derivatives but also on how the Dirac function is
approximated.
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During the numerical testing, we have observed a need to reduce the allowable time
step when the ration of λ over μ became too large. This is likely from the influence of the
explicitly treated mixed derivative. For really high ratios (>20), a reduction of 35% was
necessary to avoid numerical instabilities.

5.2.1. Initial values and boundary conditions

In order to start the time stepping scheme, we need to know the values at two earlier time
levels. Starting at time t = 0, we know the value at level n = 0 as U0 = g0. The value at level
n = −1 can be obtained by Taylor expansion as

U−1 = U0 −Δt∂tU0 +
Δt2

2
∂ttU0 − Δt3

6
∂tttU0 +

Δt4

24
∂ttttU0 +O

(
Δt5

)
, (5.8)

where we use

∂tU0
j,k = g1j,k, (5.9a)

∂ttU0
j,k ≈

1
ρ

(
M4g0j,k

)
+ fj,k

)
, (5.9b)

∂tttU0
j,k ≈

1
ρ

(
M4g1j,k

)
+ ∂tf0

j,k

)
, (5.9c)

∂ttttU0
j,k ≈

1
ρ

(
M2

2g0j,k

)
+M4f0

j,k + ∂ttf
0
j,k

)
, (5.9d)

and also for (5.9c) and (5.9d),

∂tf0
j,k ≈

f1
j,k
− f−1

j,k

2Δt
, (5.9e)

∂ttf0
j,k ≈

f1
j,k − 2f0

j,k + f−1
j,k

Δt2
. (5.9f)

We are not considering the boundary value problem in this paper and so will not be
concerned with constructing proper difference stencils at grid points close to the boundaries
of the computational domain. We have simply added a two-point-thick layer of extra-grid
points at the boundaries of the domain and assigned the correct analytical solution at all
points in the layer every time step.

Remark 5.5. For the Dirichlet boundary conditions, the splitting method (see (4.28)) conserves
also the conditions. We can use for the 3 equations (see (4.28)), so for U∗, U∗∗, and for Un+1,
the same conditions.

For the Neumann boundary conditions and other boundary conditions of higher order,
we have also to split the boundary conditions with respect to the split operators, see [12].



Jürgen Geiser 25

Table 1: Errors in max-norm for decreasing h and smooth analytical solution Utrue. Convergence rate
indicates a fourth-order convergence for the split scheme.

t = 2 eh = ‖Un −Utrue‖∞
h case 1 log2(e2h/eh) case 2 log2(e2h/eh)
0.05 1.7683e-07 — 2.5403e-07 —
0.025 1.2220e-08 3.855 2.1104e-08 3.589
0.0125 7.9018e-10 3.951 1.4376e-09 3.876
0.006125 5.0013e-11 3.982 9.2727e-11 3.955

Table 2: Errors in max-norm for decreasing h and smooth analytical solution Utrue and using the non-split
scheme. Comparing with Table 1, we see that the splitting error is very small for this case.

t = 2, eh = ‖Un −Utrue‖∞
h case 1 case 2
0.05 1.6878e-07 2.4593e-07
0.025 1.1561e-08 2.0682e-08
0.0125 7.4757e-10 1.4205e-09
0.006125 4.8112e-11 9.2573e-11

5.2.2. Test example

For the first test case, we use a forcing function

f =
(

sin(t − x) sin(y) − 2μ sin(t − x) sin(y) − (λ + μ)
(

cos(x) cos(t − y) + sin(t − x) sin(y)
)
,

sin(t − y) sin(x) − 2Vs2 sin(x) sin(t − y) − (λ + μ)
(

cos(t − x) cos(y) + sin(y) sin(t − y)
))T

,

(5.10)

giving the analytical solution

Utrue =
(

sin(x − t) sin(y), sin(y − t) sin(x)
)T
. (5.11)

Using the split method we solved (2.4a) on a domain x × y = [−11] × [−11] up to t = 2.
We used two sets of material parameters; for the first case ρ, λ, and μ were all equal to
1, for the second case ρ and μ were 1 and λ was set to 14. Solving on four different grids
with a refinement factor of two in each direction between the successive grids we obtained
the results shown in Table 1. The errors are measured in the ∞-norm defined as ‖Uj,k‖ =
max(maxj,k|uj,k|,maxj,k|vj,k|). As can be seen we get the expected 4th order convergence for
problems with smooth solutions.

To check the influence of the splitting error N4,θ on the error we solved the same
problems using the non-split scheme (3.11). The results are shown in Table 2. The errors are
only marginally smaller than for the split scheme.

5.2.3. Singular forcing terms

In seismology and acoustics it is common to use spatially singular forcing terms which can
look like
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f = Fδ(x)g(t), (5.12)

where F is a constant direction vector. A numeric method for (2.4a) needs to approximate
the Dirac function correctly in order to achieve full convergence. Obviously we cannot expect
convergence close to the source as the solution will be singular for two and three dimensional
domains.

The analyzes in [13, 14] demonstrate that it is possible to derive regularized
approximations of the Dirac function, which result in point wise convergence of the solution
away from the sources. Based on these analyzes, we define one 2nd (δh2) and one 4th (δh4)
order regularized approximations of the one dimensional Dirac function,

δh2
(
x̃
)
=

1
h

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + x̃, −h ≤ x̃ < 0,

1 − x̃, 0 ≤ x̃ < h,

0, elsewhere,

(5.13)

δh4
(
x̃
)
=

1
h

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
11
6
x̃ +

5
8
x̃2 +

1
6
x̃3, −2h ≤ x̃ < −h,

1 +
1
2
x̃ − x̃2 − 1

2
x̃3, −h ≤ x̃ < 0,

1 − 1
2
x̃ − x̃2 +

1
2
x̃3, 0 ≤ x̃ < h,

1 − 11
6
x̃ + x̃2 − 1

6
x̃3, h ≤ x̃ < 2h,

0, elsewhere,

(5.14)

where in the above x̃ = x/h. The two and three dimensional Dirac functions are then
approximated as δh2,4(x̃)δh2,4(ỹ) and δh2,4(x̃)δh2,4(ỹ)δh2,4(z̃). The chosen time dependence was
a smooth function given by

g(t) =

⎧
⎨
⎩

exp
( −1
t(1 − t)

)
, 0 ≤ t < 1,

0, elsewhere,
(5.15)

which is C∞. Using this forcing function we can compute the analytical solution by
integrating the Green’s function given in [15] in time. The integration was done using
numerical quadrature routines from Matlab. Figures 11 and 12 shows examples of what the
errors look like on a radius passing through the singular source at time t = 0.8 for different
grid sizes h and the two approximations δh2 and δh4 . As can be seen the error is smooth and
converges a small distance away from the source. However, using δh2 limits the convergence
to 2nd order, while using δh4 gives the full 4th order convergence away from the singular
source. When t > 1 the forcing goes to zero and the solution will be smooth everywhere.
Table 3 shows the convergence behavior at time t = 1.1 for four different grids. Note that the
full convergence is achieved even if the lower order δh2 is used as an approximation for the
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Figure 11: The 2-logarithm of the error along a line going through the source point for a point force located
at x = 0, y = 0, and approximated in space by (5.14). Note that the error decays as O(h4) away from the
source, but not near it. The grid sizes were h = 0.05 (−·), 0.025 (·), 0.0125 (−), 0.006125 (∗). The numerical
quadrature had an absolute error of approximately 10−11 ≈ 2−36, so the error cannot be resolved beneath
that limit.
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Figure 12: The 2-logarithm of the error along a line going through the source point for a point force located
at x = 0, y = 0, and approximated in space by (5.13). Note that the error only decays as O(h2) away from
the source. The grid sizes were h = 0.05 (−·), 0.025 (·), 0.0125 (−), 0.006125 (∗).

Dirac function. The convergence rate approaches 4 as we refine the grids, even though the
solution was singular up to time t = 1.

Remark 5.6. For a two dimensional problem the 4th order explicit method (3.10) can be
implemented using approximately 160 floating point operations (flops) per grid point. For
example, the split method requires approximately 120 flops (first step) plus 2 times 68 flops
(second and third step) for a total of 256 flops. This increase of about 60% in the number of
flops is somewhat offset by the larger time steps allowed by the split method, especially for
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Table 3: Errors in max-norm for decreasing h and analytical solution Utrue. Convergence rate approaches
4th order after the singular forcing term goes to zero.

t = 1.1, eh = ‖Un −Utrue‖∞
h log2(e2h/eh)
0.05 1.1788e-04 —
0.025 1.4146e-05 3.0588
0.0125 1.3554e-06 3.3836
0.00625 1.0718e-07 3.6606
0.003125 7.1890e-09 3.8981

smooth material properties, making the two methods roughly comparable in computational
cost.

5.3. Three-dimensional test example for the elastic wave propagation

The motivation to compute also the three dimensional elastic wave propagation arose from
the need to understand the anisotropy of the different dimensions, see [2]. We apply the
three-dimensional model (2.4a)–(2.4c) for our proposed splitting schemes.

5.3.1. The splitting scheme

In three dimensions a 4th order difference approximation of the right hand side operator
becomes

M4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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, (5.16)

operating on grid functions Un
j,k,l

defined at grid points xj , yk, zl, tn similarly to the two
dimensional case. We can splitM4 into six parts;Mxx,Myy,Mzz containing the three second
order directional difference operators, and Mxy, Myz, Mxz containing the mixed difference
operators.
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There are a number of different ways we could split this scheme, depending on how
we treat the mixed derivative terms. We have chosen to implement the following split scheme
in three dimensions:

(1) ρ
U∗
j,k,l
− 2Un

j,k,l
+Un−1

j,k,l

Δt2
=M4Un

j,k,l + θf
n+1
j,k,l + (1 − 2θ)fnj,k,l + θf

n−1
j,k,l

(2) ρ
U∗∗
j,k,l
−U∗

j,k,l

Δt2
= θMxx

(
U∗∗j,k,l − 2Un

j,k,l +Un−1
j,k,l

)
+
θ

2
(
Mxy +Mxz

)(
U∗j,k,l − 2Un

j,k,l +Un−1
j,k,l

)

(3) ρ
U∗∗∗
j,k,l
−U∗∗

j,k,l

Δt2
= θMxx

(
U∗∗∗j,k,l − 2Un

j,k,l +Un−1
j,k,l

)
+
θ

2
(
Mxy +Myz

)(
U∗∗j,k,l − 2Un

j,k,l +Un−1
j,k,l

)

(4) ρ
Un+1
j,k,l
−U∗∗∗

j,k,l

Δt2
= θMxx

(
Un+1
j,k,l − 2Un

j,k,l +Un−1
j,k,l

)
+
θ

2
(
Mxz +Myz

)(
U∗∗∗j,k,l − 2Un

j,k,l +Un−1
j,k,l

)
.

(5.17)

The properties such as splitting error, accuracy, stability, and so forth, for the three
dimensional case are similar to the two dimensional case treated in the earlier sections.

5.3.2. Testing the three dimensional scheme

We have done some numerical experiments with the three dimensional scheme in order to
test the convergence and stability. We used a forcing

f = −(−1+λ+4μ) sin(t−x) sin(y) sin(z)−(λ+μ) cos(x)
(
2 sin(t) sin(y) sin(z)+ cos(t) sin(y+z)

)
,

−(−1+λ+4μ) sin(x) sin(t−y) sin(z)−(λ+μ) cos(y)
(
2 sin(t) sin(x) sin(z)+ cos(t) sin(x+z)

)
,

−(λ + μ) cos(t − y) cos(z) sin(x)

− sin(y)
(
(λ + μ) cos(t − x) cos(z) + (−1 + λ + 4μ) sin(x) sin(t − z)

))T
,

(5.18)

giving the analytical solution

Utrue =
(

sin(x − t) sin(y) sin(z), sin(y − t) sin(x) sin(z), sin(z − t) sin(x) sin(y)
)T
. (5.19)

As earlier we tested this for a number of different grid sizes. Using the same two sets of
material parameters as for the two dimensional case we ran up until t = 2 and checked the
max error for all components of the solution. The results are given in Table 4. We have also
tested the three dimensional scheme using singular forcing functions approximated using
(5.13) and (5.14). The results are very similar to the two dimensional case and we have
therefore omitted them here.

6. Conclusion

We have presented time splitting methods for the scalar and vectorial wave equation. The
contributions of this article concerns the higher order splitting methods, based on LOD
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Table 4: Errors in max-norm for decreasing h and smooth analytical solution Utrue. Convergence rate
indicates 4th order convergence for the three dimensional split scheme.

t = 2 eh = ‖Un −Utrue‖∞
h case 1 log2(e2h/eh) case 2 log2(e2h/eh)
0.1 4.2986e-07 — 1.8542e-06 —
0.05 3.5215e-08 3.61 1.3605e-07 3.77
0.025 3.0489e-09 3.53 8.0969e-09 4.07
0.0125 2.0428e-10 3.90 4.7053e-10 4.10

method. We have designed with higher order spatial and time discretization methods the
stabile higher order splitting methods. The benefit of the splitting methods is due to the
different scales and therefore the computational process in decoupling the stiff and the
nonstiff operators into different equation is accelerated. The LOD method as a 4th-oder
method has the advantage of higher accuracy and can be used for such decoupling regards.
For our realistic application in elastic wave propagation, the split scheme has been proven
to work well in practice for different types of material properties It is comparable to the
fully explicit 4th order scheme (3.10) in terms of computational cost, but should be easier
to implement, as no difference approximations of higher order operators are needed.

In a next work we will discuss a model in seismology, which have to be more accurate
in the boundary conditions. For such models we have to develop higher order stable splitting
methods.
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